A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas
Abstract
:1. Introduction
- Modelling should take spatiotemporal variability from rainfall and flooding distribution into consideration [42];
- There is a lack of support tools for designers and policy-makers, which would benefit landscape management [8];
- Decision support systems should be developed for larger areas and should provide an assessment of the capability of new adaption practices [49].
2. Aims
- Pluvial flooding risk assessment;
- Spatial identification of potential diffuse road pollutant sources,
- Locating and dimensioning of the GI facilities.
3. Methodology
3.1. Location Intelligence System
3.1.1. Data
3.1.2. Pluvial Flood Risk Assessment
- Q—direct run-off [mm]
- P—total precipitation [mm]
- I—initial abstraction [mm]
- S—potential maximum retention [mm]
3.1.3. Business Intelligence
3.2. Study Site
3.3. Climate and Meteorological Conditions
4. Results: Simulations and Location Intelligence Tests
5. Conclusions and Future Work
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Astaraie-Imani, M.; Kapelan, Z.; Fu, G.; Butler, D. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J. Environ. Manag. 2012, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Couch, C.; Petschel-Held, G.; Leontidou, L. Urban Sprawl in Europe: Landscape, Land-Use Change and Policy; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Haase, D.; Kabisch, N.; Haase, A. Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed]
- Triantakonstantis, D.; Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 1092–1112. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A.; Ripa, M.N.; Leone, A. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, P.; Ayoko, G.A.; Goonetilleke, A.; Egodawatta, P.; Kokot, S. Impacts of Traffic and Rainfall Characteristics on Heavy Metals Build-up and Wash-off from Urban Roads. Environ. Sci. Technol. 2010, 44, 8904–8910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apel, H.; Trepat, O.M.; Hung, N.N.; Chinh, D.T.; Merz, B.; Dung, N.V. Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam. Nat. Hazards Earth Syst. Sci. 2016, 16, 941–961. [Google Scholar] [CrossRef]
- Chen, Y.; Samuelson, H.W.; Tong, Z. Integrated design workflow and a new tool for urban rainwater management. J. Environ. Manag. 2016, 180, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, P.; Arnbjerg-Nielsen, K.; Olsson, J.; Nguyen, V.T. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res. 2012, 103, 106–118. [Google Scholar] [CrossRef]
- Olsen, A.S.; Zhou, Q.; Linde, J.J.; Arnbjerg-Nielsen, K. Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments. Water 2015, 7, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, S.; Glenis, V.; Dawson, R.; Kilsby, C. Pluvial Flooding in European Cities—A Continental Approach to Urban Flood Modelling. Water 2017, 9, 296. [Google Scholar] [CrossRef]
- Qin, H.; Li, Z.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of the municipality of Venice (Italy). Sci. Total Environ. 2016, 562, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.N.; Qu, L.; Zou, T. Quantitative Analysis of Urban Pluvial Flood Alleviation by Open Surface Water Systems in New Towns: Comparing Almere and Tianjin Eco-City. Sustainability 2015, 7, 13378–13398. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016, 16, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Van Ootegem, L.; Verhofstadt, E.; Van Herck, K.; Creten, T. Multivariate pluvial flood damage models. Environ. Impact Assess. Rev. 2015, 54, 91–100. [Google Scholar] [CrossRef]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Blanc, J.; Hall, J.W.; Roche, N.; Dawson, R.J.; Cesses, Y.; Burton, A.; Kilsby, C.G. Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial–temporal rainfall simulations. J. Flood Risk Manag. 2012, 5, 143–152. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Radhakrishnan, M.; Huynh, T.T.N.; Baino-Salingay, M.L.; Ho, L.P.; Van der Steen, P.; Pathirana, A. Water Quality Dynamics of Urban Water Bodies during Flooding in Can Tho City, Vietnam. Water 2017, 9, 260. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea. Water 2016, 8, 111. [Google Scholar] [CrossRef]
