Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Water, Volume 9, Issue 3 (March 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story Space-borne Synthetic Aperture Radar (SAR) has the capability to image subsurface features down to [...] Read more.
View options order results:
result details:
Displaying articles 1-81
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Strategic Points in Aquaponics
Water 2017, 9(3), 182; doi:10.3390/w9030182
Received: 2 December 2016 / Accepted: 16 February 2017 / Published: 3 March 2017
PDF Full-text (356 KB) | HTML Full-text | XML Full-text
Abstract
Global environmental, social and economic challenges drive the need for new and improved solutions for food production and consumption. Food production within a sustainability corridor requires innovations exceeding traditional paradigms, acknowledging the complexity arising from sustainability. However, there is a lack of knowledge
[...] Read more.
Global environmental, social and economic challenges drive the need for new and improved solutions for food production and consumption. Food production within a sustainability corridor requires innovations exceeding traditional paradigms, acknowledging the complexity arising from sustainability. However, there is a lack of knowledge about how to direct further activities, to develop technologies as potential solutions for questions related to climate change, loss of soil fertility and biodiversity, scarcity of resources, and shortage of drinking water. One approach that promises to address these problems is controlled environment agriculture. Aquaponics (AP) combines two technologies: recirculation aquaculture systems (RAS) and hydroponics (plant production in water, without soil) in a closed-loop system. One challenge to the development of this technology is the conversion of the toxic ammonium produced by the fish into nitrate, via bacteria in a biofilter, to provide nitrogen to the plants. However, as this Special Issue shows, there are many other challenges that need to be addressed if the goal of the technology is to contribute to more sustainable food production systems. Full article
(This article belongs to the Special Issue Aquaponics: Toward a Sustainable Water-Based Production System?)
Figures

Figure 1

Open AccessEditorial Use of Meta-Heuristic Techniques in Rainfall-Runoff Modelling
Water 2017, 9(3), 186; doi:10.3390/w9030186
Received: 20 December 2016 / Accepted: 2 March 2017 / Published: 6 March 2017
PDF Full-text (163 KB) | HTML Full-text | XML Full-text
Abstract
Each year, extreme floods, which appear to be occurring more frequently in recent years (owing to climate change), lead to enormous economic damage and human suffering around the world. It is therefore imperative to be able to accurately predict both the occurrence time
[...] Read more.
Each year, extreme floods, which appear to be occurring more frequently in recent years (owing to climate change), lead to enormous economic damage and human suffering around the world. It is therefore imperative to be able to accurately predict both the occurrence time and magnitude of peak discharge in advance of an impending flood event. The use of meta-heuristic techniques in rainfall-runoff modeling is a growing field of endeavor in water resources management. These techniques can be used to calibrate data-driven rainfall-runoff models to improve forecasting accuracies. This Special Issue of the journal Water is designed to fill the analytical void by including papers concerning advances in the contemporary use of meta-heuristic techniques in rainfall-runoff modeling. The information and analyses can contribute to the development and implementation of effective hydrological predictions, and thus, of appropriate precautionary measures. Full article
Open AccessEditorial Water Governance, Stakeholder Engagement, and Sustainable Water Resources Management
Water 2017, 9(3), 190; doi:10.3390/w9030190
Received: 3 February 2017 / Accepted: 2 March 2017 / Published: 6 March 2017
PDF Full-text (157 KB) | HTML Full-text | XML Full-text
Abstract
Water governance and stakeholder engagement are receiving research attention for their role in formulating and implementing solutions to the world’s critical water challenges. The inspiration for this Special Issue came from our desire to provide a platform for sharing results and informing the
[...] Read more.
Water governance and stakeholder engagement are receiving research attention for their role in formulating and implementing solutions to the world’s critical water challenges. The inspiration for this Special Issue came from our desire to provide a platform for sharing results and informing the global water governance community about the wealth of excellent interdisciplinary and transdisciplinary research and projects being carried out around the world. The 20 peer-reviewed papers collected in this Special Issue have been grouped into three categories: stakeholder engagement, tools for building water management and governance capacity, and perspectives on water management and governance. Following a brief summary of the papers, concluding remarks that reflect on what the papers, taken as a whole, contribute to our understanding are provided. Full article

Research

Jump to: Editorial, Review

Open AccessArticle Spatiotemporal Distribution of Eutrophication in Lake Tai as Affected by Wind
Water 2017, 9(3), 200; doi:10.3390/w9030200
Received: 17 October 2016 / Revised: 1 March 2017 / Accepted: 3 March 2017 / Published: 10 March 2017
PDF Full-text (9858 KB) | HTML Full-text | XML Full-text
Abstract
One common hypothesis is that wind can affect concentrations of nutrients (i.e., nitrogen and phosphorus) and chlorophyll-a (Chl-a) in shallow lakes. However, the tests of this hypothesis have yet to be conclusive in existing literature. The objective of this study was to use
[...] Read more.
One common hypothesis is that wind can affect concentrations of nutrients (i.e., nitrogen and phosphorus) and chlorophyll-a (Chl-a) in shallow lakes. However, the tests of this hypothesis have yet to be conclusive in existing literature. The objective of this study was to use long-term data to examine how wind direction and wind speed affect the spatiotemporal variations of total nitrogen (TN), total phosphorus (TP) and Chl-a in Lake Tai, a typical shallow lake located in east China. The results indicated that the concentrations of nutrients and Chl-a tended to decrease from the northwest to the southeast of Lake Tai, with the highest concentrations in the two leeward bays (namely Meiliang Bay and Zhushan Bay) in the northwestern part of the lake. In addition to possible artificial reasons (e.g., wastewater discharge), the prevalent southeastward winds in warm seasons (i.e., spring and summer) and northwestward winds in cool seasons (i.e., fall and winter) might be the major natural factor for such a northwest-southeast decreasing spatial pattern. For the lake as a whole, the concentrations of TN, TP and Chl-a were highest for a wind speed between 2.1 and 3.2 m·s−1, which can be attributed to the idea that the wind-induced drifting and mixing effects might be dominant in the bays while the wind-induced drifting and resuspension effects could be more important in the other parts of the lake. Given that the water depth of the bays was relatively larger than that of the other parts, the drifting and mixing effects were likely dominant in the bays, as indicated by the negative relationships between the ratios of wind speed to lake depth, which can be a surrogate for the vertical distribution of wind-induced shear stress and the TN, TP and Chl-a concentration. Moreover, the decreasing temporal trend of wind speed in combination with the ongoing anthropogenic activities will likely increase the challenge for dealing with the eutrophication problem of Lake Tai. Full article
(This article belongs to the Special Issue Water-Soil-Vegetation Dynamic Interactions in Changing Climate)
Figures

Figure 1

Open AccessArticle Applications of Coupled Explicit–Implicit Solution of SWEs for Unsteady Flow in Yangtze River
Water 2017, 9(3), 91; doi:10.3390/w9030091
Received: 26 December 2016 / Revised: 15 February 2017 / Accepted: 20 February 2017 / Published: 23 February 2017
PDF Full-text (8272 KB) | HTML Full-text | XML Full-text
Abstract
In engineering practice, the unsteady flows generated from the operation of hydropower station in the upstream region could significantly change the navigation system of waterways located in the middle-lower reaches of the river. In order to study the complex propagation, convergence and superposition
[...] Read more.
In engineering practice, the unsteady flows generated from the operation of hydropower station in the upstream region could significantly change the navigation system of waterways located in the middle-lower reaches of the river. In order to study the complex propagation, convergence and superposition characteristics of unsteady flows in a long channel with flow confluence, a numerical model based on the coupling of implicit and explicit solution algorithms of Shallow Water Equations (SWEs) has been applied to two large rivers in the reach of Yangtze River, China, which covers the distance from Yibin to Chongqing located upstream side of the Three Gorges Dam. The accuracy of numerical model has been validated by both the steady and unsteady flows using the prototype hydrological data. It is found that the unsteady flows show much more complex water level and discharge behaviors than the steady ones. The studied unsteady flows arising from the water regulation of two upstream hydropower stations could influence the region as far as Zhutuo hydrologic station, which is close to the city of Chongqing. Meanwhile, the computed stage–discharge rating curves at all observation stations demonstrate multi-value loop patterns because of the presence of additional water surface gradient. The present numerical model proves to be robust for simulating complex flows in very long engineering rivers up to 400 km. Full article
(This article belongs to the Special Issue Modeling of Water Systems)
Figures

Figure 1

Open AccessArticle Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China
Water 2017, 9(3), 201; doi:10.3390/w9030201
Received: 15 November 2016 / Revised: 23 February 2017 / Accepted: 7 March 2017 / Published: 13 March 2017
PDF Full-text (1691 KB) | HTML Full-text | XML Full-text
Abstract
Taking China as a case study, we analyzed the underlying driving forces of two discharges—chemical oxygen demand (COD) and ammonia nitrogen (NH3-N)—from both periodic and structural perspectives by the Logarithmic Mean Divisia Index (LMDI) method. Changes in the two discharges were
[...] Read more.
Taking China as a case study, we analyzed the underlying driving forces of two discharges—chemical oxygen demand (COD) and ammonia nitrogen (NH3-N)—from both periodic and structural perspectives by the Logarithmic Mean Divisia Index (LMDI) method. Changes in the two discharges were decomposed into three effects: the economic output effect, the industrial structure effect and the discharge intensity effect. The discharge intensity effect could be further decomposed into the cleaner production (technologies’) effect and the pollution abatement (technologies’) effect. Results showed that the economic output effect was mainly responsible for the growth of the two discharges; the average annual contribution rates were 10.77% and 10.39%, respectively. Inversely, the pollution abatement (technologies’) effect presented the most obvious mitigating effects (−9.71% and −9.52%, respectively). Furthermore, the clean production (technologies’) effect followed it (−4.36% and −5.22%). So, we found that the discharge intensity effect played a crucial role in the reduction of the two discharges. Then, the mitigation effect of industrial structure adjustment was the weakest (−0.19% and 0.47%). However, we could still not ignore the potential impact of industrial structure optimization for reducing the absolute amount of discharges in the long run. In addition, to simultaneously reduce the COD and NH3-N discharges, the sub-sectors of “Processing of Food from Agricultural Products (I7)”, “Manufacture of Foods (I8)”, “Manufacture of Raw Chemical Materials and Chemical Products (I20)”, “Manufacture of Non-metallic Mineral Products (I24)” and “Smelting and Pressing of Non-ferrous Metals (I26)” were suggested to be given prior consideration for the design of related mitigation policies. Finally, some particular policy implications were also recommended for reducing the two discharges. Full article
Figures

Figure 1

Open AccessArticle The Impact of a Local Development Project on Social Capital: Evidence from the Bohol Irrigation Scheme in the Philippines
Water 2017, 9(3), 202; doi:10.3390/w9030202
Received: 5 December 2016 / Revised: 6 March 2017 / Accepted: 7 March 2017 / Published: 10 March 2017
PDF Full-text (3346 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this paper is to investigate the connection between local development projects and the residents’ social capital in Bohol, The Philippines. From this perspective, we hypothesized that social behaviors of local farmers are influenced by the availability of canal irrigation due
[...] Read more.
The purpose of this paper is to investigate the connection between local development projects and the residents’ social capital in Bohol, The Philippines. From this perspective, we hypothesized that social behaviors of local farmers are influenced by the availability of canal irrigation due to the collective water management required in irrigated societies. By combining the results of the ultimatum game (UG) with a household survey on 245 villagers in Bohol, this paper (1) measures the degree of social capital at the individual level and (2) quantifies the effects of irrigation on social capital by controlling household as well as individual characteristics. Moreover, we employed a Spatial Autoregressive model to explore the spatial effects and social contexts of farmers’ behavioral patterns. The empirical results show that the level of measured social behavior is strongly associated with access to community irrigation water and asset holdings. Additionally, increased physical distance between residents leads to a decrease in social capital, or interdependency, among them. The results suggest that community engagement (e.g., irrigation management committee and turnout service association) with local development projects would not only improve agricultural productivity but also enhance social relationships among farmers, highlighting its importance. Full article
Figures

