Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy
Abstract
:1. Introduction
2. Study Area and Rainfall Events
2.1. Regional Setting
2.2. Rainfall Events and Affected Areas
2.2.1. Rainfall Event of 6–7 October 2007
2.2.2. Rainfall Event of 1–2 March 2011
2.2.3. Rainfall Event of 5–6 and 13–14 September 2012
3. Methods
- (1)
- areal landform erosion =
- (2)
- linear landform erosion =
- (3)
- areal landform accumulation =
4. Results
4.1. Rainfall Event of 6–7 October 2007
4.1.1. Rainfall Amount and Duration
4.1.2. Geomorphological Effects
4.2. Rainfall Event of 1–2 March 2011
4.2.1. Rainfall Amount and Duration
4.2.3. Geomorphological Effects
4.3. Rainfall Event of 5–6 and 13–14 September 2012
4.3.1. Rainfall Amount and Duration
4.3.2. Geomorphological Effects
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow land-slides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- De Vita, P.; Reichenbach, P. Rainfall-triggered landslides: A reference list. Environ. Geol. 1998, 35, 219–233. [Google Scholar] [CrossRef]
- Grimm, M.; Jones, R.J.A.; Rusco, E.; Montanarella, L. Soil Erosion Risk in Italy: A Revised USLE Approach. EUR 20677 EN, European Soil Boreau Research Report; Office for Official Publications of the Europe-an Communities Luxembourg: Luxemburg, 2003; p. 28. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F. Hydrological triggers of diffused landsliding. Environ. Geol. 1998, 35, 79–80. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Capolongo, D.; Pennetta, L.; Piccarreta, M.; Fallacara, G.; Boenzi, F. Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semiarid area of Basilicata (Southern Italy). Earth Surf. Process. Landf. 2008, 33, 364–379. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Gariano, S.L.; Petrucci, O.; Rianna, G.; Santini, M.; Guzzetti, F. Impacts of past and future land changes on landslides in southern Italy. Reg. Environ. Chang. 2018, 18, 437–449. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of climate change on landslide hazard in Central Italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int. J. Clim. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F. Societal landslide and flood risk in Italy. NHESS 2010, 10, 465–483. [Google Scholar] [CrossRef] [Green Version]
- Salvati, P.; Petrucci, O.; Rossi, M.; Bianchi, C.; Pasqua, A.A.; Guzzetti, F. Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci. Total Environ. 2018, 610–611, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Ciccacci, S.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Sviluppo di Metodi per la Valutazione Quantitativa dell’intensità della Denudazione e della Relativa Pericolosità in Bacini Idrografici Italiani. In Erosione Idrica in Ambiente Mediterraneo: Valutazione Diretta e Indiretta in Aree Sperimentali e Bacini Idrografici, Atti Convegno conclusivo PRIN; Rodolfi, G., Ed.; Brigati: Genova, Italy, 2006; pp. 125–144. [Google Scholar]
- Märker, M.; Pelacani, S.; Schröder, B. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 2011, 125, 530–540. [Google Scholar] [CrossRef]
- Conoscenti, C.; Agnesi, V.; Cama, M.; Caraballo-Arias, N.A.; Rotigliano, E. Assessment of Gully Erosion Susceptibility Using Multivariate Adaptive Regression Splines and Accounting for Terrain Connectivity. Land Degrad. Dev. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Antronico, L.; Bartolini, D.; Deganutti, A.M.; Gariano, S.L.; Iovine, G.; Luciani, S.; Luino, F.; Melillo, M.; et al. Catalogue of rainfall events with shallow landslides and new rainfall thresholds in Italy. In Engineering Geology for Society and Territory Landslide Processes; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 2, pp. 1575–1579. ISBN 978-3-319-09057-3. [Google Scholar]
- Vessia, G.; Parise, M.; Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Vennari, C.; Guzzetti, F. Automated recon-struction of rainfall events responsible for shallow landslides. NHESS 2014, 14, 2399–2408. [Google Scholar]
- IPCC Intergovernmental Panel on Climate Change. Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2008; p. 151. Available online: https://www.ipcc.ch/report/ar5/s (accessed on 1 November 2014).