- Chen, L.; Zhi, X.; Shen, Z.; Dai, Y.; Aini, G. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 2377–2388. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Johnston, P.; Osei, K.; Gill, L. Sediment build-up on roads and footpaths of a residential area. Urban Water J. 2017, 14, 378–385. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X.; Hao, S.; Jiang, Y.; Zhao, J.; Zou, C.; Xie, W. Is the wash-off process of road-deposited sediment source limited or transport limited? Sci. Total Environ. 2016, 563–564, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Zafra, C.; Temprano, J.; Suarez, J. A simplified method for determining potential heavy metal loads washed-off by stormwater runoff from road-deposited sediments. Sci. Total Environ. 2017, 601–602, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Li, D.Z.; Liu, L.; Guan, Y.T. Understanding the Role of Urban Road Surface Characteristics in influencing Stormwater Quality. Water Resour. Manag. 2014, 28, 5217–5229. [Google Scholar] [CrossRef]
- Fraga, I.; Charters, F.J.; O’Sullivan, A.D.; Cochrane, T.A. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments. J. Environ. Manag. 2016, 167, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jartun, M.; Ottesen, R.T.; Steinnes, E.; Volden, T. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps. Sci. Total Environ. 2008, 396, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Klimaszewska, K.; Polkowska, Ż.; Namieśnik, J. Influence of Mobile Sources on Pollution of Runoff Waters from Roads with High Traffic Intensity. Pol. J. Environ. Stud. 2007, 16, 889–897. [Google Scholar]
- Markiewicz, A.; Bjorklund, K.; Eriksson, E.; Kalmykova, Y.; Stromvall, A.M.; Siopi, A. Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis. Sci. Total Environ. 2017, 580, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, T.T.; Li, F.Y.; Wang, J.L.; Oh, K. Effect of decing salts on ion concentrations in urban stormwater runoff. Int. Symp. Environ. Sci. Technol. 2013, 18, 567–571. [Google Scholar] [CrossRef]
- Chow, M.F.; Yusop, Z.; Shirazi, S.M. Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environ. Monit. Assess. 2013, 185, 8321–8331. [Google Scholar] [CrossRef] [PubMed]
- Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef] [PubMed]
- Berndtsson, J.C. Storm water quality of first flush urban runoff in relation to different traffic characteristics. Urban Water J. 2014, 11, 284–296. [Google Scholar] [CrossRef]
- Fronczyk, J.; Radziemska, M.; Dynowski, P.; Mazur, Z.; Bazydlo, M. Quality of Water in the Road Drainage Systems in the Warsaw Agglomeration, Poland. Water 2016, 8, 429. [Google Scholar] [CrossRef]
- Galfi, H.; Osterlund, H.; Marsalek, J.; Viklander, M. Mineral and Anthropogenic Indicator Inorganics in Urban Stormwater and Snowmelt Runoff: Sources and Mobility Patterns. Water Air Soil Pollut. 2017, 228, 263. [Google Scholar] [CrossRef] [PubMed]
- Kayhanian, M.; McKenzie, E.R.; Leatherbarrow, J.E.; Young, T.M. Characteristics of road sediment fractionated particles captured from paved surfaces, surface run-off and detention basins. Sci. Total Environ. 2012, 439, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Li, F.P.; Zhang, H.P.; Jiang, Y.; Mao, L.C.; Wu, L.L.; Chen, L. Comparative analysis of water quality and toxicity assessment methods for urban highway runoff. Sci. Total Environ. 2016, 553, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Gillis, P.L. Cumulative impacts of urban runoff and municipal wastewater effluents on wild freshwater mussels (Lasmigona costata). Sci. Total Environ. 2012, 431, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, B.; Rasul, H.; Lundmark, A. Spread of Water-Borne Pollutants at Traffic Accidents on Roads. Water Air Soil Pollut. 2017, 228, 323. [Google Scholar] [CrossRef] [PubMed]
- Rozer, V.; Muller, M.; Bubeck, P.; Kienzler, S.; Thieken, A.; Pech, I.; Schroter, K.; Buchholz, O.; Kreibich, H. Coping with Pluvial Floods by Private Households. Water 2016, 8, 304. [Google Scholar] [CrossRef]
- Simões, N.E.; Ochoa-Rodríguez, S.; Wang, L.P.; Pina, R.D.; Marques, A.S.; Onof, C.; Leitão, J.P. Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator. Water 2015, 7, 3396–3406. [Google Scholar] [CrossRef] [Green Version]
- Serre, D.; Barroca, B.; Diab, Y. Urban flood mitigation: Sustainable options. In Sustainable City Vi: Urban Regeneration and Sustainability; Brebbia, C.A., Hernandez, S., Tiezzi, E., Eds.; WIT Press: Ashurst, UK, 2010; Volume 129, pp. 299–309. ISBN 978-1-84564-432-1. [Google Scholar]