Figure 1

Open AccessArticle Modeling the Influence of River Cross-Section Data on a River Stage Using a Two-Dimensional/Three-Dimensional Hydrodynamic Model
Water 2017, 9(3), 203; doi:10.3390/w9030203
Received: 10 November 2016 / Revised: 22 February 2017 / Accepted: 8 March 2017 / Published: 10 March 2017
PDF Full-text (11791 KB) | HTML Full-text | XML Full-text
Abstract
A large amount of accurate river cross-section data is indispensable for predicting river stages. However, the measured river cross-section data are usually sparse in the transverse direction at each cross-section as well as in the longitudinal direction along the river channel. This study
[...] Read more.
A large amount of accurate river cross-section data is indispensable for predicting river stages. However, the measured river cross-section data are usually sparse in the transverse direction at each cross-section as well as in the longitudinal direction along the river channel. This study presents three algorithms to resample the river cross-section data points in both the transverse and longitudinal directions from the original data. A two-dimensional (2D) high-resolution unstructured-grid hydrodynamic model was used to assess the performance of the original and resampled cross-section data on a simulated river stage under low flow and high flow conditions. The simulated river stages are significantly improved using the resampled cross-section data based on the linear interpolation in the tidal river and non-tidal river segments. The resampled cross-section data based on the linear interpolation satisfactorily maintains the topographic and morphological features of the river channel, especially in the meandering river segment. Furthermore, the performance of the 2D and three-dimensional (3D) models on the simulated river stage was also evaluated using the resampled cross-section data. The results indicate that the 2D and 3D models reproduce similar river stages in both tidal and non-tidal river segments under the low flow condition. However, the 2D model overestimates the river stages in both the tidal and non-tidal river segments compared to the 3D model under the high flow condition. The model sensitivity was implemented to investigate the influence of bottom drag coefficient and vertical eddy viscosity on river stage using 2D and 3D models based on the linear interpolation method to resample river bed cross-section. The results reveal that the change of bottom drag coefficient has a minor impact on river stage, but the change of vertical eddy viscosity is insensitive to river stage. Full article
Figures

Figure 1

Open AccessArticle Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling
Water 2017, 9(3), 204; doi:10.3390/w9030204
Received: 23 December 2016 / Revised: 22 February 2017 / Accepted: 7 March 2017 / Published: 10 March 2017
PDF Full-text (2797 KB) | HTML Full-text | XML Full-text
Abstract
The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three
[...] Read more.
The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring. Full article
Figures

Figure 1

Open AccessArticle An Approach to Predict Debris Flow Average Velocity
Water 2017, 9(3), 205; doi:10.3390/w9030205
Received: 3 November 2016 / Revised: 23 February 2017 / Accepted: 8 March 2017 / Published: 10 March 2017
PDF Full-text (13196 KB) | HTML Full-text | XML Full-text
Abstract
Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF) neural network and gravitational search algorithm (GSA)
[...] Read more.
Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF) neural network and gravitational search algorithm (GSA) for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF). Eighty percent (40 groups) of the measured data were selected randomly as the training database. The other 20% (10 groups) of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA) approach were used for comparison and validation. The results showed that: (i) the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii) the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii) in the study area, the GSA-RBF results are validated reliable; and (iv) we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other. Full article
Figures

Figure 1

Open AccessArticle Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany
Water 2017, 9(3), 206; doi:10.3390/w9030206
Received: 28 November 2016 / Accepted: 14 February 2017 / Published: 10 March 2017
PDF Full-text (1165 KB) | HTML Full-text | XML Full-text
Abstract
The European water governance took a decisive turn with the formulation of the Water Framework Directive (WFD), which demands the restoration of all water bodies that did not achieve sufficient ecological status. Urban rivers are particularly impaired by human activities and their restorations
[...] Read more.
The European water governance took a decisive turn with the formulation of the Water Framework Directive (WFD), which demands the restoration of all water bodies that did not achieve sufficient ecological status. Urban rivers are particularly impaired by human activities and their restorations are motivated by multiple ecological and societal drivers, such as requirements of laws and legislation, and citizen needs for a better quality of life. In this study we investigated the relative influence of socio-political and socio-cultural drivers on urban river restorations by comparing projects of different policy contexts and cultural norms to cross-fertilize knowledge. A database of 75 projects in French and German major cities was compiled to apply (a) a comparative statistical analysis of main project features, i.e., motivation, goals, measures, morphological status, and project date; and (b) a qualitative textual analysis on project descriptions and titles. The results showed that despite a powerful European directive, urban river restoration projects still keep national specificities. The WFD drives with more intensity German, rather than French, urban river restoration. This study showed the limits of macro-level governance and the influence of microlevel governance driven by societal aspects such as nature perception and relationships between humans and rivers. Full article
Figures

Figure 1

Open AccessArticle Water Consumption of Agriculture and Natural Ecosystems along the Ili River in China and Kazakhstan
Water 2017, 9(3), 207; doi:10.3390/w9030207
Received: 29 December 2016 / Accepted: 7 March 2017 / Published: 10 March 2017
PDF Full-text (5627 KB) | HTML Full-text | XML Full-text
Abstract
The Ili River is a transboundary river shared by China, upstream, and Kazakhstan, downstream. The Ili is the main water supplier to Lake Balkhash, the largest lake in Central Asia after desiccation of the Aral Sea. Agreements over water allocation have not been
[...] Read more.
The Ili River is a transboundary river shared by China, upstream, and Kazakhstan, downstream. The Ili is the main water supplier to Lake Balkhash, the largest lake in Central Asia after desiccation of the Aral Sea. Agreements over water allocation have not been concluded between China and Kazakhstan. This paper investigated water consumption of agriculture and riparian ecosystems in the Ili river basin, to provide information for further debate on water allocation, through the Simplified Surface Energy Balance Index (S-SEBI) approach using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The overall water consumption in the Ili river basin was 14.3 km3/a in 2000, 17.2 km3/a in 2005, and 15 km3/a in 2014. In 2000, China and Kazakhstan consumed 38% and 62% of the water, respectively. By 2014, the relative share of China’s water consumption increased to 43%. In China, 80% of the water consumption is due to agriculture. High runoff during the past 10 years enabled increasing water consumption in China and sufficient water supply to agriculture and riparian ecosystems in Kazakhstan. When runoff of the Ili River decreases, as expected for most rivers in Central Asia, then irrigation efficiency has to be further increased in China, and irrigation systems in Kazakhstan have to be restored and modernized in order to reduce water consumption and protect Lake Balkhash and the riparian ecosystems. Full article
(This article belongs to the Special Issue Resilient Water Management in Agriculture)
Figures

Figure 1

Open AccessArticle Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation
Water 2017, 9(3), 208; doi:10.3390/w9030208
Received: 28 October 2016 / Revised: 22 February 2017 / Accepted: 9 March 2017 / Published: 12 March 2017
PDF Full-text (3401 KB) | HTML Full-text | XML Full-text
Abstract
Expected changes in precipitation over large regions of the world under global climate change will have profound effects on terrestrial ecosystems in arid and semiarid regions. To explore how changes in the amount of precipitation in the growing season would affect soil nitrogen
[...] Read more.
Expected changes in precipitation over large regions of the world under global climate change will have profound effects on terrestrial ecosystems in arid and semiarid regions. To explore how changes in the amount of precipitation in the growing season would affect soil nitrogen (N) availability in a semiarid ecosystem, we established rainout shelters and irrigation systems by simulating 30% reduced (DRY) and 30% increased precipitation (WET) relative to natural precipitation (Control) to measure some key soil process properties for two growing seasons in a nutrient-poor Mongolian pine (P. sylvestris var. mongolica) plantation. Both WET and DRY treatments significantly affected monthly soil inorganic nitrogen concentrations, which showed a higher inorganic N under DRY than Control in each month and lower in WET than Control. Monthly soil microbial biomass N content was reduced by DRY and raised by WET treatments. The results indicated the asynchrony of the availability of soil moisture and soil nutrients in Mongolian pine plantations at the Horqin Sandy Lands in Northeast China. Water limited plant growth in Mongolian pine plantations when precipitation decreased, and nitrogen limitation became increasingly important when precipitation increased. Accumulation of N in microbial biomass is an important mechanism for N cycling in this ecosystem. To effectively manage Mongolian pine plantations, it is advised that evapotranspiration is minimized when precipitation decreases and that there is an increase in soil N availability by protecting litterfall when precipitation increases. Full article
Figures

Figure 1

Open AccessArticle Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands
Water 2017, 9(3), 209; doi:10.3390/w9030209
Received: 11 November 2016 / Revised: 21 February 2017 / Accepted: 7 March 2017 / Published: 13 March 2017
PDF Full-text (2908 KB) | HTML Full-text | XML Full-text
Abstract
In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations
[...] Read more.
In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF) Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions. Full article
Figures

Figure 1

Open AccessArticle Determinants of Farmers’ Climate Risk Perceptions in Agriculture—A Rural Ghana Perspective
Water 2017, 9(3), 210; doi:10.3390/w9030210
Received: 21 November 2016 / Revised: 14 February 2017 / Accepted: 7 March 2017 / Published: 13 March 2017
PDF Full-text (389 KB) | HTML Full-text | XML Full-text
Abstract
This study evaluates the socio-economic predictors of farmers’ perceptions about climate risk in agriculture. The levels of risk perception among different farmers’ wealth groups are also investigated. A total of 100 farmers in the Lawra district of Ghana are randomly selected and interviewed.
[...] Read more.
This study evaluates the socio-economic predictors of farmers’ perceptions about climate risk in agriculture. The levels of risk perception among different farmers’ wealth groups are also investigated. A total of 100 farmers in the Lawra district of Ghana are randomly selected and interviewed. Data is obtained through the use of semi-structured questionnaires and focus group discussions. A climate risk perception index (CRPI) is derived and applied to assess the degree of perceived risk among different wealth groups of farmers. The linear regression model is also used to analyze the data. The results showed that 93% of farmers have perceived climate risk while 7% are not sure if they have perceived it. Results of the CRPI showed that resource-poor farmers are concerned about climate risk on agricultural production, while resource-moderate and resource-rich farmers are concerned about risk impacts on climatic variables, and health and socio-economy, respectively. Results of the regression model showed that education, age, a perceived increase in human disease and mortality, and a decrease in food security and incomes are predictors of risk perception. The policy implication of this study is that predictors of farmers’ climate risk perception should be factored into climate change risk communication in order to boost awareness and adaptation to climate change. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Monitoring, Restoration, and Source Water Protection: Canadian Community-Based Environmental Organizations’ Efforts towards Improving Aquatic Ecosystem Health
Water 2017, 9(3), 212; doi:10.3390/w9030212
Received: 7 December 2016 / Revised: 24 February 2017 / Accepted: 4 March 2017 / Published: 13 March 2017
PDF Full-text (3659 KB) | HTML Full-text | XML Full-text
Abstract
In Canada, environmental monitoring has been the responsibility of government for decades; however, funding cutbacks have left many agencies unable to provide comprehensive coverage. This has stimulated a rise in community-based water monitoring (CBWM) organizations. These organizations, operating at multiple scales, have tasked
[...] Read more.
In Canada, environmental monitoring has been the responsibility of government for decades; however, funding cutbacks have left many agencies unable to provide comprehensive coverage. This has stimulated a rise in community-based water monitoring (CBWM) organizations. These organizations, operating at multiple scales, have tasked themselves with monitoring aquatic ecosystems. Additionally, they often engage in restoration projects stemming from their monitoring work. Despite the growing abundance of CBWM organizations, there is uncertainty as to whether their activities lead to aquatic ecosystem benefits. A thematic analysis of photographic and qualitative interview data was employed to examine restoration projects conducted by five CBWM organizations, and the projects’ potential impact on source waters. Findings show that while they are conducting activities that show physical change, which is indicative of ecosystem improvement, examples of measurable responses within aquatic ecosystems remain rare. Monitoring, restoration, and source water protection processes are challenged by a lack of funding, capacity, and monitoring procedures. Funding, particularly, restricted the extent to which monitoring could be conducted and influenced project scope and scale. This leads to a lack of capacity to conduct large-scale restoration and rigorous scientific monitoring. Consequently, our findings highlight the issues with detecting effects of small-scale projects at the watershed scale. Full article
(This article belongs to the Special Issue Source Water Protection: State of the Art and Science)
Figures

Figure 1

Open AccessArticle The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management
Water 2017, 9(3), 213; doi:10.3390/w9030213
Received: 26 September 2016 / Accepted: 9 March 2017 / Published: 13 March 2017
PDF Full-text (1434 KB) | HTML Full-text | XML Full-text
Abstract
Integrated water resource management (IWRM) is facing great challenges due to growing uncertainties caused by climate change (CC), rapid socio-economic and technological changes, and population growth. In the present study, we have developed different indices to assess the availability of water using an
[...] Read more.
Integrated water resource management (IWRM) is facing great challenges due to growing uncertainties caused by climate change (CC), rapid socio-economic and technological changes, and population growth. In the present study, we have developed different indices to assess the availability of water using an IWRM approach. These indices evaluate supply to demands, surface availability, groundwater availability, reservoirs, and environmental flow. Moreover, reliability, resilience, and vulnerability were determined. Sustainability index (SI) and sustainability index by groups (SG) were determined based on the five indices (all indices vary from 0 to 1). The impacts of climate change affect surface and groundwater availability, as do the agricultural, urban, and industrial requirements on the different supplies. We used the generalized AQUATOOL Decision Support System Shell (DSSS) to evaluate the IWRM in the Rio Grande Basin (Morelia, México). Various emission scenarios from representative concentration pathways (RCPs) were applied to the basin for the years 2015–2039 and 2075–2099. The results indicate increases in agricultural and urban demand, and decreases in surface runoff, as well as groundwater recharge. The proposed indices are useful for different approaches (decision-makers, water policy, and drought risks, among others). CC significantly affects the different proposed indices and indicates a decrease of the SI, SG1, and SG2 (i.e., less availability). For example, we found that SG2 decreased from 0.812 to 0.195 under the RCP 8.5 2075–2099 scenario, and SG2 equal to 0.252 and 0.326 for the RCP 6.0 2075–2099 and RCP 4.5 2070–2099 scenarios, respectively (values close to 0 indicate worst drought conditions). Full article
Figures

