Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy
Abstract
:1. Introduction
2. Model Description
3. Experiment Design and Methods
4. Results
4.1. Annual Mean Energy Budget in Orographically Relevant Areas
4.2. Temperature during the Snow Melting Season
4.3. Number of Warm and Cold Days in the Future Climate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Levis, S. Modeling vegetation and land use in models of the Earth System. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 840–856. [Google Scholar] [CrossRef]
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 2003, 23, 479–510. [Google Scholar] [CrossRef] [Green Version]
- Cassardo, C.; Park, S.K.; Galli, M.; Sungmin, O. Climate change over the high-mountain versus plain areas: Effects on the land surface hydrologic budget in the Alpine area and northern Italy. Hydrol. Earth Syst. Sci. 2018, 22, 3331–3350. [Google Scholar] [CrossRef]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The global soil moisture data bank. Bull. Amer. Meteorol. Soc. 2000, 81, 1281–1299. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. Climate Prediction Center global monthly soil moisture data set at 0.5∘ resolution for 1948 to present. J. Geophys. Res. 2004, 109, D10102. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; Dong, J.; Berg, A.A. Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeorol. 2004, 5, 430–442. [Google Scholar] [CrossRef]
- Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.; Martınez-Fernandez, J. Soil moisture from operational meteorological satellites. Hydrogeol. J. 2007, 15, 121–131. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products and future trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Flerchinger, G.N.; Murdock, M.D.; Hanson, C.L.; van Vactor, S. Long-term soil temperature database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resour. Res. 2001, 37, 2843–2846. [Google Scholar] [CrossRef]
- Seyfried, M.; Link, T.; Marks, D.; Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S. A daily soil temperature dataset and soil temperature climatology of the contiguous United States. J. Appl. Meteorol. Climatol. 2003, 42, 1139–1156. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Romaguera, M. Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens. Environ. 2004, 92, 247–254. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the Collection-6 MODIS land-surface temperature/emissivity products. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Cassardo, C.; Ruti, P.M.; Cacciamani, C.; Longhetto, A.; Paccagnella, T.; Bargagli, A. CLIPS experiment. First step: Model intercomparison and validation against experimental data. MAP Newslett. 1997, 7, 74–75. [Google Scholar]
- Shao, Y.; Henderson-Sellers, A. Validation of soil moisture simulation in land surface parameterisation schemes with HAPEX data. Glob. Planet. Chang. 1996, 13, 11–46. [Google Scholar] [CrossRef]
- Ruti, P.M.; Cassardo, C.; Cacciamani, C.; Paccagnella, T.; Longhetto, A.; Bargagli, A. Intercomparison between BATS and LSPM surface schemes, using point micrometeorological data set. Contrib. Atmos. Phys. 1997, 70, 201–220. [Google Scholar]
- Cassardo, C.; Balsamo, G.P.; Pelosini, R.; Cacciamani, C.; Cesari, D.; Paccagnella, T.; Longhetto, A. Initialization of soil parameters in LAM: CLIPS experiment. MAP Newslett. 1999, 11, 26–27. [Google Scholar]
- Cassardo, C.; Balsamo, G.P.; Cacciamani, C.; Cesari, D.; Paccagnella, T.; Pelosini, R. Impact of soil surface moisture initialization on rainfall in a limited area model: A case study of the 1995 South Ticino flash flood. Hydrol. Process. 2002, 16, 1301–1317. [Google Scholar] [CrossRef]
- Cassardo, C.; Park, S.K.; Thakuri, B.M.; Priolo, D.; Zhang, Y. Soil surface energy and water budgets during a monsoon season in Korea. J. Hydrometeorol. 2009, 10, 1379–1396. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, X.-Z. Regional climate model simulation of U.S. soil temperature and moisture during 1982–2002. J. Geophys. Res. 2005, 110, D24110. [Google Scholar] [CrossRef]
