Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Study Area
2.3. Data Preparation
2.4. Nutrient Management
2.5. Model Calibration and Evaluation
3. Results and Discussion
3.1. Model Sensitivity Analysis
3.2. Flow Calibration and Evaluation
3.3. Water Quality Calibration and Evaluation
3.4. Mechanisms of N and P Transport in Hetao Irrigation District
3.5. Scenario Analysis for the TN Load and Transportation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, R.M.; Zhang, P.P.; Wang, X.J.; Chen, Y.X.; Shen, Z.Y. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar] [CrossRef]
- Volk, M.; Bosch, D.; Nangia, V.; Narasimhan, B. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agric. Water Manag. 2016, 175, 1–3. [Google Scholar] [CrossRef]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment—Lesson for policy and decision makers. Hydrol. Process. 2015, 29, 3123–3144. [Google Scholar] [CrossRef]
- Glavan, M.; Pintar, M.; Urbanc, J. Spatial variation of crop rotations and their impacts on provisioning ecosystem services on the river Drava alluvial plain. Sustain. Water Qual. Ecol. 2015, 5, 31–48. [Google Scholar] [CrossRef]
- Laurent, F.; Ruelland, D. Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. J. Hydrol. 2011, 409, 440–450. [Google Scholar] [CrossRef]
- Willaarts, B.A.; Volk, M.; Aguilera, P.A. Assessing the ecosystem services supplied by freshwater flows in Mediterranean agroecosystems. Agric. Water Manag. 2012, 105, 21–31. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Zhang, X.W. Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resour. Manag. 2002, 16, 239–261. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Z.F.; Wang, X. Trends of annual natural runoff in the Yellow River basin. Water Int. 2004, 29, 447–454. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.Y.; Zhang, C.F.; Shi, X.H.; Bourque, C.P.A.; Zhao, S.N. Evaluation of the applicability of the SWAT model in an arid piedmont-plain oasis. Water Sci. Technol. 2016, 73, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S. Large area hydrologic modelling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and non-point source pollution models: Review of mathematical bases. Trans. Am. Soc. Agric. Eng. 2003, 46, 1553–1566. [Google Scholar] [CrossRef]
- Holvoet, K.; Van Griensven, A.; Seuntjens, P.; Vanrolleghem, P.A. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Phys. Chem. Earth 2005, 30, 518–526. [Google Scholar] [CrossRef]
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The soil and water assessment tool: Historical development, applications and future research direction. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Volk, M.; Liersch, S.; Schmidt, G. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 2009, 26, 580–588. [Google Scholar] [CrossRef]
- Sun, X.; Bernard-Jannin, L.; Garneau, C.; Volk, M.; Arnold, J.G.; Srinivasan, R.; Sauvage, S.; Sanchez-Perez, J.M. Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrol. Process. 2016, 30, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Schmalz, B.; Tavares, F.; Fohrer, N. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Adv. Geosci. 2007, 11, 107–112. [Google Scholar] [CrossRef]
- Lam, Q.D.; Schmalz, B.; Fohrer, N. Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. J. Hydrol. 2012, 438–439, 137–147. [Google Scholar] [CrossRef]
- Dai, J.F.; Cui, Y.L. Distributed hydrological model for irrigation area based on SWAT: I. Principle and method. J. Hydraul. Eng. 2009, 40, 145–152. [Google Scholar]
- Zheng, J.; Li, G.Y.; Han, Z.Z.; Meng, G.X. Hydrological cycle simulation of an irrigation district based on a SWAT model. Math. Comput. Model. 2010, 51, 1312–1318. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Version 2005; Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2005. [Google Scholar]
- Soil Conservation Service (SCS). SCS National Engineering Handbook, Section 4: Hydrology, Part 18; The United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1972; pp. 1–30.
- Brown, L.C.; Barnwell, T.O., Jr. The Enhanced Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual; EPA/600/3-87/007; United States Environmental Protect Agency: Athens, GA, USA, 1987.