Figure 1

Open AccessFeature PaperArticle Economic Insight from Utah’s Water Efficiency Supply Curve
Water 2017, 9(3), 214; doi:10.3390/w9030214
Received: 27 October 2016 / Revised: 19 January 2017 / Accepted: 6 March 2017 / Published: 13 March 2017
PDF Full-text (4937 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Across the western US, growing populations and urbanization along with environmental demands and a changing climate have strained water allocation mechanisms originally designed to provide water to agriculture. This paper provides a methodology, using Utah as an example, for examining the options for
[...] Read more.
Across the western US, growing populations and urbanization along with environmental demands and a changing climate have strained water allocation mechanisms originally designed to provide water to agriculture. This paper provides a methodology, using Utah as an example, for examining the options for new water supply via conservation, interpretable by policymakers, water agencies, and water users. Findings indicate that the largest potential water savings, at the lowest cost, are in agriculture and outdoor residential water use, where more efficient applications can maintain the acreage of crops and lawns at current levels while dramatically reducing use. Full article
Figures

Figure 1

Open AccessArticle Determination of Growth Stage-Specific Crop Coefficients (Kc) of Sunflowers (Helianthus annuus L.) under Salt Stress
Water 2017, 9(3), 215; doi:10.3390/w9030215
Received: 16 January 2017 / Accepted: 9 March 2017 / Published: 13 March 2017
PDF Full-text (4403 KB) | HTML Full-text | XML Full-text
Abstract
Crop coefficients (Kc) are important for the development of irrigation schedules, but few studies on Kc focus on saline soils. To propose the growth-stage-specific Kc values for sunflowers in saline soils, a two-year micro-plot experiment was conducted in Yichang Experimental Station, Hetao Irrigation
[...] Read more.
Crop coefficients (Kc) are important for the development of irrigation schedules, but few studies on Kc focus on saline soils. To propose the growth-stage-specific Kc values for sunflowers in saline soils, a two-year micro-plot experiment was conducted in Yichang Experimental Station, Hetao Irrigation District. Four salinity levels including non-salinized (ECe = 3.4–4.1 dS·m–1), low (ECe = 5.5–8.2 dS·m–1), moderate (ECe = 12.1–14.5 dS·m–1), and high (ECe = 18.3–18.5 dS·m–1) levels were arranged in 12 micro-plots. Based on the soil moisture observations, Vensim software was used to establish and develop a physically-based water flow in the soil-plant system (WFSP) model. Observations in 2012 were used to calibrate the WFSP model and acceptable accuracy was obtained, especially for soil moisture simulation below 5 cm (R2 > 0.6). The locally-based Kc values (LKc) of sunflowers in saline soils were presented according to the WFSP calibration results. To be specific, LKc for initial stages (Kc1) could be expressed as a function of soil salinity (R2 = 0.86), while R2 of LKc for rapid growth (Kc2), middle (Kc3), and mature (Kc4) stages were 0.659, 1.156, and 0.324, respectively. The proposed LKc values were also evaluated by observations in 2013 and the R2 for initial, rapid growth, middle, and mature stages were 0.66, 0.68, 0.56 and 0.58, respectively. It is expected that the LKc would be of great value in irrigation management and provide precise water application values for salt-affected regions. Full article
Figures

Figure 1

Open AccessArticle Modelling Hydrology and Sediment Transport in a Semi-Arid and Anthropized Catchment Using the SWAT Model: The Case of the Tafna River (Northwest Algeria)
Water 2017, 9(3), 216; doi:10.3390/w9030216
Received: 15 December 2016 / Revised: 6 March 2017 / Accepted: 7 March 2017 / Published: 14 March 2017
PDF Full-text (5409 KB) | HTML Full-text | XML Full-text
Abstract
Sediment deposits in North African catchments contribute to around 2%–5% of the yearly loss in the water storage capacity of dams. Despite its semi-arid climate, the Tafna River plays an important role in Algeria’s water self-sufficiency. There is continuous pressure on the Tafna’s
[...] Read more.
Sediment deposits in North African catchments contribute to around 2%–5% of the yearly loss in the water storage capacity of dams. Despite its semi-arid climate, the Tafna River plays an important role in Algeria’s water self-sufficiency. There is continuous pressure on the Tafna’s dams to respond to the demand for water. The Soil and Water Assessment Tool (SWAT) was used to evaluate the contribution of different compartments in the basin to surface water and the dams’ impact on water and sediment storage and its flux to the sea in order to develop reservoir management. The hydrological modelling fitted well with the observed data (Nash varying between 0.42 and 0.75 and R2 varying between 0.25 and 0.84). A large proportion of the surface water came from surface runoff (59%) and lateral flow (40%), while the contribution of groundwater was insignificant (1%). SWAT was used to predict sediments in all the gauging stations. Tafna River carries an average annual quantity of 2942 t·yr−1 to the Mediterranean Sea. A large amount of water was stored in reservoirs (49%), which affected the irrigated agricultural zone downstream of the basin. As the dams contain a large amount of sediment, in excess of 27,000 t·yr−1 (90% of the sediment transported by Tafna), storage of sediment reduces the lifetime of reservoirs. Full article
(This article belongs to the Special Issue Sediment Transport in Coastal Waters)
Figures

Figure 1

Open AccessFeature PaperArticle Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA
Water 2017, 9(3), 217; doi:10.3390/w9030217
Received: 20 November 2016 / Revised: 18 February 2017 / Accepted: 2 March 2017 / Published: 14 March 2017
PDF Full-text (1965 KB) | HTML Full-text | XML Full-text
Abstract
In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both
[...] Read more.
In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work. Full article
Figures

Figure 1

Open AccessArticle Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic
Water 2017, 9(3), 218; doi:10.3390/w9030218
Received: 9 January 2017 / Revised: 6 March 2017 / Accepted: 10 March 2017 / Published: 20 March 2017
PDF Full-text (2194 KB) | HTML Full-text | XML Full-text
Abstract
The application of innovative technologies in water management, such as wastewater reuse, requires a deeper understanding of emerging pollutants, including pharmaceuticals. This study presents a unique pilot site at Horní Beřkovice in Central Bohemia, where wastewater parameters are significantly influenced by the effluent
[...] Read more.
The application of innovative technologies in water management, such as wastewater reuse, requires a deeper understanding of emerging pollutants, including pharmaceuticals. This study presents a unique pilot site at Horní Beřkovice in Central Bohemia, where wastewater parameters are significantly influenced by the effluent from a local psychiatric hospital, and where the treated wastewater infiltrates into a shallow aquifer over a long period. The survey compared the quality parameters of local wastewater with those of the wastewater in four other catchments with no sources of concentrated pharmaceutical contamination. A total of 10 pharmaceuticals were detected while monitoring a common sewage system, but their number increased 3-fold at Horní Beřkovice. The water quality data revealed the effectiveness of the removal of pharmaceuticals from wastewater at the local sewage treatment plant and tracked the fate of substances that move from the treatment plant into the recharge ponds and then gradually into groundwater. The findings showed a significant decrease in all the monitored micropollutants that remained bound in sediments and in the unsaturated zone. Their passage into groundwater was highly reduced, and they virtually disappear after a few hundred meters in the saturated zone. The only exception is carbamazepine. This substance passes through the treatment technology and unsaturated zone. It systematically appears in the groundwater samples collected about 1 km from the infiltration site. Full article
Figures

Figure 1

Open AccessArticle The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China
Water 2017, 9(3), 219; doi:10.3390/w9030219
Received: 6 December 2016 / Revised: 7 March 2017 / Accepted: 13 March 2017 / Published: 16 March 2017
PDF Full-text (13780 KB) | HTML Full-text | XML Full-text
Abstract
Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study,
[...] Read more.
Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management. Full article
Figures

Figure 1

Open AccessArticle Internet of Things-Based Arduino Intelligent Monitoring and Cluster Analysis of Seasonal Variation in Physicochemical Parameters of Jungnangcheon, an Urban Stream
Water 2017, 9(3), 220; doi:10.3390/w9030220
Received: 29 January 2017 / Revised: 5 March 2017 / Accepted: 13 March 2017 / Published: 16 March 2017
PDF Full-text (22503 KB) | HTML Full-text | XML Full-text
Abstract
In the present case study, the use of an advanced, efficient and low-cost technique for monitoring an urban stream was reported. Physicochemical parameters (PcPs) of Jungnangcheon stream (Seoul, South Korea) were assessed using an Internet of Things (IoT) platform. Temperature, dissolved oxygen (DO),
[...] Read more.
In the present case study, the use of an advanced, efficient and low-cost technique for monitoring an urban stream was reported. Physicochemical parameters (PcPs) of Jungnangcheon stream (Seoul, South Korea) were assessed using an Internet of Things (IoT) platform. Temperature, dissolved oxygen (DO), and pH parameters were monitored for the three summer months and the first fall month at a fixed location. Analysis was performed using clustering techniques (CTs), such as K-means clustering, agglomerative hierarchical clustering (AHC), and density-based spatial clustering of applications with noise (DBSCAN). An IoT-based Arduino sensor module (ASM) network with a 99.99% efficient communication platform was developed to allow collection of stream data with user-friendly software and hardware and facilitated data analysis by interested individuals using their smartphones. Clustering was used to formulate relationships among physicochemical parameters. K-means clustering was used to identify natural clusters using the silhouette coefficient based on cluster compactness and looseness. AHC grouped all data into two clusters as well as temperature, DO and pH into four, eight, and four clusters, respectively. DBSCAN analysis was also performed to evaluate yearly variations in physicochemical parameters. Noise points (NOISE) of temperature in 2016 were border points (ƥ), whereas in 2014 and 2015 they remained core points (ɋ), indicating a trend toward increasing stream temperature. We found the stream parameters were within the permissible limits set by the Water Quality Standards for River Water, South Korea. Full article
Figures

Figure 1

Open AccessArticle Advancing Sequential Managed Aquifer Recharge Technology (SMART) Using Different Intermediate Oxidation Processes
Water 2017, 9(3), 221; doi:10.3390/w9030221
Received: 3 February 2017 / Revised: 7 March 2017 / Accepted: 13 March 2017 / Published: 17 March 2017
PDF Full-text (1953 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Managed aquifer recharge (MAR) systems are an efficient barrier for many contaminants. The biotransformation of trace organic chemicals (TOrCs) strongly depends on the redox conditions as well as on the dissolved organic carbon availability. Oxic and oligotrophic conditions are favored for enhanced TOrCs
[...] Read more.
Managed aquifer recharge (MAR) systems are an efficient barrier for many contaminants. The biotransformation of trace organic chemicals (TOrCs) strongly depends on the redox conditions as well as on the dissolved organic carbon availability. Oxic and oligotrophic conditions are favored for enhanced TOrCs removal which is obtained by combining two filtration systems with an intermediate aeration step. In this study, four parallel laboratory-scale soil column experiments using different intermittent aeration techniques were selected to further optimize TOrCs transformation during MAR: no aeration, aeration with air, pure oxygen and ozone. Rapid oxygen consumption, nitrate reduction and dissolution of manganese confirmed anoxic conditions within the first filtration step, mimicking traditional bank filtration. Aeration with air led to suboxic conditions, whereas oxidation by pure oxygen and ozone led to fully oxic conditions throughout the second system. The sequential system resulted in an equal or better transformation of most TOrCs compared to the single step bank filtration system. Despite the fast oxygen consumption, acesulfame, iopromide, iomeprol and valsartan were degraded within the first infiltration step. The compounds benzotriazole, diclofenac, 4-Formylaminoantipyrine, gabapentin, metoprolol, valsartan acid and venlafaxine revealed a significantly enhanced removal in the systems with intermittent oxidation compared to the conventional treatment without aeration. Further improvement of benzotriazole and gabapentin removal by using pure oxygen confirmed potential oxygen limitation in the second column after aeration with air. Ozonation resulted in an enhanced removal of persistent compounds (i.e., carbamazepine, candesartan, olmesartan) and further increased the attenuation of gabapentin, methylbenzotriazole, benzotriazole, and venlafaxine. Diatrizoic acid revealed little degradation in an ozone–MAR hybrid system. Full article
(This article belongs to the Special Issue Water Quality Considerations for Managed Aquifer Recharge Systems)
Figures