- Piccarreta, M.; Pasini, A.; Capolongo, D.; Lazzari, M. Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, southern Italy. Int. J. Clim. 2013, 33, 3229–3248. [Google Scholar] [CrossRef]
- Bramati, M.C.T.; Tarragoni, C.; Davoli, L.; Raffi, R. Extreme rainfall in coastal metropolitan areas of Cen-tral Italy: Rome and Pescara case studies. Geog. Fis. Din. Quat. 2014, 37, 3–13. [Google Scholar]
- Mariani, L.; Parisi, S.G. Extreme rainfalls in the Mediterranean area. Adv. Nat. Technol. Hazard 2014, 39, 17–37. [Google Scholar]
- Forestieri, A.; Lo Conti, F.; Blenkinsop, S.; Cannarozzo, M.; Fowler, H.J.; Noto, L.V. Regional frequency analysis of extreme rainfall in Sicily (Italy). Int. J. Clim. 2018, 38, 698–716. [Google Scholar] [CrossRef]
- Fredi, P.; Lupia Palmieri, E. Morphological Regions of Italy. In Landscapes and Landforms of Italy. World GeOmorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 39–74. [Google Scholar]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C.; Cevasco, A.; Conoscenti, C.; Marsico, A.; Ver-gari, F.; Del Monte, M. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity of development? Land Degrad. Dev. 2018. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Long- and short-term evolution of several Mediterranean denudation hot spots: The role of rainfall variations and human impact. Geomophology 2013, 183, 14–27. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akça, E.; et al. Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef] [PubMed]
- ISPRA. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici Edizione; ISPRA: Rome, Italy, 2018; Rapporti 288/2018; ISBN 978-88-448-0902-7. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Daverio, F.; Di Michele, R. Geomorphological instability triggered by heavy rainfall: Examples in the Abruzzi Region (Central Italy). In Environmental and Applied Geomorphology; Miccadei, E., Piacentini, T., Eds.; INTECH: Rijeka, Croatia, 2012; pp. 45–62. ISBN 9789535103615. [Google Scholar]
- Di Lena, B.; Antenucci, F.; Mariani, L. Space and time evolution of the Abruzzo precipitation. It. J. Agro-meteo. 2012, 1, 5–20. [Google Scholar]
- Regione Abruzzo. Calamità Naturali. Available online: https://www.regione.abruzzo.it/content/calamità-naturali (accessed on 10 August 2018).
- Ciccacci, S.; Fredi, F.; Lupia Palmieri, E.; Pugliese, F. Contributo dell’analisi geomorfica quantitativa alla valutazione dell’entita dell’erosione nei bacini fluviali. Boll. Soc. Geol. Ital. 1980, 99, 455–516. [Google Scholar]
- Lazzari, M.; Gioia, D.; Piccarreta, M.; Danese, M.; Lanorte, A. Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): A comparison between different empirical methods. Catena 2015, 127, 323–339. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Martínez-Mena, M.; Calvo-Cases, A.; Arnau-Rosalén, E.; Albaladejo, J.; Castillo, V. Causes and underlying processes of measurement variability in field erosion plots in Mediterranean conditions. Earth Surf. Process. Landf. 2007, 32, 85–101. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Space-time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 2009, 107, 161–177. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Buccolini, M.; Gentili, B.; Materazzi, M.; Piacentini, T. Late Quaternary geomorphological evolution and erosion rates in the clayey peri-Adriatic belt (central Italy). Geomorphology 2010, 116, 145–161. [Google Scholar] [CrossRef]
- Del Monte, M.; Vergari, F.; Brandolini, P.; Capolongo, D.; Cevasco, A.; Ciccacci, S.; Conoscenti, C.; Fredi, P.; Melelli, L.; Rotigliano, E.; et al. Multi-Method Evaluation of Denudation Rates in Small Mediterranean Catchments. In Engineering Geology for Society and Territory Climate, Change and Engineering Geology; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 563–567. ISBN 978-3-319-09300-0. [Google Scholar]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- ISPRA. Cartografia Geologica d’Italia alla Scala 1:50.000, Foglio 339 “Teramo”; Serv. Geol. It.; ISPRA: Rome, Italy, 2012. [Google Scholar]
- ISPRA. Cartografia Geologica d’Italia alla Scala 1:50.000, Foglio 351 “Pescara”; Serv. Geol. It.; ISPRA: Rome, Italy, 2012. [Google Scholar]
- Costantini, E.A.C.; L’Abate, G.; Barbetti, R.; Fantappie, M.; Lorenzetti, R.; Magini, S. Carta dei suoli d’Italia, Scala 1:1.000.000. Available online: http://www.soilmaps.it/en/downloads.html (accessed on 18 September 2018).