- Qi, Z.J.; Zhang, T.B.; Zhou, L.F.; Feng, H.; Zhao, Y.; Si, B.C. Combined effects of mulch and tillage on soil hydrothermal conditions under drip irrigation in Hetao Irrigation District, China. Water 2016, 8, 504. [Google Scholar] [CrossRef]
- Du, J.; Yang, P.L.; Li, Y.K.; Ren, S.M.; Wang, Y.Z.; Lin, Y. Nitrogen balance in the farmland system based on water balance in Hetao irrigation district, Inner Mongolia. Acta Ecol. Sin. 2011, 31, 4549–4559. (In Chinese) [Google Scholar]
- Zhu, D.N.; Ryan, M.C.; Sun, B.; Li, C.Y. The influence of irrigation and Wuliangsuhai Lake on groundwater quality in eastern Hetao Basin, Inner Mongolia, China. Hydrogeol. J. 2014, 22, 1101–1114. [Google Scholar] [CrossRef]
- Zeng, A.Y.; Hao, F.H.; Zhang, J.X.; Ouyang, W.; Zhang, M.X.; Tian, W.J. Nitrogen and phosphorus losses caused by the summer and fall irrigation runoff in the agricultural irrigation area in Inner Mongolia. Acta Sci. Circumst. 2008, 28, 838–844. (In Chinese) [Google Scholar]
- Sun, B.; Li, C.Y.; Claudia, M.D.S.; Jia, K.L.; Zhang, S.; Varennes, A.D.; Pereira, L.S. Variability of water quality in Wulingsuhai lake receiving drainage water from Hetao irrigation system in Yellow River Basin, China. Fresenius Environ. Bull. 2013, 22, 1666–1676. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Diluzio, M.; Arnold, J. ArcSWAT Interface for SWAT2009; Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2010. [Google Scholar]
- China Meteorological Data Website. Available online: http://data.cma.cn (accessed on 12 August 2014).
- Scientific Data Center of the Cold and Arid Regions Website. Available online: http://westdc.westgis.ac.cn (accessed on 28 September 2012 ).
- Li, W.B.; Zheng, H.C.; Gao, F.S.; Li, S.T.; Liu, J.P.; Liu, R.L. Study on index of fertilizer recommendation for spring wheat in Hetao irrigated area. Plant Nutr. Fertil. Sci. 2011, 6, 1327–1334. (In Chinese) [Google Scholar]
- Li, W.B.; Liu, R.L.; Zheng, H.C.; Li, S.T.; Gao, F.S.; Liu, J.P. Study on index of fertilizer recommendation for spring corn in hetao irrigation area of inner Mongolia. Sci. Agric. Sin. 2012, 45, 93–101. (In Chinese) [Google Scholar]
- Van Griensven, A.; Meixner, T.; Bishop, T.; Diluzio, A.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, A.; van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.; Williams, J.; Dugas, W.; Srinivasan, R.; Hauck, L. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Malone, R.W.; Yagow, G.; Baffaut, C.; Gitau, M.W.; Qi, Z.; Amatya, D.M.; Parajuli, P.B.; Bonta, J.V.; Green, T.R. Parameterization guidelines and considerations for hydrologic models. Trans. ASABE 2015, 58, 1681–1703. [Google Scholar]
- Jha, M.K. Evaluating hydrologic response of an agricultural watershed for watershed analysis. Water 2011, 3, 604–617. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Xie, X.H.; Cui, Y.L. Development and test of SWAT for modeling hydrological processed in irrigation districts with paddy rice. J. Hydrol. 2011, 396, 61–71. [Google Scholar] [CrossRef]
- Santhi, C.; Srinivasan, R.; Arnold, J.; Williams, J. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ. Model. Softw. 2006, 21, 1141–1157. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Qu, Z.Y.; Pereira, L.S. Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric. Water Manag. 2010, 98, 301–313. [Google Scholar] [CrossRef]
- Hu, W.H.; Li, G.Y.; Meng, G.X.; Xing, L.M. Evaluation of non-point source pollution load in Fenhe Irrigation District based on SWAT model. J. Hydraul. Eng. 2013, 44, 1309–1316. [Google Scholar]
- Kӓmӓri, M.; Alho, P.; Veijalainen, N.; Aaltonen, J.; Huokuna, M.; Lotsari, E. River ice cover influence on sediment transportation at present and under projected hydroclimatic conditions. Hydrol. Process. 2015, 29, 4738–4755. [Google Scholar] [CrossRef]
Parameter Name | Description | Units | Mountains | Plains |
---|---|---|---|---|
(AGRL/PAST/BARR) 1 | (CORN/SUNF/SWHT/URMD) 2 | |||
