Application of CityDrain3 in Flood Simulation of Sponge Polders: A Case Study of Kunshan, China
Abstract
:1. Introduction
2. Modelling Framework
2.1. Flow Routing Models
2.2. Modelling Software: CityDrain3
3. Case Study of Jiangpu Polder
3.1. Site Description
3.2. Application and Data Analysis
3.2.1. Rainfall Data
3.2.2. Sub-Catchment Physical Properties
3.3. Results and Discussion
3.3.1. Sensitivity Analysis
Preliminary Calculation for Sensitivity Analysis
The Morris Screening Method for Sensitivity Analysis
3.3.2. Model Calibration
3.3.3. Application of the Model
Flood Calculation under Different Rainfall Return Periods
Comparison of Baseline and Sponge Polder Models
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deng, Y. Hydrological characteristics analysis and water exchange modelling for polders in plain river network area. In College of Geographical Science; Nanjing Normal University: Nanjing, China, 2014. (In Chinese) [Google Scholar]
- Jingsen, L. Optimization methods for conventional scheduling of drainage pumps in plain polders. In Agricultural Soil and Water Engineering; Yangzhou University: Yangzhou, China, 2014. (In Chinese) [Google Scholar]
- Vermuyten, E.; van den Zegel, B.; Wolfs, V.; Meert, P.; Willems, P. Real-time flood control by means of an improved MPC-GA algorithm and a fast conceptual river model for the demer basin in Belgium. In Proceedings of the 6th International Conference on Flood Managament, São Paulo, Brazil, 16–18 September 2014. [Google Scholar]
- Maksimović, Č.; Prodanović, D.; Boonya-Aroonnet, S.; Leitao, J.P.; Djordjević, S.; Allitt, R. Overland flow and pathway analysis for modelling of urban pluvial flooding. J. Hydraul. Res. 2009, 47, 512–523. [Google Scholar] [CrossRef]
- Vezzaro, L.; Grum, M. A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems. J. Hydrol. 2014, 515, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, F.-J.; Chen, P.-A.; Lu, Y.-R.; Huang, E.; Chang, K.-Y. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517, 836–846. [Google Scholar] [CrossRef]
- Domingo, N.S.; Refsgaard, A.; Mark, O.; Paludan, B. Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling. Water Sci. Technol. 2010, 62, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Wei, H. Study on simulation and operation of flooding prevention system in plain river-net region. In Hydrology and Water Resources; Hohai University: Nanjing, China, 2007. (In Chinese) [Google Scholar]
- Dazhou, X. Research and implemention of automation and dispatch management system of pumping group station in Langxia polder areas. In Agricultural Automation and Electrization; Yangzhou University: Yangzhou, China, 2017. (In Chinese) [Google Scholar]
- Jianye, X. Effect of polder management methods on flooding prevention. In Agricultural Water and Soild Engineering; Yangzhou University: Yangzhou, China, 2009. (In Chinese) [Google Scholar]
- Li, X.; Li, J.; Fang, X.; Gong, Y.; Wang, W. Case Studies of the Sponge City Program in China. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016. [Google Scholar]
- Villarreal, E.L.; Semadeni-Davies, A.; Bengtsson, L. Inner city stormwater control using a combination of best management practices. Ecol. Eng. 2004, 22, 279–298. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Wong, T.H. An overview of water sensitive urban design practices in Australia. Water Pract. Technol. 2006, 1, wpt2006018. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, Q.; Zhan, Z.; Chen, Y. Research progress and discussion of sponge city construction. Water Resour. Prot. 2016, 32, 1–4. (In Chinese) [Google Scholar]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Mode. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Figueras, J.; Cembrano, G.; Puig, V.; Quevedo, J.; Salamero, M.; Martí, J. Coral off-line: An object-oriented tool for optimal control of sewer networks. In Proceedings of the 2002 IEEE International Symposium on Computer Aided Control System Design, Glasgow, UK, 20 September 2002. [Google Scholar]
- Burger, G.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W. Parallel flow routing in SWMM 5. Environ. Model. Softw. 2014, 53, 27–34. [Google Scholar] [CrossRef]
- Puig, V.; Cembrano, G.; Romera, J.; Quevedo, J.; Aznar, B.; Ramon, G.; Cabot, J. Predictive optimal control of sewer networks using CORAL tool: Application to Riera Blanca catchment in Barcelona. Water Sci. Technol. 2009, 60, 869–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaño-Briceño, G.; Barreiro-Gomez, J.; Ramirez-Jaime, A.; Quijano, N.; Ocampo-Martinez, C. MatSWMM—An open-source toolbox for designing real-time control of urban drainage systems. Environ. Model. Softw. 2016, 83, 143–154. [Google Scholar] [CrossRef]