- Chiuchiarelli, I.; Paolanti, M.; Rivieccio, R.; Santucci, S. Suoli e Paesaggi d’Abruzzo—Carta dei Suoli d’Abruzzo, in Scala 1:250.000; ARSSA Regione Abruzzo, 2006. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 106–203. ISSN 0532-0488. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-Term Geomorphological Evolution in the Abruzzo Area (Central Apennines, Italy): Twenty Years of Research. Thematic Issue “Long-term geomorphological evolution of central-southern Italy. Geol. Carp. 2017, 68, 19–28. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Gerbasi, F.; Daverio, F. Morphotectonic map of the Osento River basin (Abruzzo, Italy), scale 1:30,000. J. Maps 2012, 8, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Miccadei, E.; Piacentini, T.; Pozzo, A.D.; Corte, M.L.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rend. Fis. Acc. Lincei 2014, 25, 139–150. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Ricci, F.; Piacentini, T. Geomorphology of soft clastic rock coasts in the midwestern Adriatic Sea (Abruzzo, Italy). Geomorphology 2018, accepted. [Google Scholar]
- Calista, M.; Miccadei, E.; Pasculli, A.; Piacentini, T.; Sciarra, M.; Sciarra, N. Geomorphological features of the Montebello sul Sangro large landslide (Abruzzo, Central Italy). J. Maps 2016, 12, 882–891. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Del Sordo, L.; Buccolini, M.; Miccadei, E.; Piacentini, T.; Urbani, A. Regione Abruzzo (Cap.18). In Rapporto Sulle Frane in Italia. Il Progetto IFFI. Risultati, Elaborazioni, e Rapporti Regionali; Rapporti APAT 78/2007; ISPRA: Rome, Italy, 2007; pp. 464–497. [Google Scholar]
- Piacentini, T.; Sciarra, M.; Miccadei, E.; Urbano, T. Near-surface deposits and hillslope evolution of the Adriatic piedmont of the Central Apennines (Feltrino Stream basin and minor coastal basins, Abruzzo, Italy). J. Maps 2015, 11, 299–313. [Google Scholar] [CrossRef]
- Piccini, C.; Marchetti, A.; Santucci, S.; Chiuchiarelli, I.; Francaviglia, R. Stima dell’erosione dei suoli nel territorio della regione Abruzzo. Geol. Ambiente 2012, 2 (Suppl. 1), 257–261. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classifica-tion. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Piacentini, T.; Marsala, V.; Miccadei, E.; Ranalli, O.; Sciarra, M. Analysis of Geomorphological Effects Induced by Heavy Rainfalls in ne Abruzzo (central italy) for Hazard Assessment and Land Management. In Proceedings of the Geomorphology of Natural Hazards: Mapping, Analysis and Prevention, 17th Joint Geomorphological Meeting, Liege, Belgium, 30 June–3 July 2014. [Google Scholar]
- Chiaudani, A.; Di Curzio, D.; Palmucci, W.; Pasculli, A.; Polemio, M.; Rusi, S. Statistical and fractal ap-proaches on long time-series to surface-water/groundwater relationship assessment: A central Italy al-luvial plain case study. Water 2017, 9, 850. [Google Scholar] [CrossRef]
- Mazzocca, M.; Flacco, I.; Di Carlo, P.; Pagliani, T. Profilo climatico Regione Abuzzo. Piano di Adattamento ai Cambiamenti Climatici, Regione Abruzzo. Available online: https://www.regione.abruzzo.it/system/files/energia/pacc/Profilo-Climatico_23giu2017_def.pdf (accessed on 18 September 2018).