Figure 1

Open AccessArticle Dynamics of Domestic Water Consumption in the Urban Area of the Kathmandu Valley: Situation Analysis Pre and Post 2015 Gorkha Earthquake
Water 2017, 9(3), 222; doi:10.3390/w9030222
Received: 30 January 2017 / Revised: 6 March 2017 / Accepted: 10 March 2017 / Published: 17 March 2017
PDF Full-text (2466 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Information regarding domestic water consumption is vital, as the Kathmandu Valley will soon be implementing the Melamchi Water Supply Project; however, updated information on the current situation after the 2015 Gorkha Earthquake (GEQ) is still lacking. We investigated the dynamics of domestic water
[...] Read more.
Information regarding domestic water consumption is vital, as the Kathmandu Valley will soon be implementing the Melamchi Water Supply Project; however, updated information on the current situation after the 2015 Gorkha Earthquake (GEQ) is still lacking. We investigated the dynamics of domestic water consumption pre- and post-GEQ. The piped water supply was short, and consumption varied widely across the Kathmandu Upatyaka Khanepani Limited (KUKL) branches and altitude. The reduction in piped, ground, and jar water consumption and the increase in tanker water consumption post-GEQ appeared to be due to the impact of the GEQ. However, the impact did not appear to be prominent on per capita water consumption, although it was reduced from 117 to 99 L post-GEQ. Piped, ground, and tanker water use were associated with an increase and jar water use was associated with a decrease in water consumption. Despite improvements in quantity, inequality in water consumption and inequity in affordability across wealth status was well established. This study suggests to KUKL the areas of priority where improvements to supply are required, and recommends an emphasis on resuming performance. Policy planners should consider the existing inequity in affordability, which is a major issue in the United Nations Sustainable Development Goals. Full article
Figures

Figure 1

Open AccessArticle Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection
Water 2017, 9(3), 224; doi:10.3390/w9030224
Received: 2 February 2017 / Revised: 6 March 2017 / Accepted: 10 March 2017 / Published: 18 March 2017
PDF Full-text (3521 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data) and individual customer water consumption (AMR
[...] Read more.
This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data) and individual customer water consumption (AMR data). In the first case, reliable forecasting can be used to optimize operations, particularly the pumping schedule, in order to reduce energy-related costs, while in the second case, the comparison between forecast and actual values may support the online detection of anomalies, such as smart meter faults, fraud or possible cyber-physical attacks. Results are presented for a real case: the water distribution network in Milan. Full article
Figures

Figure 1

Open AccessArticle Impact of Short Duration Intense Rainfall Events on Sanitary Sewer Network Performance
Water 2017, 9(3), 225; doi:10.3390/w9030225
Received: 31 May 2016 / Revised: 21 February 2017 / Accepted: 9 March 2017 / Published: 18 March 2017
PDF Full-text (3390 KB) | HTML Full-text | XML Full-text
Abstract
Short duration intense rainfall causes an increase in rainfall derived infiltration and inflow (RDII) into aging sewer networks, which leads to Sanitary Sewer Overflows (SSOs). This study presents a generalised framework for assessing and mitigating the impacts of intense rainfall on sanitary sewer
[...] Read more.
Short duration intense rainfall causes an increase in rainfall derived infiltration and inflow (RDII) into aging sewer networks, which leads to Sanitary Sewer Overflows (SSOs). This study presents a generalised framework for assessing and mitigating the impacts of intense rainfall on sanitary sewer networks. The first part of the proposed framework involves a detailed hydraulic modelling to evaluate the performance of the sewer network. The second part deals with the development of SSO mitigation strategies based on Water Sensitive Urban Design (WSUD) approaches. This paper also demonstrates the application of the first part of the proposed framework for a case study catchment in Melbourne, Australia. The hydraulic performance of the case study sewer network during a wet and a dry year is presented. The analysis found that for the wet year, 11 manholes had sewer overflows, whereas 53 of 57 manholes in the network of 3.2 km had surcharges. Such a study will benefit the water authorities to develop mitigation strategies for controlling SSOs in their sewer systems. Full article
(This article belongs to the Special Issue Urban Drainage and Urban Stormwater Management)
Figures

Figure 1

Open AccessArticle Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia
Water 2017, 9(3), 226; doi:10.3390/w9030226
Received: 17 January 2017 / Revised: 7 March 2017 / Accepted: 15 March 2017 / Published: 20 March 2017
PDF Full-text (6830 KB) | HTML Full-text | XML Full-text
Abstract
Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs) under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5). A graphical user interface was developed that integrates all of the
[...] Read more.
Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs) under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5). A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc.) at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS) values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin) in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5). Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed. Full article
(This article belongs to the Special Issue Adaptation Strategies to Climate Change Impacts on Water Resources)
Figures

Figure 1

Open AccessFeature PaperArticle Quantitative Spatio-Temporal Characterization of Scour at the Base of a Cylinder
Water 2017, 9(3), 227; doi:10.3390/w9030227
Received: 10 January 2017 / Revised: 8 March 2017 / Accepted: 16 March 2017 / Published: 20 March 2017
PDF Full-text (6325 KB) | HTML Full-text | XML Full-text
Abstract
The measurement of the morphologic characteristics of evolving sediment beds around hydraulic structures is crucial for the understanding of the physical processes that drive scour. Although there has been significant progress towards the experimental characterization of the flow field in setups with complex
[...] Read more.
The measurement of the morphologic characteristics of evolving sediment beds around hydraulic structures is crucial for the understanding of the physical processes that drive scour. Although there has been significant progress towards the experimental characterization of the flow field in setups with complex geometries, little has been done with respect to the quantitative investigation of dynamic sediment bed geometry, mainly due to the limited capabilities of conventional instrumentation. Here, a recently developed computer vision technique is applied to obtain high-resolution topographic measurements of the evolving bed at the base of a cylinder during clear water scour, without interrupting the experiment. The topographic data is processed to derive the morphologic characteristics of the bed such as the excavated volume and the slopes of the bed. Subsequently, the rates of scour and the bathymetry at multiple locations are statistically investigated. The results of this investigation are compared with existing flow measurements from previous studies to describe the physical processes that take place inside a developing scour hole. Two distinct temporal phases (initial and development) as well as three spatial regions (front, side and wake) are defined and expressions for the statistical modelling of the bed features are derived. Full article
(This article belongs to the Special Issue Stream Channel Stability, Assessment, Modeling, and Mitigation)
Figures

Figure 1

Open AccessArticle Size Distribution, Surface Coverage, Water, Carbon, and Metal Storage of Thermokarst Lakes in the Permafrost Zone of the Western Siberia Lowland
Water 2017, 9(3), 228; doi:10.3390/w9030228
Received: 13 January 2017 / Revised: 12 March 2017 / Accepted: 14 March 2017 / Published: 21 March 2017
PDF Full-text (3672 KB) | HTML Full-text | XML Full-text
Abstract
Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone
[...] Read more.
Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous, and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon (DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%, 37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from the same territory. However, given that the concentrations of DOC and metals in the smallest lakes (<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to the overall carbon and metal budget may be comparable to, or greater than, their contribution to the water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical measurements in aquatic systems of boreal plains. Full article
(This article belongs to the Special Issue The Use of Remote Sensing in Hydrology)
Figures

Figure 1

Open AccessArticle Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins
Water 2017, 9(3), 229; doi:10.3390/w9030229
Received: 16 December 2016 / Revised: 28 February 2017 / Accepted: 14 March 2017 / Published: 21 March 2017
PDF Full-text (4029 KB) | HTML Full-text | XML Full-text
Abstract
Gridded climate products (GCPs) provide a potential source for representing weather in remote, poor quality or short-term observation regions. The accuracy of three long-term GCPs (Asian Precipitation—Highly-Resolved Observational Data Integration towards Evaluation of Water Resources: APHRODITE, Precipitation Estimation from Remotely Sensed Information using
[...] Read more.
Gridded climate products (GCPs) provide a potential source for representing weather in remote, poor quality or short-term observation regions. The accuracy of three long-term GCPs (Asian Precipitation—Highly-Resolved Observational Data Integration towards Evaluation of Water Resources: APHRODITE, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record: PERSIANN-CDR and National Centers for Environmental Prediction Climate Forecast System Reanalysis: NCEP-CFSR) was analyzed for the Kelantan River Basin (KRB) and Johor River Basin (JRB) in Malaysia from 1983 to 2007. Then, these GCPs were used as inputs into calibrated Soil and Water Assessment Tool (SWAT) models, to assess their capability in simulating streamflow. The results show that the APHRODITE data performed the best in precipitation estimation, followed by the PERSIANN-CDR and NCEP-CFSR datasets. The NCEP-CFSR daily maximum temperature data exhibited a better correlation than the minimum temperature data. For streamflow simulations, the APHRODITE data resulted in strong results for both basins, while the NCEP-CFSR data showed unsatisfactory performance. In contrast, the PERSIANN-CDR data showed acceptable representation of observed streamflow in the KRB, but failed to track the JRB observed streamflow. The combination of the APHRODITE precipitation and NCEP-CFSR temperature data resulted in accurate streamflow simulations. The APHRODITE and PERSIANN-CDR data often underestimated the extreme precipitation and streamflow, while the NCEP-CFSR data produced dramatic overestimations. Therefore, a direct application of NCEP-CFSR data should be avoided in this region. We recommend the use of APHRODITE precipitation and NCEP-CFSR temperature data in modeling of Malaysian water resources. Full article
Figures

Open AccessArticle Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff in Cold Climates
Water 2017, 9(3), 230; doi:10.3390/w9030230
Received: 2 January 2017 / Revised: 10 March 2017 / Accepted: 19 March 2017 / Published: 22 March 2017
PDF Full-text (1089 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents an estimation of the service life of three filters composed of sand and three alternative adsorbents for stormwater treatment according to Norwegian water quality standards for receiving surface waters. The study conducted pilot scale column tests on three adsorbent amended
[...] Read more.
This paper presents an estimation of the service life of three filters composed of sand and three alternative adsorbents for stormwater treatment according to Norwegian water quality standards for receiving surface waters. The study conducted pilot scale column tests on three adsorbent amended filters for treatment of highway runoff in cold climates under high hydraulic loads. The objectives were to evaluate the effect of high hydraulic loads and the application of deicing salts on the performance of these filters. From previous theoretical and laboratory analysis granulated activated charcoal, pine bark, and granulated olivine were chosen as alternative adsorbent materials for the present test. Adsorption performance of the filters was evaluated vis-à-vis four commonly found hazardous metals (Cu, Pb, Ni and Zn) in stormwater. The results showed that the filters were able to pass water at high inflow rates while achieving high removal. Among the filters, the filters amended with olivine or pine bark provided the best performance both in short and long-term tests. The addition of NaCl (1 g/L) did not show any adverse impact on the desorption of already adsorbed metals, except for Ni removal by the charcoal amended filter, which was negatively impacted by the salt addition. The service life of the filters was found to be limited by zinc and copper, due to high concentrations observed in local urban runoff, combined with moderate affinity with the adsorbents. It was concluded that both the olivine and the pine bark amended filter should be tested in full-scale conditions. Full article
(This article belongs to the Special Issue Additives in Stormwater Filters for Enhanced Pollutant Removal)
Figures

Figure 1

Open AccessArticle Tank Cascade Systems as a Sustainable Measure of Watershed Management in South Asia
Water 2017, 9(3), 231; doi:10.3390/w9030231
Received: 16 January 2017 / Revised: 10 March 2017 / Accepted: 15 March 2017 / Published: 22 March 2017
PDF Full-text (4810 KB) | HTML Full-text | XML Full-text
Abstract
In the dry zone of Sri Lanka, human-made reservoirs have served for the collection, storage and distribution of rainfall and runoff and provide irrigation water for the cultivation of paddy for 2000 years. This paper introduces the layout and function of four traditional
[...] Read more.
In the dry zone of Sri Lanka, human-made reservoirs have served for the collection, storage and distribution of rainfall and runoff and provide irrigation water for the cultivation of paddy for 2000 years. This paper introduces the layout and function of four traditional village tank cascade systems in the hinterland of Anuradhapura, located in the North Central Province in Sri Lanka. In contrast to large-scale tanks, these systems are managed and maintained by local villagers. Sedimentological data from two tanks provide information about processes leading to the formation of these deposits and their post-sedimentary, partly human-induced alterations. The presented data support the hypothesis, that the decentral managed tanks were not affected by severe erosion after the abandonment of the ancient capital Anuradhapura in the 11th century CE, a period that was characterized by socio-economic instability and increased climatic fluctuations. Presented results underline the significance of small-scale tank cascades systems to buffer the effects of climatic fluctuations and point to their potential as a cornerstone in coping with future climate change in the dry zone of Sri Lanka. Full article
(This article belongs to the Special Issue Resilient Water Management in Agriculture)
Figures