CN2 | SCS runoff curve number for moisture condition II | - | 53/45/35 | 50/68/89/46 |
ESCO | Soil evaporation compensation factor | - | 0.68/0.67/0.72 | 0.71/0.71/0.72/0.76 |
EPCO | Plant evaporation compensation factor | - | 0.23/0.45/0.40 | 0.23/0.07/0.35/0.19 |
CANMX | Maximum canopy index | - | 37/35/30 | 42/35/34/10 |
SOL_AWC | Available water capacity of the soil layer | mm/mm | 0.09–0.11 | 0.13–0.71 |
ALPHA_BF | Base flow alpha factor | days | 0.04 | 0.31 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium | mm/h | 1.5 | 3.1 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur | mm | 207 | 96 |
GW_DELAY | Groundwater delay | days | 22 | 27 |
REVAPMN | Threshold depth of water in the shallow aquifer for ‘revap’ to occur | mm | 200 | 165 |
GW_REVAP | Groundwater ‘revap’ coefficient | - | 0.03 | 0.04 |
RCHRG_DP | Groundwater recharge to the deep aquifer | - | 0.01–0.5 | 0.01–0.2 |
SLOPE | Average slope steepness | m/m | 0.2/0.2/0.01 | 0.01/0.01/0.01/0.1 |
SLSUBBSN | Average slope length | m | 150 | |
CDN | Denitrification exponential rate coefficient | - | 3 | |
SDNCO | Denitrification threshold water content | - | 0.85 | |
NPERCO | Nitrate percolation coefficient | - | 0.7 | |
PPERCO | Phosphorus percolation coefficient | - | 10 | |
PHOSKD | Phosphorus soil partitioning coefficient | - | 150 | |
PSP | Phosphorus availability index | - | 0.7 |
Statistic | Streamflow | Total Nitrogen (TN) | Total Phosphorus (TP) | |||
---|---|---|---|---|---|---|
Calibration | Evaluation | Calibration | Evaluation | Calibration | Evaluation | |
NSE | 0.75 | 0.78 | 0.63 | 0.48 | 0.64 | 0.42 |
R2 | 0.81 | 0.82 | 0.67 | 0.50 | 0.66 | 0.51 |
PBIAS | −1.91% | −1.45% | 9.53% | 2.38% | −27.02% | 36.65% |
Natural or Agricultural Factors | Precipitation | Irrigation | Streamflow | Total Nitrogen | Total Phosphorus |
---|---|---|---|---|---|
Precipitation | 1 | ||||
Irrigation | 0.29 | 1 | |||
Streamflow | 0.17 | 0.42 | 1 | ||
Total nitrogen | 0.07 | 0.61 | 0.82 | 1 | |
Total phosphorus | 0.89 | 0.17 | 0.16 | 0.02 | 1 |
Year | TN Load (kg·Year−1) | Difference | ||
---|---|---|---|---|
Scenario 1 | Scenario 2 | (kg·Year−1) | (%) | |
2007 | 2,169,849 | 2,159,243 | −10,605.85 | −0.49 |
2008 | 2,761,322 | 2,627,015 | −134,307.25 | −4.86 |
2009 | 2,053,212 | 1,870,884 | −182,327.92 | −8.88 |
2010 | 3,107,001 | 2,687,308 | −419,693.48 | −13.51 |
2011 | 2,290,798 | 2,125,518 | −165,279.51 | −7.21 |
2012 | 3,052,491 | 2,803,940 | −248,550.56 | −8.14 |
2013 | 3,352,640 | 3,182,378 | −170,261.79 | −5.08 |
Year | Surface Runoff | Lateral Flow | Shallow Groundwater | |||
---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | |
2007 | 111,559 | 111,559 | 120,599 | 120,216 | 1,484,862 | 1,474,638 |
2008 | 131,277 | 131,281 | 115,428 | 115,112 | 2,048,855 | 1,914,861 |
2009 | 102,715 | 102,715 | 107,947 | 107,716 | 1,515,218 | 1,333,120 |
2010 | 273,674 | 273,674 | 154,168 | 153,468 | 2,421,658 | 2,002,663 |
2011 | 241,752 | 241,752 | 110,323 | 110,078 | 1,758,742 | 1,593,709 |
2012 | 218,655 | 218,683 | 144,808 | 144,494 | 2,267,956 | 2,019,691 |
2013 | 155,995 | 155,995 | 111,921 | 111,384 | 2,875,414 | 2,705,689 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Shi, X.; Li, C.; Zhao, S.; Pen, F.; Green, T.R. Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China. Water 2017, 9, 169. https://doi.org/10.3390/w9030169
Wu Y, Shi X, Li C, Zhao S, Pen F, Green TR. Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China. Water. 2017; 9(3):169. https://doi.org/10.3390/w9030169
Chicago/Turabian StyleWu, Yong, Xiaohong Shi, Changyou Li, Shengnan Zhao, Fang Pen, and Timothy R. Green. 2017. "Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China" Water 9, no. 3: 169. https://doi.org/10.3390/w9030169
APA StyleWu, Y., Shi, X., Li, C., Zhao, S., Pen, F., & Green, T. R. (2017). Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China. Water, 9(3), 169. https://doi.org/10.3390/w9030169