- Vezzani, L.; Ghisetti, F. Carta Geologica della Regione Abruzzo, Scala 1:100,000; Ufficio Cartografico, Regione Abruzzo set, Urbanistica-Beni Ambientali e Cultura; 1998. [Google Scholar]
- Abruzzo Region. Carta dell’uso del suolo. Edizione 2000. Ufficio Cartografico Regione Abruzzo. Available online: Opendata.regione.abruzzo.it (accessed on 10 March 2018).
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. NHESS 2010, 10, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Hinderer, M. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodin. Acta 2001, 14, 231–263. [Google Scholar] [CrossRef]
- Degens, E.T.; Paluska, A.; Eriksson, E. Rates of soil erosion. Ecol. Bull. 1976, 22, 185–191. [Google Scholar]
- Miccadei, E.; Carabella, C.; Paglia, G.; Piacentini, T. Paleo-drainage network, morphotectonics and fluvial terraces: Clues from the Verde Stream in the middle Sangro River (Central Italy). Geosciences 2018, 8, 337. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; de Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Mohr, C.H.; Coppus, R.; Iroumé, A.; Huber, A.; Bronstert, A. Runoff generation and soil erosion processes after clear cutting. J. Geophys. Res. Earth Surf. 2013, 118, 814–831. [Google Scholar] [CrossRef] [Green Version]
- Gay, I.; Macaire, J.J.; Cocirta, C. Evolution qualitative des flux particulaires depuis 12600 ans dans le bassin du lac Chambon, Massif central, France. Bull. Soc. Géol. Fr. 1998, 169, 310–314. [Google Scholar]
- Sirvent, J.; Desir, G.; Gutierrez, M.; Sancho, C.; Benito, G. Erosion rates in badland areas recorded by collectors, erosion pins and profilometers techniques (Ebro Basin, NE-Spain). Geomorphology 1997, 18, 61–75. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Direct and indirect evaluation of denudation rates in Central Italy. Catena 2007, 71, 21–30. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
(b) | Sheet-Rill Erosion | Gully Erosion | Channel Incision | Mud Flows | Flooding Areas | TOTAL |
Number of features | 389 | 506 | 45 | 128 | 124 | 1192 |
Depth/thickness (cm) | 1–5 | 20–100 | 100–200 | 50–150 | 0–10 | |
Spacing (m) | 1–10 | 4–8 | ||||
Area (km2) | 4.36 | 4.84 | 0.23 | 0.37 | 3.97 | 13.77 |
% of total area | 10.0 | 11.1 | 0.9 | 9.1 | 31.00 | |
Eroded volume (m3) | 48,400 | 610,900 | 228,400 | 887,700 | ||
Sedimented volume (m3) | 250,900 | 153,000 | 403,900 |
(a) | Gully Erosion | Major Gullies | Mud Flows | Flooding Areas | Crevasse Splays | TOTAL | |
Number of features | 8 | 26 | 38 | 13 | 5 | 90 | |
Depth/thickness (cm) | 20–50 | 50–100 | 20–150 | 0–5 | 10–50 | ||
Spacing (m) | 3–20 | ||||||
Area (km2) | 1.13 | 10.20 | 0.26 | 2.01 | 0.16 | 13.76 | |
% of total area | 1.9 | 0.4 | 3.3 | 0.3 | 5.9 | ||
Eroded volume (m3) | 133,000 | 8900 | 141,900 | ||||
Sedimented volume (m3) | 60,400 | 26,100 | 20,000 | 86,500 | |||
(b) | Sheet-rill Erosion | Major Gullies | Bank Failure | Mud Flows | Flooding Areas | Crevasse Splays | TOTAL |