Figure 1

Open AccessArticle Why European Entrepreneurs in the Water and Waste Management Sector Are Willing to Go beyond Environmental Legislation
Water 2017, 9(3), 151; doi:10.3390/w9030151
Received: 17 January 2017 / Revised: 13 February 2017 / Accepted: 17 February 2017 / Published: 23 February 2017
PDF Full-text (816 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Sustainability in the water sector in Europe is a major concern, and compliance with the current legislation alone does not seem to be enough to face major challenges like climate change or population growth and concentration. The greatest potential for improvement appears when
[...] Read more.
Sustainability in the water sector in Europe is a major concern, and compliance with the current legislation alone does not seem to be enough to face major challenges like climate change or population growth and concentration. The greatest potential for improvement appears when companies decide to take a step forward and go beyond environmental legislation. This study focuses on the environmental responsibility (ER) of European small and medium-sized enterprises (SMEs) in the water and waste management sector and analyzes the drivers that lead these firms to the adoption of more sustainable practices. Our results show that up to 40% of European SMEs within this industry display environmental responsibility. Market pull has a low incidence in encouraging ER, while values and the strategic decisions of entrepreneurs seem decisive. Policy makers should prioritize subsidies over fiscal incentives because they show greater potential to promote the adoption of environmental responsibility among these firms. Full article
Figures

Figure 1

Open AccessArticle An EMD-Based Chaotic Least Squares Support Vector Machine Hybrid Model for Annual Runoff Forecasting
Water 2017, 9(3), 153; doi:10.3390/w9030153
Received: 23 November 2016 / Revised: 16 February 2017 / Accepted: 16 February 2017 / Published: 23 February 2017
PDF Full-text (3643 KB) | HTML Full-text | XML Full-text
Abstract
Accurate forecasting of annual runoff is necessary for water resources management. However, a runoff series consists of complex nonlinear and non-stationary characteristics, which makes forecasting difficult. To contribute towards improved prediction accuracy, a novel hybrid model based on the empirical mode decomposition (EMD)
[...] Read more.
Accurate forecasting of annual runoff is necessary for water resources management. However, a runoff series consists of complex nonlinear and non-stationary characteristics, which makes forecasting difficult. To contribute towards improved prediction accuracy, a novel hybrid model based on the empirical mode decomposition (EMD) for annual runoff forecasting is proposed and applied in this paper. Firstly, the original annual runoff series is decomposed into a limited number of intrinsic mode functions (IMFs) and one trend term based on the EMD, which makes the series stationary. Secondly, it will be forecasted by a least squares support vector machine (LSSVM) when the IMF component possesses chaotic characteristics, and simulated by a polynomial method when it does not. In addition, the reserved trend term is predicted by a Gray Model. Finally, the ensemble forecast for the original runoff series is formulated by combining the prediction results of the modeled IMFs and the trend term. Qualified rate (QR), root mean square errors (RMSE), mean absolute relative errors (MARE), and mean absolute errors (MAE) are used as the comparison criteria. The results reveal that the EMD-based chaotic LSSVM (EMD-CLSSVM) hybrid model is a superior alternative to the CLSSVM hybrid model for forecasting annual runoff at Shangjingyou station, reducing the RMSE, MARE, and MAE by 39%, 28.6%, and 25.6%, respectively. To further illustrate the stability and representativeness of the EMD-CLSSVM hybrid model, runoff data at three additional sites, Zhaishang, Fenhe reservoir, and Lancun stations, were applied to verify the model. The results show that the EMD-CLSSVM hybrid model proved its applicability with high prediction precision. This approach may be used in similar hydrological conditions. Full article
Figures

Figure 1

Open AccessArticle Relating Watershed Characteristics to Elevated Stream Escherichia coli Levels in Agriculturally Dominated Landscapes: An Iowa Case Study
Water 2017, 9(3), 154; doi:10.3390/w9030154
Received: 3 January 2017 / Revised: 19 February 2017 / Accepted: 20 February 2017 / Published: 23 February 2017
PDF Full-text (1898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Fecal Indicator Bacteria (FIB) such as Escherichia coli (E. coli) are a leading cause of surface water impairments in the United States. However, the relative impacts of different watershed characteristics on microbial water quality in agriculturally dominated watersheds are unclear. Spatial
[...] Read more.
Fecal Indicator Bacteria (FIB) such as Escherichia coli (E. coli) are a leading cause of surface water impairments in the United States. However, the relative impacts of different watershed characteristics on microbial water quality in agriculturally dominated watersheds are unclear. Spatial and statistical analyses were utilized to examine relationships between watershed characteristics and FIB and a multiple regression model was created. Geometric mean E. coli concentration data were obtained for 395 ambient water quality monitoring locations in Iowa. Watersheds were delineated for thirty randomly selected monitoring locations and drainage areas ranged from 93 to 1.1 million hectares. Watershed characteristics examined include area, presence of animal units (open feed lots and confinements), percent of watershed area receiving manure application, presence of point-source discharges, and land cover. The results from the analyses reveal that the presence of animal feeding operations and agriculture, wetland, and woody vegetation land covers are the most influential watershed characteristics regarding E. coli concentration. A significant positive correlation was identified between E. coli concentration and agriculture while significant negative correlations were identified with animal feeding operations and wetland and woody vegetation. Establishing relationships between watershed characteristics and presence of E. coli is needed to identify dominant watershed characteristics contributing to pathogen water impairments and to prioritize remediation efforts. Full article
Figures

Figure 1

Open AccessArticle Temporal Downscaling of Crop Coefficients for Winter Wheat in the North China Plain: A Case Study at the Gucheng Agro-Meteorological Experimental Station
Water 2017, 9(3), 155; doi:10.3390/w9030155
Received: 23 November 2016 / Accepted: 16 February 2017 / Published: 23 February 2017
PDF Full-text (3536 KB) | HTML Full-text | XML Full-text
Abstract
The crop coefficient (Kc) is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper
[...] Read more.
The crop coefficient (Kc) is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper No. 56), which broadly treats Kc as a function of four crop-growing stages. However, the distinctive physiological characteristics of overwintering crops, such as winter wheat (Triticum aestivum L.), which is extensively planted in the North China Plain (NCP), are not addressed in this method. In this study, we propose a stage-wise method that accounts for Kc variations for winter wheat at each critical phenological stage, thereby estimating Kc at finer temporal scales. Compared with the conventional FAO method, the proposed stage-wise method successfully captures the bimodal pattern in Kc time series for winter wheat, which is shown at both ten-day and phenological time scales. In addition, the accuracies of the proposed stage-wise Kc method and the FAO method were evaluated using micro-meteorological measurements of ETa collected at the Gucheng agrometeorological experimental station in the NCP. Using a leave-one-out strategy, the evaluation revealed that the stage-wise method significantly outperformed the FAO method at both daily and critical phenological time scales, with root-mean-square errors in ETa for the stage-wise method and the FAO method being 0.07 mm·day-1 and 0.16 mm·day-1, respectively, at the daily time scale, and 0.01 mm·day-1 and 0.27 mm·day-1 at the critical phenological time scale. Generally, the FAO method underestimates ETa during the initial stage and overestimates ETa during both the development and mid-season stages. It is shown that the proposed stage-wise method is important for the water-stressed NCP where precision irrigation is highly desirable, especially during the critical phenological stages. Results from this study provide insight into accurate estimation of water requirements for winter wheat at phenological time scales. Full article
Figures

Figure 1

Open AccessArticle Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland
Water 2017, 9(3), 156; doi:10.3390/w9030156
Received: 30 December 2016 / Accepted: 21 February 2017 / Published: 23 February 2017
PDF Full-text (8057 KB) | HTML Full-text | XML Full-text
Abstract
Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland
[...] Read more.
Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021–2050, and far future: 2071– 2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models—Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment—European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment. Full article
Figures

Figure 1

Open AccessArticle Modeling Crop Water Productivity Using a Coupled SWAT–MODSIM Model
Water 2017, 9(3), 157; doi:10.3390/w9030157
Received: 30 December 2016 / Revised: 9 February 2017 / Accepted: 17 February 2017 / Published: 24 February 2017
PDF Full-text (5592 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic
[...] Read more.
This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requirements instead of constant time series of demand were considered. As the cereal production of KRB plays a major role in supplying the food market of Iran, it is necessary to understand the crop yield-water relations for irrigated wheat and maize in the lower part of KRB (LKRB) where most of the irrigated agricultural plains are located. Irrigated wheat and maize yields (Y) and consumptive water use (AET) were modeled with uncertainty analysis at a subbasin level for 1990–2010. Simulated Y and AET were used to calculate crop water productivity (CWP). The coupled SWAT–MODSIM approach improved the accuracy of SWAT outputs by considering the water allocation derived from MODSIM. The results indicated that the highest CWP across this region was 1.31 kg·m−3 and 1.13 kg·m−3 for wheat and maize, respectively; and the lowest was less than 0.62 kg·m−3 and 0.58 kg·m−3. A close linear relationship was found for CWP and yield. The results showed a continuing increase for AET over the years while CWP peaks and then declines. This is evidence of the existence of a plateau in CWP as AET continues to increase and evidence of the fact that higher AET does not necessarily result in a higher yield. Full article
Figures

Figure 1

Open AccessArticle Statistical Dependence of Pipe Breaks on Explanatory Variables
Water 2017, 9(3), 158; doi:10.3390/w9030158
Received: 28 December 2016 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 24 February 2017
PDF Full-text (6103 KB) | HTML Full-text | XML Full-text
Abstract
Aging infrastructure is the main challenge currently faced by water suppliers. Estimation of assets lifetime requires reliable criteria to plan assets repair and renewal strategies. To do so, pipe break prediction is one of the most important inputs. This paper analyzes the statistical
[...] Read more.
Aging infrastructure is the main challenge currently faced by water suppliers. Estimation of assets lifetime requires reliable criteria to plan assets repair and renewal strategies. To do so, pipe break prediction is one of the most important inputs. This paper analyzes the statistical dependence of pipe breaks on explanatory variables, determining their optimal combination and quantifying their influence on failure prediction accuracy. A large set of registered data from Madrid water supply network, managed by Canal de Isabel II, has been filtered, classified and studied. Several statistical Bayesian models have been built and validated from the available information with a technique that combines reference periods of time as well as geographical location. Statistical models of increasing complexity are built from zero up to five explanatory variables following two approaches: a set of independent variables or a combination of two joint variables plus an additional number of independent variables. With the aim of finding the variable combination that provides the most accurate prediction, models are compared following an objective validation procedure based on the model skill to predict the number of pipe breaks in a large set of geographical locations. As expected, model performance improves as the number of explanatory variables increases. However, the rate of improvement is not constant. Performance metrics improve significantly up to three variables, but the tendency is softened for higher order models, especially in trunk mains where performance is reduced. Slight differences are found between trunk mains and distribution lines when selecting the most influent variables and models. Full article
Figures

Figure 1

Open AccessArticle The Spatial and Temporal Contribution of Glacier Runoff to Watershed Discharge in the Yarkant River Basin, Northwest China
Water 2017, 9(3), 159; doi:10.3390/w9030159
Received: 8 November 2016 / Revised: 17 January 2017 / Accepted: 17 February 2017 / Published: 24 February 2017
PDF Full-text (11960 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, a glacial module based on an enhanced temperature-index approach was successfully introduced into the Soil and Water Assessment Tool (SWAT) model to simulate the glacier runoff and water balance of a glacierized watershed, the mountainous region of the Yarkant River
[...] Read more.
In this paper, a glacial module based on an enhanced temperature-index approach was successfully introduced into the Soil and Water Assessment Tool (SWAT) model to simulate the glacier runoff and water balance of a glacierized watershed, the mountainous region of the Yarkant River Basin (YRB) in Karakoram. Calibration and validation of the SWAT model were based on comparisons between the simulated and observed discharge with a monthly temporal resolution from 1961 to 2011 for the Kaqun hydrological station. The results reaffirmed the viability of the approach for simulating glacier runoff, as evidenced by a Nash–Sutcliff Efficiency (NSE) of 0.82–0.86 as well as a percentage bias (PBIAS) of −4.5% to 2.4%, for the calibration and validation periods, respectively. Over the last 50 years, the total discharge and glacier runoff both exhibited increasing trends with 0.031 × 109 m3·a−1 and 0.011 × 109 m3·a−1. The annual glacier runoff contribution to the streamflow was between 42.3% and 64.5%, with an average of 51.6%, although the glaciers accounted for only 12.6% of the watershed drainage area in the mountainous YRB. The monthly contribution of the glacier runoff ranged from 11.0% in April to 62.1% in August, and the glacier runoff from June to September accounted for about 86.3% of the annual glacier runoff. Runoff from the mountainous regions above 5000 m a.s.l. accounted for 70.5% of the total discharge, with glacier runoff contributions being approximately 46.4%. Full article
Figures