- García, L.; Barreiro-Gomez, J.; Escobar, E.; Téllez, D.; Quijano, N.; Ocampo-Martinez, C. Modeling and real-time control of urban drainage systems: A review. Adv. Water Resour. 2015, 85, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Amdisen, L.K.; Gavranovic, N.; Yde, L. Model-based control-a hydroinformatics approach to real-time control of urban drainage systems. J. Hydraul. Res. 1994, 32, 35–43. [Google Scholar] [CrossRef]
- Muschalla, D.; Vallet, B.; Anctil, F.; Lessard, P.; Pelletier, G.; Vanrolleghem, P.A. Ecohydraulic-driven real-time control of stormwater basins. J. Hydrol. 2014, 511, 82–91. [Google Scholar] [CrossRef]
- Achleitner, S.; Möderl, M.; Rauch, W. CITY DRAIN©–An open source approach for simulation of integrated urban drainage systems. Environ. Model. Softw. 2007, 22, 1184–1195. [Google Scholar] [CrossRef]
- Achleitner, S. Modular Conceptual Modelling in Urban Drainage Development and Application of City Drain; IUP-Innsbruck University Press: Innsbruck, Austria, 2008. [Google Scholar]
- Burger, G.; Bach, P.M.; Urich, C.; Leonhardt, G.; Kleidorfer, M.; Rauch, W. Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit: Lessons from CityDrain3. Adv. Eng. Softw. 2016, 100, 277–289. [Google Scholar] [CrossRef]
- Forster, C. Urban Water Cycle Modelling with CityDrain3—Water Balance Improvements and a Demonstration Case Study. In Institute for Urban Water Management; Dresden University of Technology: Dresden, Germany, 2016. [Google Scholar]
- Raoming, S.; Shao, D.; Jin, J.; Zhu, H. Study on Rainstorm Intensity Equation and Design of Rainstorm in Kunshan City; H.W.W.S.A.D. Company: Kunshan, China, 2016. [Google Scholar]
- Norton, J. An introduction to sensitivity assessment of simulation models. Environ. Model. Softw. 2015, 69, 166–174. [Google Scholar] [CrossRef]
- Ruano, M.; Ribes, J.; Ferrer, J.; Sin, G. Application of the Morris method for screening the influential parameters of fuzzy controllers applied to wastewater treatment plants. Water Sci. Technol. 2011, 63, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Hwang, S.H.; Ham, D.H.; Kim, J.H. A new measure for assessing the efficiency of hydrological data-driven forecasting models. Hydrol. Sci. J. 2012, 57, 1257–1274. [Google Scholar] [CrossRef]
ID | Name | Q (m3/s) | WLON (m) | WLOFF (m) |
---|---|---|---|---|
1 | GONGYUAN | 4.8 | 2.6 | 2.2 |
2 | DONGDANG | 3.2 | ||
3 | HONGQIAO | 2.85 | ||
4 | YUEHE | 6.5 | ||
5 | SICHANGGANG | 3.0 | ||
6 | BAITA | 3.2 | ||
7 | GONGQING | 3.7 | ||
8 | XIDANG | 7.0 |
Model Components | Parameter | Value Range | Best Fit |
---|---|---|---|
K [s] | 100~300, delta 50 | 300 | |
Catchment | N [-] | 3~15, delta 3 | 3 |
X [-] | 0~0.5, delta 0.1 | 0 | |
K [s] | 100~300, delta 50 | 300 | |
River | N [-] | 7~15, delta 2 | 11 |
X [-] | 0~0.5, delta 0.1 | 0 |
Parameter | (Mean) | (Sigma) | |
---|---|---|---|
CK | −2458.263608 | 4498.145451 | −1.83 |
CN | 14,947.945884 | 456,305.8701 | 30.53 |
CX | −46,902.31404 | 39,686.59956 | −0.85 |
RK | −2314.093176 | 1529.955954 | −0.66 |
RN | −22,624.78659 | 15,590.01461 | −0.69 |
RX | −103.258607 | 41.1759731 | −0.40 |
Type of Models | Baseline | Pump Only | Storage Tank Only | Combination of Pump and Storage Tank |
---|---|---|---|---|
Total rainfall (m3) | 496,005 | |||
Total flood volume (m3) | 146,235 | 128,533 | 126,580 | 108,913 |
Reduction of flood volume (m3) | 17,702 | 19,655 | 37,322 | |
Reduction percentage | 12.1% | 13.4% | 25.5% | |
Peak flow (m3/min) | 3050 | 2862 | 2674 | 2486 |
Reduction of peak flow (m3/min) | 188 | 376 | 564 | |
Reduction percentage | 6.16% | 12.33% | 18.5% | |
Flood yielding time (min) | 22 | 23 | 25 | 26 |
Reduction of Flood yielding time (min) | 1 | 3 | 4 | |
Peak-flow occurrence time (min) | 52 | 52 | 54 | 55 |
Reduction of Peak-flow occurrence time (min) | 0 | 2 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Urich, C.; Liu, S.; Gu, S. Application of CityDrain3 in Flood Simulation of Sponge Polders: A Case Study of Kunshan, China. Water 2018, 10, 507. https://doi.org/10.3390/w10040507
Wei D, Urich C, Liu S, Gu S. Application of CityDrain3 in Flood Simulation of Sponge Polders: A Case Study of Kunshan, China. Water. 2018; 10(4):507. https://doi.org/10.3390/w10040507
Chicago/Turabian StyleWei, Dingbing, Christian Urich, Shuci Liu, and Sheng Gu. 2018. "Application of CityDrain3 in Flood Simulation of Sponge Polders: A Case Study of Kunshan, China" Water 10, no. 4: 507. https://doi.org/10.3390/w10040507
APA StyleWei, D., Urich, C., Liu, S., & Gu, S. (2018). Application of CityDrain3 in Flood Simulation of Sponge Polders: A Case Study of Kunshan, China. Water, 10(4), 507. https://doi.org/10.3390/w10040507