- Tsiros, I.X.; Dimopoulos, I.F. An evaluation of the performance of the soil temperature simulation algorithms used in the PRZM model. J. Environ. Sci. Health Part A 2007, 42, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Sándor, R.; Fodor, N. Simulation of soil temperature dynamics with models using different concepts. Sci. World J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; et al. Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. Eur. J. Agron. 2017, 88, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Mandal, M. Evaluation of Noah land-surface models in predicting soil temperature and moisture at two tropical sites in India. Meteorol. Appl. 2015, 22, 505–512. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Wu, X.; Li, R.; Wu, T.; Xie, C.; Qiao, Y.; Shi, J.; Cheng, G. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. J. Arid Land 2016, 8, 232–240. [Google Scholar] [CrossRef]
- Park, S.K.; O, S.; Cassardo, C. Soil temperature response in Korea to a changing climate using a land surface model. Asia-Pac. J. Atmos. Sci. 2017, 53, 457–470. [Google Scholar] [CrossRef]
- Hong, S.; Yu, X.; Park, S.K.; Choi, Y.-S.; Myoung, B. Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geosci. Model Dev. 2014, 7, 2517–2529. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Park, S.K.; Yu, X. Scheme-based optimization of land surface model using a micro-genetic algorithm: Assessment of its performance and usability for regional applications. Sci. Online Lett. Atmos. 2015, 11, 129–133. [Google Scholar] [CrossRef]
- Park, S.; Park, S.K. Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects. Geosci. Model Dev. 2016, 9, 1073–1085. [Google Scholar] [CrossRef] [Green Version]
- Gim, H.-J.; Park, S.K.; Kang, M.; Thakuri, B.M.; Kim, J.; Ho, C.-H. An improved parameterization of the allocation of assimilated carbon to plant parts in vegetation dynamics for Noah-MP. J. Adv. Model. Earth Syst. 2017, 9, 1776–1794. [Google Scholar] [CrossRef] [Green Version]
- Im, E.-S.; Coppola, E.; Giorgi, F.; Bi, X. Local effects of climate change over the Alpine region: A study with a high resolution regional climate model with a surrogate climate change scenario. Geophys. Res. Lett. 2010, 37, L05704. [Google Scholar] [CrossRef]
- Torma, C.; Coppola, E.; Giorgi, F.; Bartholy, J.; Pongrácz, R. Validation of a high-resolution version of the regional climate model RegCM3 over the Carpathian basin. J. Hydrometeorol. 2011, 12, 84–100. [Google Scholar] [CrossRef]
- Coppola, E.; Verdecchia, M.; Giorgi, F.; Colaiuda, V.; Tomassetti, B.; Lombardi, A. Changing hydrological conditions in the Po basin under global warming. Sci. Total Environ. 2014, 493, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Faggian, P. Climate change projections for Mediterranean region with focus over Alpine region and Italy. J. Environ. Sci. Eng. B 2015, 4, 482–500. [Google Scholar]
- Alo, C.A.; Anagnostou, E.N. A sensitivity study of the impact of dynamic vegetation on simulated future climate change over Southern Europe and the Mediterranean. Int. J. Climatol. 2017, 37, 2037–2050. [Google Scholar] [CrossRef]
- Elguindi, N.; Bi, X.; Giorgi, F.; Nagarajan, B.; Pal, J.; Solmon, F.; Rauscher, S.; Zakey, A. RegCM Version 3.1 User’s Guide; Technical Report; International Centre for Theoretical Physics: Trieste, Italy, 2007; p. 57. [Google Scholar]
- Cassardo, C. The University of TOrino Model of Land Process Interaction with Atmosphere (UTOPIA) Version 2015; Tech. Rep.; CCCPR/SSRC-TR-2015-1, CCCPR/SSRC; Ewha Womans University: Seoul, Korea, 2015; p. 184. [Google Scholar]
- Gao, X.J.; Pal, J.S.; Giorgi, F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett. 2006, 33, L03706. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Knoche, R.; Marx, A. Precipitation and temperature statistics in high-resolution regional climate models: Evaluation for the European Alps. J. Geophys. Res. 2009, 114, D19107. [Google Scholar] [CrossRef]
- Ballester, J.; Rodó, X.; Giorgi, F. Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim. Dyn. 2010, 35, 1191–1205. [Google Scholar] [CrossRef]
- Coppola, E.; Giorgi, F. An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int. J. Climatol. 2010, 30, 11–32. [Google Scholar] [CrossRef]
- Rauscher, S.A.; Coppola, E.; Piani, C.; Giorgi, F. Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim. Dyn. 2010, 35, 685–711. [Google Scholar] [CrossRef]
- Heinrich, G.; Gobiet, A.; Mendlik, T. Extended regional climate model projections for Europe until the mid-twenty first century: Combining ENSEMBLES and CMIP3. Clim. Dyn. 2014, 42, 521–535. [Google Scholar] [CrossRef]