Figure 1

Open AccessArticle Groundwater Modeling and Sustainability of a Transboundary Hardrock–Alluvium Aquifer in North Oman Mountains
Water 2017, 9(3), 161; doi:10.3390/w9030161
Received: 8 December 2016 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 24 February 2017
PDF Full-text (6621 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study aims at modeling groundwater flow using MODFLOW in a transboundary hardrock–alluvium aquifer, located in northwestern Oman. A three-dimensional stratigraphic model of the study area representing the vertical and spatial extent of four principal hydro-geologic units (specifically, the Hawasina, ophiolite, Tertiary and
[...] Read more.
This study aims at modeling groundwater flow using MODFLOW in a transboundary hardrock–alluvium aquifer, located in northwestern Oman. A three-dimensional stratigraphic model of the study area representing the vertical and spatial extent of four principal hydro-geologic units (specifically, the Hawasina, ophiolite, Tertiary and alluvium) was generated using data collected from hundreds drilled borehole logs. Layer elevations and materials for four layers grid cells were taken from the generated stratigraphic model in which the materials and elevations were inherited from the stratigraphic model that encompasses the cell. This process led to accurate grid so that the developed groundwater conceptual model was mapped to simulate the groundwater flow and to estimate groundwater balance components and sustainable groundwater extraction for the October 1996 to September 2013 period. Results show that the long-term lateral groundwater flux ranging from 4.23 to 11.69 Mm3/year, with an average of 5.67 Mm3/year, drains from the fractured eastern ophiolite mountains into the alluvial zone. Moreover, the long-term regional groundwater sustainable groundwater extraction is 18.09 Mm3/year for 17 years, while it is, respectively, estimated as 14.51, 16.31, and 36.00 Mm3/year for dry, normal, and wet climate periods based on standardized precipitation index (SPI) climate condition. Considering a total difference in groundwater levels between eastern and western points of the study area on the order of 228 m and a 12-year monthly calibration period (October 1996 to September 2008), a root mean squared error (RMSE) in predicted groundwater elevation of 2.71 m is considered reasonable for the study area characterized by remarkable geological and hydrogeological diversity. A quantitative assessment of the groundwater balance components and particularly sustainable groundwater extraction for the different hydrological period would help decision makers to better understand the water resources in the Al-Buraimi region. In addition, it would assist decision makers to improve existing strategies to enhance the decision making for future developments. Full article
Figures

Figure 1

Open AccessArticle Multi-Objective Optimization for Analysis of Changing Trade-Offs in the Nepalese Water–Energy–Food Nexus with Hydropower Development
Water 2017, 9(3), 162; doi:10.3390/w9030162
Received: 29 November 2016 / Accepted: 14 February 2017 / Published: 24 February 2017
PDF Full-text (7112 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
While the water–energy–food nexus approach is becoming increasingly important for more efficient resource utilization and economic development, limited quantitative tools are available to incorporate the approach in decision-making. We propose a spatially explicit framework that couples two well-established water and power system models
[...] Read more.
While the water–energy–food nexus approach is becoming increasingly important for more efficient resource utilization and economic development, limited quantitative tools are available to incorporate the approach in decision-making. We propose a spatially explicit framework that couples two well-established water and power system models to develop a decision support tool combining multiple nexus objectives in a linear objective function. To demonstrate our framework, we compare eight Nepalese power development scenarios based on five nexus objectives: minimization of power deficit, maintenance of water availability for irrigation to support food self-sufficiency, reduction in flood risk, maintenance of environmental flows, and maximization of power export. The deterministic multi-objective optimization model is spatially resolved to enable realistic representation of the nexus linkages and accounts for power transmission constraints using an optimal power flow approach. Basin inflows, hydropower plant specifications, reservoir characteristics, reservoir rules, irrigation water demand, environmental flow requirements, power demand, and transmission line properties are provided as model inputs. The trade-offs and synergies among these objectives were visualized for each scenario under multiple environmental flow and power demand requirements. Spatially disaggregated model outputs allowed for the comparison of scenarios not only based on fulfillment of nexus objectives but also scenario compatibility with existing infrastructure, supporting the identification of projects that enhance overall system efficiency. Though the model is applied to the Nepalese nexus from a power development perspective here, it can be extended and adapted for other problems. Full article
Figures

Figure 1

Open AccessArticle Physically, Fully-Distributed Hydrologic Simulations Driven by GPM Satellite Rainfall over an Urbanizing Arid Catchment in Saudi Arabia
Water 2017, 9(3), 163; doi:10.3390/w9030163
Received: 4 December 2016 / Accepted: 22 February 2017 / Published: 24 February 2017
PDF Full-text (9019 KB) | HTML Full-text | XML Full-text
Abstract
A physically-based, distributed-parameter hydrologic model was used to simulate a recent flood event in the city of Hafr Al Batin, Saudi Arabia to gain a better understanding of the runoff generation and spatial distribution of flooding. The city is located in a very
[...] Read more.
A physically-based, distributed-parameter hydrologic model was used to simulate a recent flood event in the city of Hafr Al Batin, Saudi Arabia to gain a better understanding of the runoff generation and spatial distribution of flooding. The city is located in a very arid catchment. Flooding of the city is influenced by the presence of three major tributaries that join the main channel in and around the heavily urbanized area. The Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall product was used due to lack of detailed ground observations. To overcome the heavy computational demand, the catchment was divided into three sub-catchments with a variable model grid resolution. The model was run on three subcatchments separately, without losing hydrologic connectivity among the sub-catchments. Uncalibrated and calibrated satellite products were used producing different estimates of the predicted runoff. The runoff simulations demonstrated that 85% of the flooding was generated in the urbanized portion of the catchments for the simulated flood. Additional model simulations were performed to understand the roles of the unique channel network in the city flooding. The simulations provided insights into the best options for flood mitigation efforts. The variable model grid size approach allowed using physically-based, distributed models—such as the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model used in this study—on large basins that include urban centers that need to be modeled at very high resolutions. Full article
Figures

Figure 1

Open AccessArticle Groundwater Simulations and Uncertainty Analysis Using MODFLOW and Geostatistical Approach with Conditioning Multi-Aquifer Spatial Covariance
Water 2017, 9(3), 164; doi:10.3390/w9030164
Received: 12 December 2016 / Accepted: 20 February 2017 / Published: 24 February 2017
PDF Full-text (8696 KB) | HTML Full-text | XML Full-text
Abstract
This study presents an approach for obtaining limited sets of realizations of hydraulic conductivity (K) of multiple aquifers using simulated annealing (SA) simulation and spatial correlations among aquifers to simulate realizations of hydraulic heads and quantify their uncertainty in the Pingtung Plain, Taiwan.
[...] Read more.
This study presents an approach for obtaining limited sets of realizations of hydraulic conductivity (K) of multiple aquifers using simulated annealing (SA) simulation and spatial correlations among aquifers to simulate realizations of hydraulic heads and quantify their uncertainty in the Pingtung Plain, Taiwan. The proposed approach used the SA algorithm to generate large sets of natural logarithm hydraulic conductivity (ln(K)) realizations in each aquifer based on spatial correlations among aquifers. Moreover, small sets of ln(K) realizations were obtained from large sets of realizations by ranking the differences among cross-variograms derived from the measured ln(K) and the simulated ln(K) realizations between the aquifer pair Aquifer 1 and Aquifer 2 (hereafter referred to as Aquifers 1–2) and the aquifer pair Aquifer 2 and Aquifer 3 (hereafter referred to as Aquifers 2–3), respectively. Additionally, the small sets of realizations of the hydraulic conductivities honored the horizontal spatial variability and distributions of the hydraulic conductivities among aquifers to model groundwater precisely. The uncertainty analysis of the 100 combinations of simulated realizations of hydraulic conductivity was successfully conducted with generalized likelihood uncertainty estimation (GLUE). The GLUE results indicated that the proposed approach could minimize simulation iterations and uncertainty, successfully achieve behavioral simulations when reduced between calibration and evaluation runs, and could be effectively applied to evaluate uncertainty in hydrogeological properties and groundwater modeling, particularly in those cases which lack three-dimensional data sets yet have high heterogeneity in vertical hydraulic conductivities. Full article
Figures

Figure 1

Open AccessArticle Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin
Water 2017, 9(3), 165; doi:10.3390/w9030165
Received: 11 January 2017 / Revised: 20 February 2017 / Accepted: 22 February 2017 / Published: 25 February 2017
PDF Full-text (3527 KB) | HTML Full-text | XML Full-text
Abstract
Melt runoff (MR) contributes significantly to the total runoff in many river basins. Knowledge of the meltwater contribution (MCR, defined as the ratio of MR to the total runoff) to the total runoff benefits water resource management and flood control. A process-based land
[...] Read more.
Melt runoff (MR) contributes significantly to the total runoff in many river basins. Knowledge of the meltwater contribution (MCR, defined as the ratio of MR to the total runoff) to the total runoff benefits water resource management and flood control. A process-based land surface model, Noah-MP, was used to investigate the spatiotemporal characteristics of MR and MCR in the Upper Changjiang River (as known as Yangtze River) Basin (UCRB) located in southwestern China. The model was first calibrated and validated using snow cover fraction (SCF), runoff, and evapotranspiration (ET) data. The calibrated model was then used to perform two numerical experiments from 1981 to 2010: control experiment that considers MR and an alternative experiment that MR is removed. The difference between two experiments was used to quantify MR and MCR. The results show that in the entire UCRB, MCR was approximately 2.0% during the study period; however, MCR exhibited notable spatiotemporal variability. Four sub-regions over the Qinghai-Tibet Plateau (QTP) showed significant annual MCR ranging from 3.9% to 6.0%, while two sub-regions in the low plain regions showed negligible annual MCR. The spatial distribution of MCR was generally consistent with the distribution of glaciers and elevation distribution. Mann-Kendall (M-K) tests of the long-term annual MCR indicated that the four sub-regions in QTP exhibited increasing trends ranging from 0.01%/year to 0.21%/year during the study period but only one displayed statistically significant trend. No trends were found for the peak time (PT) of MR and MCR, in contrast, advancing trend were observed for the center time (CT) of MR, ranging from 0.01 months/year to 0.02 months/year. These trends are related to the changes of air temperature and precipitation in the study area. Full article
Figures

Figure 1

Open AccessArticle Detection of Viable Bacteria during Sludge Ozonation by the Combination of ATP Assay with PMA-Miseq Sequencing
Water 2017, 9(3), 166; doi:10.3390/w9030166
Received: 6 December 2016 / Revised: 6 February 2017 / Accepted: 21 February 2017 / Published: 26 February 2017
PDF Full-text (1706 KB) | HTML Full-text | XML Full-text
Abstract
Using sludge obtained from municipal sewage treatment plants, the response of viable bacterial populations during the sludge ozonation process was investigated by a combination of adenosine triphosphate (ATP) assay and propidium monoazide (PMA)-Miseq sequencing. The ATP assay was first optimized for application on
[...] Read more.
Using sludge obtained from municipal sewage treatment plants, the response of viable bacterial populations during the sludge ozonation process was investigated by a combination of adenosine triphosphate (ATP) assay and propidium monoazide (PMA)-Miseq sequencing. The ATP assay was first optimized for application on sludge samples by adjusting the sludge solid contents and reaction time. PMA-modified polymerase chain reaction (PCR) was also optimized by choosing the suitable final PMA concentration. The quantity and composition of viable bacterial populations during sludge ozonation were further elucidated using the optimized ATP and PMA-modified PCR methods. The results indicated that after the sludge was exposed to ozone (O3) at 135 mg·O3/g total suspended solids (TSS), the viable biomass displayed a substantial decrease, with a reduction rate reaching 70.89%. The composition of viable bacterial communities showed a faster succession, showing that an ozone dosage of 114 mg·O3/g TSS is enough to significantly change the viable bacterial population structure. Floc-forming genera, such as Zoogloea, Ferruginibacter, Thauera and Turneriella, are sensitive to ozonation, while the relative abundances of some functional bacterial genera, including SM1A02, Nitrospira and Candidatus Accumulibacter, remained constant or increased in the viable bacterial population during sludge ozonation, indicating that they are more resistant to ozonation. Full article
Figures

Figure 1

Open AccessArticle Influence Mechanisms of Rainfall and Terrain Characteristics on Total Nitrogen Losses from Regosol
Water 2017, 9(3), 167; doi:10.3390/w9030167
Received: 25 October 2016 / Revised: 21 December 2016 / Accepted: 21 February 2017 / Published: 3 March 2017
PDF Full-text (3777 KB) | HTML Full-text | XML Full-text
Abstract
The upper reach of the Yangtze River is an ecologically sensitive region where water loss, soil erosion, and nonpoint source (NPS) pollution are serious issues. In this drainage area, regosol is the most widely distributed soil type. Cultivation on regosol is extensive and
[...] Read more.
The upper reach of the Yangtze River is an ecologically sensitive region where water loss, soil erosion, and nonpoint source (NPS) pollution are serious issues. In this drainage area, regosol is the most widely distributed soil type. Cultivation on regosol is extensive and total nitrogen (TN) has become a common NPS pollutant. Artificial rainfall experiments were conducted to reveal the influence mechanisms of rainfall and terrain on TN losses from regosol. The results showed that there were positive correlations between precipitations and TN loads but negative ones between precipitations and TN concentrations. Furthermore, negative correlations were more obvious on fields with slopes of 5° and 25° than on other slopes. With increasing rainfall intensity, TN loads rose simultaneously. However, TN concentration in runoff-yielding time presented a decline over time. As far as terrain was concerned, TN loads grew generally but not limitlessly when slopes increased. Similarly, TN concentrations also rose with rising slopes; upward trends were more obvious for steeper slopes. Furthermore, the initial runoff-yielding time became longer for steeper slopes and the differences under various rainfall intensity conditions diminished gradually. Full article
Figures