Number of features | 27 | 84 | 15 | 31 | 32 | 20 | 209 |
Depth/thickness (cm) | 5–10 | 20–100 | 100–200 | 50–200 | 0–5 | 20–40 | |
Spacing (m) | 1–2 | ||||||
Area (km2)/Length (km) | 0.10 | 4.50 | 2.00 | 0.50 | 3.62 | 0.32 | |
% of total area | 0.2 | 0.3 | 8.3 | 0.7 | 9.5 | ||
Eroded volume (m3) | 5700 | 4400 | 2000 | 12,100 | |||
Sedimented volume (m3) | 65,500 | 46,700 | 83,700 | 195,900 |
(a) | Gully Erosion | Major Gullies | Mud Flows | Flooding Areas | Crevasse Splays | TOTAL | ||
Number of features | 23 | 66 | 4 | 13 | 1 | 106 | ||
Depth/thickness (cm) | 10–30 | 20–40 | 50–200 | 0–3 | 30 | |||
Spacing (m) | 4–6 | |||||||
Area (km2) | 0.23 | 8.3 | 0.10 | 0.30 | > 0.001 | 8.93 | ||
% of total area | 0.4 | 0.2 | 0.5 | 1.1 | ||||
Eroded volume (m3) | 33,900 | 2700 | 36,600 | |||||
Sedimented volume (m3) | 30,900 | 6300 | 300 | 37,500 | ||||
(b) | Sheet-rill Erosion | Gully Erosion | Major Gullies | Channel Incision | Mud Flows | Flooding Areas | Crevasse Splays | TOTAL |
Number of features | 52 | 76 | 321 | 4 | 23 | 24 | 8 | 508 |
Depth/thickness (cm) | 2–5 | 20–40 | 20–70 | 30–60 | 50–200 | 0–3 | 10–30 | |
Spacing (m) | 1–4 | 4–8 | ||||||
Area (km2) | 0.92 | 1.18 | 48.80 | 0.90 | 0.18 | 0.36 | 0.03 | 52.37 |
% of total area | 1.5 | 2.0 | 0.3 | 0.6 | 0.1 | 4.5 | ||
Eroded volume (m3) | 27,600 | 236,500 | 23,300 | 2500 | 289,900 | |||
Sedimented volume (m3) | 88,000 | 5000 | 5900 | 98,900 |
Tortoreto 2007 | Salinello 2011 | Pineto 2011 | Pineto 2012-1 | Pineto 2012-2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Erosion | m3 | % | m3 | % | m3 | % | m3 | % | m3 | % |
Sheet-rill erosion | 48,400 | 5 | 5700 | 56 | 0 | 0 | 0 | 27,600 | 10 | |
Gully erosion | 610,900 | 69 | 0 | 133,000 | 94 | 33,900 | 93 | 236,500 | 82 | |
Major gullies | 0 | 0 | 4400 | 44 | 8900 | 6 | 2700 | 7 | 23,300 | 8 |
Bank failure | 0 | 0 | 2000 | 20 | 0 | 0 | 0 | 0 | 100 | 0 |
Channel incision | 228,400 | 26 | 0 | 0 | 0 | 0 | 2500 | 1 | ||
Total eroded | 887,800 | 12,100 | 141,900 | 36,600 | 289,900 | |||||
Sedimentation | m3 | % | m3 | % | m3 | % | m3 | % | m3 | % |
Mud flows | 250,900 | 62 | 65,500 | 33 | 60,400 | 57 | 30,900 | 82 | 88,000 | 89 |
Flooding areas | 153,000 | 38 | 46,700 | 24 | 26,100 | 25 | 6300 | 17 | 5000 | 5 |
Crevasse splays | 0 | 0 | 83,700 | 43 | 20,000 | 19 | 300 | 1 | 5900 | 6 |
Total sedimented | 403,800 | 195,900 | 106,500 | 37,500 | 98,900 | |||||
Soil loss | −484,000 | −55 | 183,800 | +1519 | −35,400 | −25 | +900 | +2 | −191,000 | −66 |
Event | Cumulative Rainfall (mm) | Hourly Rainfall Intensity Max (mm/h) | Hourly Rainfall Intensity Mean (mm/h) | Rainfall Duration (h) | Eroded Volume (m3) | Average Erosion (cm) | Sedimented Volume (m3) | Soil Loss (m3) | |
---|---|---|---|---|---|---|---|---|---|
1 | Tortoreto 2007 | 210 | 40 | 14.7 | 14–16 | 887,700 | 3.08 | 403,800 | −483,900 |
2a | Salinello 2011 | 211 | 35 | 8.8 | 22–26 | 10,100 | < 0.01 | 196,000 | 185,900 |