- Nadeem, I.; Formayer, H. Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: The effect of lateral boundary conditions and domain size. Theor. Appl. Climatol. 2016, 126, 617–630. [Google Scholar] [CrossRef]
- Alexandri, G.; Georgoulias, A.K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations. Atmos. Chem. Phys. 2015, 15, 13195–13216. [Google Scholar] [CrossRef]
- Chiacchio, M.; Solmon, F.; Giorgi, F.; Stackhouse, P.; Wild, M. Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. J. Geophys. Res. 2015, 120, 1951–1971. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Anyah, R.O. The road towards RegCM4. Clim. Res. 2012, 52, 3–6. [Google Scholar] [CrossRef]
- Rajalakshmi, D.; Jagannathan, R.; Geethalakshmi, V. Comparative performance of RegCM model versions in simulating climate change projection over Cauvery Delta zone. Indian J. Sci. Technol. 2013, 6, 5115–5119. [Google Scholar]
- Cassardo, C.; Ji, J.J.; Longhetto, A. A study of the performances of a Land Surface Process Model (LSPM). Bound.-Layer Meteorol. 1995, 72, 87–121. [Google Scholar] [CrossRef]
- Cassardo, C.; Carena, E.; Longhetto, A. Validation and sensitivity tests on improved parametrizations of a land surface process model (LSPM) in the Po Valley. Il Nuovo Cimento 1998, 21, 189–213. [Google Scholar]
- Carlson, T.N.; Boland, F.E. Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteorol. 1978, 17, 998–1013. [Google Scholar] [CrossRef]
- Arora, V.K. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2002, 40, 1–26. [Google Scholar] [CrossRef]
- Petropoulos, G.; Carlson, T.N.; Wooster, M.J. An overview of the use of the SimSphere soil vegetation atmosphere transfer (SVAT) model for the study of land-atmosphere interactions. Sensors 2009, 9, 4286–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassardo, C.; Loglisci, N.; Gandini, D.; Qian, M.W.; Niu, Y.P.; Ramieri, P.; Pelosini, R.; Longhetto, A. The flood of November 1994 in Piedmont, Italy: A quantitative simulation. Hydrol. Process. 2002, 16, 1275–1299. [Google Scholar] [CrossRef]
- Cassardo, C.; Loglisci, N.; Paesano, G.; Rabuffetti, D.; Qian, M.W. The hydrological balance of the October 2000 flood in Piedmont, Italy: Quantitative analysis and simulation. Phys. Geogr. 2006, 27, 411–434. [Google Scholar] [CrossRef]
- Cassardo, C.; Mercalli, L.; Cat Berro, D. Characteristics of the summer 2003 heat wave in Piedmont, Italy, and its effects on water resources. J. Korean Meteorol. Soc. 2007, 43, 195–221. [Google Scholar]
- Galli, M.; Oh, S.; Cassardo, C.; Park, S.K. The occurrence of cold spells in the Alps related to climate change. Water 2010, 2, 363–380. [Google Scholar] [CrossRef]
- Francone, C.; Cassardo, C.; Richiardone, R.; Confalonieri, R. Sensitivity analysis and investigation of the behaviour of the UTOPIA land-surface process model: A case study for vineyards in northern Italy. Bound.-Layer Meteorol. 2012, 144, 419–430. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Cassardo, C.; Longhetto, A. A model of plant transpiration and stomatal regulation under the condition of water stress. J. Desert Res. 1997, 17, 59–66. [Google Scholar]
- Loglisci, N.; Qian, M.W.; Cassardo, C.; Longhetto, A.; Giraud, C. Energy and water balance at soil-air interface in a Sahelian region. Adv. Atmos. Sci. 2001, 18, 897–909. [Google Scholar]
- Qian, Y.; Giorgi, F.; Huang, Y.; Chameides, W.L.; Luo, C. Simulation of anthropogenic sulfur over East Asia with a regional coupled chemistry-climate model. Tellus B 2001, 53, 171–191. [Google Scholar] [CrossRef]
- Zhang, Y.; Cassardo, C.; Ye, C.; Galli, M.; Vela, N. The role of the land surface processes in the rainfall generated by a landfall typhoon: A simulation of the Typhoon Sepat (2007). Asia-Pac. J. Atmos. Sci. 2011, 47, 63–77. [Google Scholar] [CrossRef]
- Déqué, M.; Somot, S. Analysis of heavy precipitation for France using high resolution ALADIN RCM simulations. Idöjárás 2008, 112, 179–190. [Google Scholar]
- Tramblay, Y.; Ruelland, D.; Somot, S.; Bouaicha, R.; Servat, E. High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: A first evaluation of the ALADIN-Climate model in Morocco. Hydrol. Earth Syst. Sci. 2013, 17, 3721–3739. [Google Scholar] [CrossRef]