- Sun, S.; Djordjević, S.; Khu, S.-T. A general framework for flood risk-based storm sewer network design. Urban Water J. 2011, 8, 13–27. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Costa, M.D.; Coelho, C.O.A.; Ferreira, A.J.D. Dynamics of surface water quality driven by distinct urbanization patterns and storms in a Portuguese peri-urban catchment. J. Soils Sediments 2016, 16, 2606–2621. [Google Scholar] [CrossRef]
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Sources and transport pathways of common heavy metals to urban road surfaces. Ecol. Eng. 2015, 77, 98–102. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.C.; Kim, L.H. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environ. Technol. 2016, 37, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Burszta-Adamiak, E. Analysis of Stormwater Retention on Green Roofs/Badania Retencji Wód Opadowych Na Dachach Zielonych. Arch. Environ. Prot. 2012, 38, 3–13. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Lejcuś, K.; Śpitalniak, M.; Dąbrowska, J. Swelling Behaviour of Superabsorbent Polymers for Soil Amendment under Different Loads. Polymers 2018, 10, 271. [Google Scholar] [CrossRef]
- Bawiec, A. Efficiency of nitrogen and phosphorus compounds removal in hydroponic wastewater treatment plant. Environ. Technol. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pawęska, K.; Bawiec, A.; Pulikowski, K. Wastewater treatment in submerged aerated biofilter under condition of high ammonium concentration. Ecol. Chem. Eng. S 2017, 24, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Paruch, L.; Paruch, A.M.; Blankenberg, A.-G.B.; Haarstad, K.; Mæhlum, T. Norwegian study on microbial source tracking for water quality control and pollution removal in constructed wetland treating catchment run-off. Water Sci. Technol. 2017, 76, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Laks, I.; Sojka, M.; Walczak, Z.; Wróżyński, R. Possibilities of Using Low Quality Digital Elevation Models of Floodplains in Hydraulic Numerical Models. Water 2017, 9, 283. [Google Scholar] [CrossRef]
- Walczak, Z.; Sojka, M.; Wróżyński, R.; Laks, I. Estimation of Polder Retention Capacity Based on ASTER, SRTM and LIDAR DEMs: The Case of Majdany Polder (West Poland). Water 2016, 8, 230. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; de Vries, B. A semi-automatic neighborhood rule discovery approach. Appl. Geogr. 2017, 88, 73–83. [Google Scholar] [CrossRef]
- Kazak, J.; Świąder, M.; Szewrański, S.; Żmuda, R. Geo-environmental indicators in Strategic Environmental Assessment. Acta Sci. Pol. Form. Circumiectus 2017, 16, 123–135. [Google Scholar] [CrossRef]
- Trogu, D.; Campagna, M. Towards Spatial Composite Indicators: A Case Study on Sardinian Landscape. Sustainability 2018, 10, 1369. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Fallah Shorshani, M.; Bonhomme, C.; Petrucci, G.; Andre, M.; Seigneur, C. Road traffic impact on urban water quality: A step towards integrated traffic, air and stormwater modelling. Environ. Sci. Pollut. Res. Int. 2014, 21, 5297–5310. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.W.; Liang, X.Y.; Li, X.N.; Li, J.Q.; Fang, X.; Song, R.N. Influence of Rainfall Characteristics on Total Suspended Solids in Urban Runoff: A Case Study in Beijing, China. Water 2016, 8, 278. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Tung, C.-P.; Li, Y.-H. Low Impact Development Planning and Adaptation Decision-Making under Climate Change for a Community against Pluvial Flooding. Water 2017, 9, 756. [Google Scholar] [CrossRef]
- Trenouth, W.R.; Gharabaghi, B. Highway runoff quality models for the protection of environmentally sensitive areas. J. Hydrol. 2016, 542, 143–155. [Google Scholar] [CrossRef]
- Bertsch, R.; Glenis, V.; Kilsby, C. Urban Flood Simulation Using Synthetic Storm Drain Networks. Water 2017, 9, 925. [Google Scholar] [CrossRef]
- Szewrański, S.; Chruściński, J.; Kazak, J.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas. Water 2018, 10, 386. [Google Scholar] [CrossRef]
- Szewrański, S.; Kazak, J.; Sylla, M.; Świąder, M. Spatial Data Analysis with the Use of ArcGIS and Tableau Systems. In The Rise of Big Spatial Data; Springer: Berlin, Germany, 2016. [Google Scholar]
- Kazak, J.; Chalfen, M.; Kamińska, J.; Szewrański, S.; Świąder, M. Geo-Dynamic Decision Support System for Urban Traffic Management. In Dynamics in GIscience; Springer: Berlin, Germany, 2018; pp. 195–207. [Google Scholar]
- NRCS (Natural Resources Conservation Service). Urban Hydrology for Small Watersheds TR-55; United States Department of Agriculture Natural resource conservation Service: Washington, DC, USA, 1986.