2b | Pineto 2011 | 120 | 35 | 5.0 | 22–26 | 141,900 | 0.29 | 106,500 | −35,400 |
3a | Pineto 2012-1 | 120 | 60 | 6.7 | 18 | 36,600 | 0.08 | 37,500 | 900 |
3b | Pineto 2012-2 | ~160 | 45 | 7.0 | 22–24 | 289,900 | 0.60 | 98,900 | −191,000 |
ID | Locality | Environment | Lithology | Method | Erosion Rate | Period | Reference |
---|---|---|---|---|---|---|---|
1 | Alps | Mountain chain | Various | Sediment volume trapped in valleys and lake basin | 1.77 mm/year | Late Glacial | [67] |
2 | Black Sea source area | Mountain chains, hills and plains | Various | Sediment volume trapped in Black Sea | 0.063 mm/year | Holocene | [68] |
3 | Adriatic Central Italy | Main fluvial basin | Alluvial deposits | Thermochronometry | 0.7–1.5 mm/year | Last 20,000 year | [69] |
4 | Lac Chambon (Massif Central, France) | Mountain basin | Lacustrine deposits | Qualitative estimation | 0.12 mm/year | Last deglaciation | [72] |
5 | Ebro Basin (NE Spain) | Badlands on hilly area | Clayey bedrock | Direct measures on erosion plots in badland a | 5.6–11.2 mm/year | Present (1991–1993) | [73] |
6 | Southern Tuscany | Hilly area | Clayey bedrock | Direct measures | 15–30 mm/year (badlands) | Present | [18] |
60–90 mm/year (landslides) | |||||||
7 | Central Italy | Hilly areas | Clayey bedrock | Direct measures compared with indirect estimation from geomorphometry of drainage network | 10–25 mm/year (badlands) 30–40 mm/year (landslides) | Present | [39,74] |
8 | Europe | Various | Soil | Various | 10–20 t ha−1 year−1 (overall) | Present | [75] |
455 t ha−1 year−1 (gully erosion max. value) | |||||||
9 | Mt. Ascensione (Area 1) | High hills | Slope deposits, clayey bedrock | Radiometric dating and GIS analysis | 7.8 mm/year 15.6 mm/year | Last 20,000 year Holocene | [41] |
10 | Atri (Area 2) | Coastal hills | Colluvial deposits, clayey bedrock | Radiometric dating and GIS analysis | 2.4–3 mm/year 4.8–6 mm/year | Last 20,000 year Holocene | [41] |
11 | Camastra reservoir Basilicata) | Mountain basin | Clayey–marly–calcareous bedrock | Indirect assessment (Tu, RUSLE, USPED) | 1392 T km−2 year−1 ~1 mm/year | Present | [37] |
12 | Verde Basin | Mountain-piedmont basin | Clayey–marly–calcareous bedrock | Indirect assessment (Tu) | ~0.05–8.0 mm/year | Present | [69] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. https://doi.org/10.3390/w10101314
Piacentini T, Galli A, Marsala V, Miccadei E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy. Water. 2018; 10(10):1314. https://doi.org/10.3390/w10101314
Chicago/Turabian StylePiacentini, Tommaso, Alberto Galli, Vincenzo Marsala, and Enrico Miccadei. 2018. "Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy" Water 10, no. 10: 1314. https://doi.org/10.3390/w10101314
APA StylePiacentini, T., Galli, A., Marsala, V., & Miccadei, E. (2018). Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy. Water, 10(10), 1314. https://doi.org/10.3390/w10101314