- Wang, C.; Jones, R.; Perry, M.; Johnson, C.; Clark, P. Using an ultrahigh-resolution regional climate model to predict local climatology. Q. J. R. Meteorol. Soc. 2013, 139, 1964–1976. [Google Scholar] [CrossRef] [Green Version]
- Cantet, P.; Déqué, M.; Palany, P.; Maridet, J.-L. The importance of using a high-resolution model to study the climate change on small islands: the Lesser Antilles case. Tellus A 2014, 66, 24065. [Google Scholar] [CrossRef]
- Rummukainen, M. Added value in regional climate modeling. WIREs Clim. Chang. 2016, 7, 145–159. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model; NCAR Technical Note; NCAR/TN-387+STR; NCAR: Boulder, CO, USA, 1993. [Google Scholar] [CrossRef]
- Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1 km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Champeaux, J.L.; Masson, V.; Chauvin, F. ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteorol. Appl. 2005, 12, 29–32. [Google Scholar] [CrossRef]
- Paulsen, J.; Körner, C. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 2001, 12, 817–824. [Google Scholar] [CrossRef]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Heinimann, H.R. A concept in adaptive ecosystem management—An engineering perspective. For. Ecol. Manag. 2009, 259, 848–856. [Google Scholar] [CrossRef]
- Nakićenović, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; p. 599. [Google Scholar]
- Brovkin, V.; Boysen, L.; Arora, V.K.; Boisier, J.P.; Cadule, P.; Chini, L.; Claussen, M.; Friedlingstein, P.; Gayler, V.; van den Hurk, B.J.J.M.; et al. Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Hallgren, W.; Schlosser, C.A.; Monier, E.; Kicklighter, D.; Sokolov, A.; Melillo, J. Climate impacts of a large-scale biofuels expansion. Geophys. Res. Lett. 2013, 40, 1624–1630. [Google Scholar] [CrossRef] [Green Version]
- Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X. Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia. Environ. Res. Lett. 2014, 9, 035004. [Google Scholar] [CrossRef] [Green Version]
- Krüger, L.F.; da Rocha, R.P.; Reboita, M.S.; Ambrizzi, T. RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim. Chang 2012, 113, 599–621. [Google Scholar] [CrossRef]
- Zanis, P.; Ntogras, C.; Zakey, A.; Pytharoulis, I.; Karacostas, T. Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim. Res. 2012, 52, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, P.D.; Brooking, I.R.; Porter, J.R.; Wilson, D.R. Prediction of leaf appearance in wheat: A question of temperature. Field Crops Res. 1995, 41, 35–44. [Google Scholar] [CrossRef]
- Bollero, G.A.; Bullock, D.G.; Hollinger, S.E. Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agron. J. 1996, 88, 385–390. [Google Scholar] [CrossRef]
- Nishar, A.; Bader, M.K.-F.; O’Gorman, E.J.; Deng, J.; Breen, B.; Leuzinger, S. Temperature effects on biomass and regeneration of vegetation in a geothermal area. Front. Plant. Sci. 2017, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Hillis, R.M.; Gordon, S.L.; Brennan, R.M. An approach to the determination of winter chill requirements for different Ribes cultivars. Plant Biol. 2012, 15 (Suppl. 1), 18–27. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Pruege, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Zavaleta, E.S.; Thomas, B.D.; Chiariello, N.R.; Asner, G.P.; Shaw, M.R.; Field, C.B. Plants reverse warming effect on ecosystem water balance. Proc. Natl. Acad. Sci. USA 2003, 100, 9892–9893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, E.; Raffaele, F.; Giorgi, F. Impact of climate change on snow melt driven runoff timing over the Alpine region. Clim. Dyn. 2016. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassardo, C.; Park, S.K.; O, S.; Galli, M. Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy. Water 2018, 10, 954. https://doi.org/10.3390/w10070954
Cassardo C, Park SK, O S, Galli M. Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy. Water. 2018; 10(7):954. https://doi.org/10.3390/w10070954
Chicago/Turabian StyleCassardo, Claudio, Seon Ki Park, Sungmin O, and Marco Galli. 2018. "Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy" Water 10, no. 7: 954. https://doi.org/10.3390/w10070954
APA StyleCassardo, C., Park, S. K., O, S., & Galli, M. (2018). Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy. Water, 10(7), 954. https://doi.org/10.3390/w10070954