Figure 1

Open AccessArticle Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River
Water 2017, 9(3), 168; doi:10.3390/w9030168
Received: 2 December 2016 / Revised: 20 February 2017 / Accepted: 22 February 2017 / Published: 27 February 2017
PDF Full-text (4477 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport
[...] Read more.
The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs), cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion. Full article
Figures

Figure 1

Open AccessArticle Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China
Water 2017, 9(3), 169; doi:10.3390/w9030169
Received: 21 December 2016 / Revised: 17 February 2017 / Accepted: 22 February 2017 / Published: 27 February 2017
PDF Full-text (3682 KB) | HTML Full-text | XML Full-text
Abstract
Intensive agricultural activities in the Hetao irrigation district have severely degraded local aquatic ecosystems and water quality, and Ulansuhai Lake is now the most rapidly degrading eutrophic lake in China. A better understanding of the hydro-agronomic and pollutant transport processes in the area
[...] Read more.
Intensive agricultural activities in the Hetao irrigation district have severely degraded local aquatic ecosystems and water quality, and Ulansuhai Lake is now the most rapidly degrading eutrophic lake in China. A better understanding of the hydro-agronomic and pollutant transport processes in the area is thus urgently needed. This study simulated monthly streamflow, total nitrogen (TN) and total phosphorus (TP) for the Hetao irrigation district using the Soil and Water Assessment Tool (SWAT) to evaluate the nutrient load, source areas, and hydrological pathways. The Nash-Sutcliffe efficiency (NSE) values obtained for the streamflow simulations were 0.75 and 0.78 for the calibration and evaluation periods, respectively. The SWAT model captured the temporal variation in streamflow (R2 > 0.8) for two periods; the NSE values for the TN and TP loads were 0.63 and 0.64 for the calibration period and 0.48 and 0.42 for the evaluation period, respectively. The predicted monthly TN load was correlated with irrigation (r = 0.61) and the monthly TP load with precipitation (r = 0.89), indicating that nitrogen transport is primarily associated with soil leaching and groundwater flow, and phosphorus is primarily transported by sediments caused by rainfall erosion. A case study of split nitrogen fertilizer applications demonstrated reduced annual TN load by as much as 13% in one year. Fertilization timing also affects the load in different pathways especially in lateral subsurface flow and shallow groundwater. Better agricultural management could thus reduce nitrogen losses, and buffer strips could minimize phosphorus transport. Full article
Figures

Figure 1

Open AccessArticle Variability of Darcian Flux in the Hyporheic Zone at a Natural Channel Bend
Water 2017, 9(3), 170; doi:10.3390/w9030170
Received: 13 December 2016 / Revised: 11 February 2017 / Accepted: 12 February 2017 / Published: 27 February 2017
PDF Full-text (7180 KB) | HTML Full-text | XML Full-text
Abstract
Channel bends are one of the most important characteristic features of natural streams. These bends often create the conditions for a hyporheic zone, which has been recognized as a critical component of stream ecosystems. The streambed vertical hydraulic conductivity (Kv),
[...] Read more.
Channel bends are one of the most important characteristic features of natural streams. These bends often create the conditions for a hyporheic zone, which has been recognized as a critical component of stream ecosystems. The streambed vertical hydraulic conductivity (Kv), vertical hydraulic gradient (VHG) and Darcian flux (DF) in the hyporheic zone were estimated at 61 locations along a channel bend of the Beiluo River during July 2015 and January 2016. All the streambed attributes showed great spatial variability along the channel bend. Both upward fluxes and downward fluxes occurred during the two test periods, most of studied stream sections were controlled by downwelling, indicating stream water discharge into the subsurface. The average downward flux was higher at the downstream side than at the upstream side of the channel bend, especially in July 2015. The distribution of streambed sediment grain size has a significant influence on the variability of Kv; high percentages of silt and clay sediments generally lead to low Kv values. Higher Kv at the depositional left bank at the upstream site shifted toward the erosional right bank at the downstream site, with Kv values positively correlated with the water depth. This study suggested that the variabilities of Kv and VHG were influenced by the stream geomorphology and that the distribution of Kv was inversely related, to a certain extent, to the distribution of VHG across the channel bend. Kv and VHG were found to have opposite effects on the DF, and the close relationship between Kv and DF indicated that the water fluxes were mainly controlled by Kv. Full article
Figures

Figure 1

Open AccessArticle Impact of Groundwater Level on Nitrate Nitrogen Accumulation in the Vadose Zone Beneath a Cotton Field
Water 2017, 9(3), 171; doi:10.3390/w9030171
Received: 27 July 2016 / Revised: 22 February 2017 / Accepted: 24 February 2017 / Published: 28 February 2017
PDF Full-text (7067 KB) | HTML Full-text | XML Full-text
Abstract
In this study, the impacts of groundwater level on nitrate nitrogen accumulation in the vadose zone of a cotton field were investigated. Experiments were conducted in a cotton field at the CAS Ecological Agricultural Experiment Station in Nanpi from 2008 to 2010. A
[...] Read more.
In this study, the impacts of groundwater level on nitrate nitrogen accumulation in the vadose zone of a cotton field were investigated. Experiments were conducted in a cotton field at the CAS Ecological Agricultural Experiment Station in Nanpi from 2008 to 2010. A vertical observation well was drilled, and time-domain reflectometry probes and soil solution extractors were installed every 50 cm in the walls of the well to a depth of 5 m. The soil water content was monitored, and soil solution samples were obtained and analyzed every six days throughout the growing seasons during the three studied years. Additionally, a water consumption experiment was conducted, and the topsoil water content and leaf area index were measured in the cotton field. The resulting data were used to estimate parameters for use in a soil hydraulic and nitrate nitrogen movement model, and cotton evapotranspiration was calculated using the Penman–Monteith method. Groundwater level increases and decreases of ±4 m were simulated during a ten-year period using HYDRUS-1D. The results showed significant nitrate nitrogen accumulation in the vadose zone when the groundwater level remained unchanged or decreased, with increased accumulation as the groundwater depth increased. Additionally, increased precipitation and a deeper groundwater level resulted in greater nitrate nitrogen leaching in the cotton root zone. Therefore, irrigation and fertilization strategies should be adjusted based on precipitation conditions and groundwater depth. Full article
Figures

Figure 1

Open AccessArticle A Short-Term Water Demand Forecasting Model Using a Moving Window on Previously Observed Data
Water 2017, 9(3), 172; doi:10.3390/w9030172
Received: 13 January 2017 / Revised: 14 February 2017 / Accepted: 24 February 2017 / Published: 28 February 2017
PDF Full-text (3646 KB) | HTML Full-text | XML Full-text
Abstract
In this article, a model for forecasting water demands over a 24-h time window using solely a pair of coefficients whose value is updated at every forecasting step is presented. The first coefficient expresses the ratio between the average water demand over the
[...] Read more.
In this article, a model for forecasting water demands over a 24-h time window using solely a pair of coefficients whose value is updated at every forecasting step is presented. The first coefficient expresses the ratio between the average water demand over the 24 h that follow the time the forecast is made and the average water demand over the 24 h that precede it. The second coefficient expresses the relationship between the average water demand in a generic hour falling within the 24-h forecasting period and the average water demand over that period. These coefficients are estimated using the information available in the weeks prior to the time of forecasting and, therefore, the model does not require any actual calibration process. The length of the time series necessary to implement the model is thus just a few weeks (3–4 weeks) and the model can be parameterized and used without there being any need to collect hourly water demand data for long periods. The application of the model to a real-life case and a comparison with results provided by another model already proposed in the scientific literature show it to be effective, robust, and easy to use. Full article
Figures

Figure 1

Open AccessArticle Effective Design and Planning Specification of Low Impact Development Practices Using Water Management Analysis Module (WMAM): Case of Malaysia
Water 2017, 9(3), 173; doi:10.3390/w9030173
Received: 14 December 2016 / Revised: 14 February 2017 / Accepted: 25 February 2017 / Published: 28 February 2017
PDF Full-text (1865 KB) | HTML Full-text | XML Full-text
Abstract
Developers are increasingly looking for the best management practices to reduce the risk of floods in rapidly growing urban areas. Low impact development (LID) is regarded as one of the most suitable solutions for urban stormwater management and thus the U.S. EPA’s (Environmental
[...] Read more.
Developers are increasingly looking for the best management practices to reduce the risk of floods in rapidly growing urban areas. Low impact development (LID) is regarded as one of the most suitable solutions for urban stormwater management and thus the U.S. EPA’s (Environmental Protection Agency) SWMM5.1 (Storm Water Management Model) added the hydrological simulation function for LID structures in 2009. However, SWMM5.1 cannot consider the optimal or best physical specifications of LID design and planning fitted to a study area, nor can it instantly derive the best combination for multiple LID designs and plans. Therefore, in this study, a web-based decision support system (DSS) for the EPA’s SWMM 5.1, referred to as the Water Management Analysis Module (WMAM) is used to decide the most effective specifications of design and planning parameters for LID structure. This study was carried out over an urban catchment of University Technology Malaysia campus located in Johor, Malaysia. The hydrologic cycles with and without LID were simulated using EPA SWMM5.1. The sensitivity analysis and multiple scenario analysis were performed using WMAM. As a result, the effective specification of LID design parameters indicates that peak flow is reduced to 20.95% and 17.5% for two sub-catchments, S1 (highest by area) and S6 (lowest by area) by installing an LID structure. Thus, this study provides a tool for the best solution for what values for physical parameters will be the best for a specified LID type and what capacities can achieve the particular objectives using WMAM. Full article
Figures

Figure 1

Open AccessArticle Cost–Benefit Analysis of Wastewater Reuse in Puglia, Southern Italy
Water 2017, 9(3), 175; doi:10.3390/w9030175
Received: 25 November 2016 / Accepted: 22 February 2017 / Published: 28 February 2017
PDF Full-text (1925 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A comprehensive economic analysis of the associated costs and benefits derived from wastewater treatment is a prerequisite for ensuring long-term economic, environmental, and social sustainability. This study aims to improve the economic evaluation of wastewater reuse. A methodological framework is presented for the
[...] Read more.
A comprehensive economic analysis of the associated costs and benefits derived from wastewater treatment is a prerequisite for ensuring long-term economic, environmental, and social sustainability. This study aims to improve the economic evaluation of wastewater reuse. A methodological framework is presented for the application of cost-benefit analysis to wastewater project plants. The method considers two alternative scenarios for the irrigation use of treated water: (i) for newly irrigated land; and (ii) as an alternative to current groundwater sources. A case study is carried out in Puglia, Southern Italy, where two thirds of irrigation water comes from groundwater. The results show that improved urban wastewater treatment would increase the regional availability of irrigation water by 60 million m3 per year, about 10% of the overall irrigation water demand. While treatment costs are highly dependent on the incoming effluent quality and plant size, the benefits are quite stable. These results point to a case-specific analysis, whereby the economic convenience of wastewater reuse could be assessed against the local context. Full article
Figures

Figure 1

Open AccessArticle Linking Forest Cover to Water Quality: A Multivariate Analysis of Large Monitoring Datasets
Water 2017, 9(3), 176; doi:10.3390/w9030176
Received: 17 December 2016 / Revised: 31 January 2017 / Accepted: 21 February 2017 / Published: 1 March 2017
PDF Full-text (2270 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Forested catchments are generally assumed to provide higher quality water. However, this hypothesis must be validated in various contexts as interactions between multiple land use and land cover (LULC) types, ecological variables and water quality variables render this relationship highly complex. This paper
[...] Read more.
Forested catchments are generally assumed to provide higher quality water. However, this hypothesis must be validated in various contexts as interactions between multiple land use and land cover (LULC) types, ecological variables and water quality variables render this relationship highly complex. This paper applies a straightforward multivariate approach on a typical large monitoring dataset of a highly managed and densely populated area (Wallonia, Belgium; 10-year dataset), quantifying forest cover effects on nine physico-chemical water quality variables. Results show that forest cover explains about one third of the variability of water quality and is positively correlated with higher quality water. When controlling for spatial autocorrelation, forest cover still explains 9% of water quality. Unlike needle-leaved forest cover, broad-leaved forest cover presents an independent effect from ecological variables and explains independently 4.8% of water quality variability while it shares 5.8% with cropland cover. This study demonstrates clear independent effects of forest cover on water quality, and presents a method to tease out independent LULC effects from typical large multivariate monitoring datasets. Further research on explanatory variables, spatial distribution effects and water quality datasets could lead to effective strategies to mitigate pollution and reach legal targets. Full article
Figures