- Walega, A.; Cupak, A.; Amatya, D.M.; Drozdzal, E. Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in Upper Vistula basin, Poland and lowland catchment in South Carolina, U.S.A. Acta Sci. Pol. Circumiectus 2017, 16, 187–207. [Google Scholar] [CrossRef]
- Ignar, S. Metoda SCS i jej Zastosowanie do Wyznaczania Opadu Efektywnego. Przegląd Geofiz. 1988, XXXIII, 451–455. (In Polish) [Google Scholar]
- Przybyła, K.; Kulczyk-Dynowska, A.; Kachniarz, M. Quality of life in the regional capitals of Poland. J. Econ. Issues 2014, 48, 181–196. [Google Scholar] [CrossRef]
- Szewrański, S.; Kazak, J.; Żmuda, R.; Wawer, R. Indicator-Based Assessment for Soil Resource Management in the Wrocław Larger Urban Zone of Poland. Pol. J. Environ. Stud. 2017, 26, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Hełdak, M.; Raszka, B. Evaluation of the spatial policy of a commune with regard to planned land use. Pol. J. Environ. Stud. 2013, 22, 125–130. [Google Scholar]
- Świąder, M.; Szewrański, S.; Kazak, J. Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis. Sustainability 2018, 10, 882. [Google Scholar] [CrossRef]
- Solecka, I.; Sylla, M.; Świąder, M. Urban Sprawl Impact on Farmland Conversion in Suburban Area of Wroclaw, Poland. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 72002. [Google Scholar] [CrossRef] [Green Version]
- Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S. The impact of a big city on land use in suburban area–the case of Wrocław (Poland). J. Ecol. Eng. 2018, 19, 89–98. [Google Scholar] [CrossRef]
- Krajewski, P.; Solecka, I. Barbara-Mastalska-Cetera Landscape Change Index as a Tool for Spatial Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072014. [Google Scholar] [CrossRef]
- Kamińska, J.A. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław. J. Environ. Manag. 2018, 217, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Pachurka, Ł.; Rogula-Kozłowska, W.; Chlebowska-Styś, A.; Nych, A.; Zwoździak, A. Exposure of urban agglomeration population to the selected components of PM1 emitted from low emission sources. E3S Web Conf. 2017, 17, 00071. [Google Scholar] [CrossRef]
- Sobczyk, K.; Hołtra, A. The Content of Heavy Metals (Cu, Zn, Cr, Ni, Pb) in the Soil Near the Arterial Roads in Wroclaw (Poland). E3S Web Conf. 2017, 17, 00083. [Google Scholar] [CrossRef]
- Sylla, M. Mapping and assessment of the potential to supply selected ecosystem services at a sub-regional scale. The example of Wroclaw and its surrounding municipalities. Ekon. i Środowisko 2016, 4, 87–98. [Google Scholar]
- Kalbarczyk, R.; Sobolewski, R.; Kalbarczyk, E. Assessment of human thermal sensations based on bioclimatic indices in a suburban population, Wrocław (SW Poland). Pol. J. Natl. Sci. 2015, 30, 185–201. [Google Scholar]
- Kalbarczyk, R.; Kalbarczyk, R.; Sobolewski, R.; Kalbarczyk, E. Biometeorological determinants of the tropospheric ozone concentration in the suburban conditions of Wroclaw, Poland. J. Elemntol. 2012, 21, 729–744. [Google Scholar] [CrossRef]
- Hełdak, M.; Płuciennik, M. Costs of Urbanisation in Poland, Based on the Example of Wrocław. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 72003. [Google Scholar] [CrossRef] [Green Version]
- Kajdanek, K. Newcomers vs. old-timers? Community, cooperation and conflict in the post-socialist suburbs of Wroclaw, Poland. In Mobilities and Neighbourhood Belonging in Cities and Suburbs; Palgrave Macmillan: Basingstoke, UK, 2014; pp. 182–199. [Google Scholar]
- Piepiora, Z.; Kachniarz, M.; Babczuk, A. Financing the Counteraction of Natural Disasters’ Effects in Lower Silesian Voivodeship. In Proceedings of the 2015 International Conference on Management Engineering and Management Innovation, Changsha, China, 10–11 January 2015; Wang, M., Ed.; Atlantis Press: Paris, France, 2015; Volume 3, pp. 215–220, ISBN 978-94-62520-45-5. [Google Scholar]
- Rucinska, D. Spatial Distribution of Flood Risk and Quality of Spatial Management: Case Study in Odra Valley, Poland. Risk Anal. 2015, 35, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Szamalek, K.; Kowalczak, P. The great flood of 1997 in Poland. Hydrol. Sci. J. 1999, 44, 855–870. [Google Scholar] [CrossRef]
- Tokarczyk-Dorociak, K.; Walter, E.; Kobierska, K.; Kołodynski, R. Rainwater management in the urban landscape of Wroclaw in terms of adaptation to climate changes. J. Ecol. Eng. 2017, 18, 171–184. [Google Scholar] [CrossRef]
- Szewrański, S.; Kazak, J.; Szkaradkiewicz, M.; Sasik, J. Flood risk factors in suburban area in the context of climate change adaptation policies—Case study of Wroclaw, Poland. J. Ecol. Eng. 2015. [Google Scholar] [CrossRef]
- Kiełkowska, J.; Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S.; van Hoof, J. Urban Adaptation to Climate Change Plans and Policies–the Conceptual Framework of a Methodological Approach. J. Ecol. Eng. 2018, 19, 50–62. [Google Scholar] [CrossRef]
- Kazak, J.K. The use of a decision support system for sustainable urbanization and thermal comfort in adaptation to climate change actions-the case of the Wroclaw Larger Urban Zone (Poland). Sustainability 2018, 10, 1083. [Google Scholar] [CrossRef]
- Kazak, J.; van Hoof, J.; Szewrański, S. Challenges in the wind turbines location process in Central Europe–The use of spatial decision support systems. Renew. Sustain. Energy Rev. 2017. [Google Scholar] [CrossRef]
- Scheid, C.; Schmitt, T.G.; Bischoff, G.; Hüffmeyer, N.; Krieger, K.; Waldhoff, A.; Günner, C. GIS-based methodology for pluvial flood risk analysis in Hamburg. In Proceedings of the International Conference Novatech, Lyon, France, 23–27 June 2013; pp. 23–27. [Google Scholar]
- Heistermann, M.; Jacobi, S.; Pfaff, T. Technical Note: An open source library for processing weather radar data wradlib. Hydrol. Earth Syst. Sci. 2013, 17, 863–871. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewrański, S.; Chruściński, J.; Van Hoof, J.; Kazak, J.K.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas. Water 2018, 10, 746. https://doi.org/10.3390/w10060746
Szewrański S, Chruściński J, Van Hoof J, Kazak JK, Świąder M, Tokarczyk-Dorociak K, Żmuda R. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas. Water. 2018; 10(6):746. https://doi.org/10.3390/w10060746
Chicago/Turabian StyleSzewrański, Szymon, Jakub Chruściński, Joost Van Hoof, Jan K. Kazak, Małgorzata Świąder, Katarzyna Tokarczyk-Dorociak, and Romuald Żmuda. 2018. "A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas" Water 10, no. 6: 746. https://doi.org/10.3390/w10060746
APA StyleSzewrański, S., Chruściński, J., Van Hoof, J., Kazak, J. K., Świąder, M., Tokarczyk-Dorociak, K., & Żmuda, R. (2018). A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas. Water, 10(6), 746. https://doi.org/10.3390/w10060746