Figure 1

Open AccessArticle Observations and Prediction of Recovered Quality of Desalinated Seawater in the Strategic ASR Project in Liwa, Abu Dhabi
Water 2017, 9(3), 177; doi:10.3390/w9030177
Received: 14 January 2017 / Revised: 15 February 2017 / Accepted: 21 February 2017 / Published: 1 March 2017
PDF Full-text (8744 KB) | HTML Full-text | XML Full-text
Abstract
To be able to overcome water shortages, Abu Dhabi Emirate started an Aquifer Storage and Recovery (ASR) project with desalinated seawater (DSW) as source water near Liwa. It is the largest DSW-ASR project in the world (stored volume ~10 Mm3/year), and
[...] Read more.
To be able to overcome water shortages, Abu Dhabi Emirate started an Aquifer Storage and Recovery (ASR) project with desalinated seawater (DSW) as source water near Liwa. It is the largest DSW-ASR project in the world (stored volume ~10 Mm3/year), and should recover potable water for direct use. DSW is infiltrated into a desert dune sand aquifer using “sand-covered gravel-bed” recharge basins. In this study, we evaluate the hydrogeological and hydrogeochemical stratification of the (sub)oxic target aquifer, and water quality changes of DSW during trial infiltration runs. We predict water quality changes of DSW after 824 d of infiltration, during 90 d of intensive recovery (67% recovered) without storage (scenario A), as well as after 10 years of storage (scenario B, with significant bubble drift). Monitoring of preceding trials revealed a lack of redox reactions; little carbonate dissolution and Ca/Na exchange; much SiO2 dissolution; a strong mobilization of natural AsO43−, B, Ba, F, CrO42−, Mo, Sr and V from the (sub)oxic aquifer; and immobilization of PO4, Al, Cu, Fe and Ni from DSW. The Easy-Leacher model was applied in forward and reverse mode including lateral bubble drift, to predict water quality of the recovered water. We show that hydrogeochemical modeling of a complex ASR-system can be relatively easy and straightforward, if aquifer reactivity is low and redox reactions can be ignored. The pilot observations and modeling results demonstrate that in scenario A recovered water quality still complies with Abu Dhabi’s drinking water standards (even up to 85% recovery). For scenario B, however, the recovery efficiency declines to 60% after which various drinking water standards are exceeded, especially the one for chromium. Full article
(This article belongs to the Special Issue Water Quality Considerations for Managed Aquifer Recharge Systems)
Figures

Figure 1

Open AccessArticle Drought Characteristic Analysis Based on an Improved PDSI in the Wei River Basin of China
Water 2017, 9(3), 178; doi:10.3390/w9030178
Received: 10 November 2016 / Revised: 20 February 2017 / Accepted: 27 February 2017 / Published: 1 March 2017
PDF Full-text (16535 KB) | HTML Full-text | XML Full-text
Abstract
In this study, to improve the efficiency of the original Palmer Drought Severity Index (PDSI_original), we coupled the Soil and Water Assessment tool (SWAT) and PDSI_original to construct a drought index called PDSI_SWAT. The constructed PDSI_SWAT is applied in the Wei River Basin
[...] Read more.
In this study, to improve the efficiency of the original Palmer Drought Severity Index (PDSI_original), we coupled the Soil and Water Assessment tool (SWAT) and PDSI_original to construct a drought index called PDSI_SWAT. The constructed PDSI_SWAT is applied in the Wei River Basin (WRB) of China during 1960–2012. The comparison of the PDSI_SWAT with four other commonly used drought indices reveals the effectiveness of the PDSI_SWAT in describing the drought propagation processes in WRB. The whole WRB exhibits a dry trend, with more significant trends in the northern, southeastern and western WRB than the remaining regions. Furthermore, the drought frequencies show that drought seems to occur more likely in the northern part than the southern part of WRB. The principle component analysis method based on the PDSI_SWAT reveals that the whole basin can be further divided into three distinct sub-regions with different drought variability, i.e., the northern, southeastern and western part. Additionally, these three sub-regions are also consistent with the spatial pattern of drought shown by the drought frequency. The wavelet transform analysis method indicates that the El Niño-Southern Oscillation (ENSO) events have strong impacts on inducing droughts in the WRB. The results of this study could be beneficial for a scientific water resources management and drought assessment in the current study area and also provide a valuable reference for other areas with similar climatic characteristics. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Assessing the Impact of Recycled Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT) Site in Alice Springs, Northern Territory (NT), Australia
Water 2017, 9(3), 179; doi:10.3390/w9030179
Received: 16 December 2016 / Revised: 27 February 2017 / Accepted: 27 February 2017 / Published: 2 March 2017
PDF Full-text (2251 KB) | HTML Full-text | XML Full-text
Abstract
Infiltration techniques for managed aquifer recharge (MAR), such as soil aquifer treatment (SAT) can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing
[...] Read more.
Infiltration techniques for managed aquifer recharge (MAR), such as soil aquifer treatment (SAT) can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing suspended solids and nutrients is used to recharge the aquifer. To gain a better insight into reductions in infiltration rates during MAR, a field investigation was carried out via soil aquifer treatment (SAT) using recharge basins located within a mixture of fine and coarse grained riverine deposits in Alice Springs, Northern Territory, Australia. A total of 2.6 Mm3 was delivered via five SAT basins over six years; this evaluation focused on three years of operation (2011–2014), recharging 1.5 Mm3 treated wastewater via an expanded recharge area of approximately 38,400 m2. Average infiltration rates per basin varied from 0.1 to 1 m/day due to heterogeneous soil characteristics and variability in recharge water quality. A treatment upgrade to include sand filtration and UV disinfection (in 2013) prior to recharge improved the average infiltration rate per basin by 40% to 100%. Full article
(This article belongs to the Special Issue Water Quality Considerations for Managed Aquifer Recharge Systems)
Figures

Figure 1

Open AccessFeature PaperArticle The Economic Analysis of Water Use in the Water Framework Directive Based on the System of Environmental-Economic Accounting for Water: A Case Study of the Guadalquivir River Basin
Water 2017, 9(3), 180; doi:10.3390/w9030180
Received: 16 January 2017 / Revised: 21 February 2017 / Accepted: 26 February 2017 / Published: 2 March 2017
PDF Full-text (1787 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This paper develops a methodology for the economic analysis of water use proposed by the Water Framework Directive (WFD) based on the System of Environmental-Economic Accounting for Water (SEEA-Water) standard tables. Our proposal satisfies the requirements for the economic characterization set out in
[...] Read more.
This paper develops a methodology for the economic analysis of water use proposed by the Water Framework Directive (WFD) based on the System of Environmental-Economic Accounting for Water (SEEA-Water) standard tables. Our proposal satisfies the requirements for the economic characterization set out in Article 5 of the WFD. A case study in the Guadalquivir river basin shows a similar characterization in the baseline scenario to previous studies, including apparent water productivity. The main contribution of our research, however, is the proposal of a methodology that would enhance comparability and knowledge-sharing between regions, countries, and sectors both in the European Union and worldwide. Full article
(This article belongs to the Special Issue Water Economics and Policy)
Figures

Figure 1

Open AccessArticle Vulnerability of Maize Yields to Droughts in Uganda
Water 2017, 9(3), 181; doi:10.3390/w9030181
Received: 22 September 2016 / Revised: 24 January 2017 / Accepted: 17 February 2017 / Published: 2 March 2017
Cited by 1 | PDF Full-text (1224 KB) | HTML Full-text | XML Full-text
Abstract
Climate projections in Sub-Saharan Africa (SSA) forecast an increase in the intensity and frequency of droughts with implications for maize production. While studies have examined how maize might be affected at the continental level, there have been few national or sub-national studies of
[...] Read more.
Climate projections in Sub-Saharan Africa (SSA) forecast an increase in the intensity and frequency of droughts with implications for maize production. While studies have examined how maize might be affected at the continental level, there have been few national or sub-national studies of vulnerability. We develop a vulnerability index that combines sensitivity, exposure and adaptive capacity and that integrates agroecological, climatic and socio-economic variables to evaluate the national and spatial pattern of maize yield vulnerability to droughts in Uganda. The results show that maize yields in the north of Uganda are more vulnerable to droughts than in the south and nationally. Adaptive capacity is higher in the south of the country than in the north. Maize yields also record higher levels of sensitivity and exposure in the north of Uganda than in the south. Latitudinally, it is observed that maize yields in Uganda tend to record higher levels of vulnerability, exposure and sensitivity towards higher latitudes, while in contrast, the adaptive capacity of maize yields is higher towards the lower latitudes. In addition to lower precipitation levels in the north of the country, these observations can also be explained by poor soil quality in most of the north and socio-economic proxies, such as, higher poverty and lower literacy rates in the north of Uganda. Full article
Figures

Figure 1

Open AccessArticle A Pilot Study of the Sludge Recycling Enhanced Coagulation–Ultrafiltration Process for Drinking Water: The Effects of Sludge Recycling Ratio and Coagulation Stirring Strategy
Water 2017, 9(3), 183; doi:10.3390/w9030183
Received: 23 December 2016 / Revised: 28 February 2017 / Accepted: 2 March 2017 / Published: 5 March 2017
PDF Full-text (2063 KB) | HTML Full-text | XML Full-text
Abstract
The pilot-scale study on a sludge recycling enhanced coagulation–ultrafiltration (UF) process for surface water treatment is investigated in this paper. The impact of the sludge recycling ratio and coagulation stirring strategy on removal, sedimentation efficiency, and membrane fouling control was studied in this
[...] Read more.
The pilot-scale study on a sludge recycling enhanced coagulation–ultrafiltration (UF) process for surface water treatment is investigated in this paper. The impact of the sludge recycling ratio and coagulation stirring strategy on removal, sedimentation efficiency, and membrane fouling control was studied in this work. Sludge recycling ratios of 0%, 5%, 10%, 15%, and 20% were applied, and the optimal ratio was found to be 10%. Moreover, four stirring strategies were also applied, and the best stirring strategy for coagulation was found to be rapid mixing (velocity gradient: 280 s−1), which is quite different from the coagulation stirring strategy without sludge recycling. This suggests that the adsorption effect of sludge could play a leading role during the procedure. Moreover, shortening the coagulation process makes it possible to reduce energy consumption. Full article
(This article belongs to the Special Issue Advanced Membranes for Water Treatment)
Figures

Figure 1

Open AccessArticle Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method
Water 2017, 9(3), 184; doi:10.3390/w9030184
Received: 22 November 2016 / Revised: 22 February 2017 / Accepted: 1 March 2017 / Published: 5 March 2017
PDF Full-text (3361 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The
[...] Read more.
Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models. Full article
Figures

Figure 1

Open AccessArticle Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems
Water 2017, 9(3), 185; doi:10.3390/w9030185
Received: 27 November 2016 / Revised: 24 February 2017 / Accepted: 3 March 2017 / Published: 6 March 2017
PDF Full-text (2132 KB) | HTML Full-text | XML Full-text
Abstract
Constructed wetland-coupled microbial fuel cell systems (CW-MFCs) incorporate an aerobic zone and an anaerobic zone to generate electricity that achieves the oxidative degradation of contaminants. However, there are few reports on the performance of such coupled systems. In this study, we determined the
[...] Read more.
Constructed wetland-coupled microbial fuel cell systems (CW-MFCs) incorporate an aerobic zone and an anaerobic zone to generate electricity that achieves the oxidative degradation of contaminants. However, there are few reports on the performance of such coupled systems. In this study, we determined the optimal configuration of CW-MFCs to characterize their electricity generation performance. Based on the results using different levels of dissolved oxygen among the CW-MFCs, we concluded that a 20-cm distance between the anode and cathode produced an optimal removal of chemical oxygen demand (COD) of 94.90% with a 0.15 W/m3 power density, 339.80 Ω internal resistance, and 0.31% coulombic efficiency. In addition, a COD of 200 mg/L provided greater electricity generation (741 mV open circuit voltage, 0.20 W/m3 power density, 339.80 Ω internal resistance, and 0.49 mA current) and purification ability (90.45% COD removal) to meet system COD loading limitations than did higher COD values. By adding 50 mM phosphate buffer solution to synthetic wastewater, relatively high conductivity and buffer capacity were achieved, resulting in improvement in electricity generation. These findings highlight important aspects of bioelectricity generation in CW-MFCs. Full article
Figures

Figure 1

Open AccessArticle Multiobjective Automatic Parameter Calibration of a Hydrological Model
Water 2017, 9(3), 187; doi:10.3390/w9030187
Received: 17 October 2016 / Revised: 24 February 2017 / Accepted: 1 March 2017 / Published: 6 March 2017
PDF Full-text (4249 KB) | HTML Full-text | XML Full-text
Abstract
This study proposes variable balancing approaches for the exploration (diversification) and exploitation (intensification) of the non-dominated sorting genetic algorithm-II (NSGA-II) with simulated binary crossover (SBX) and polynomial mutation (PM) in the multiobjective automatic parameter calibration of a lumped hydrological model, the HYMOD model.
[...] Read more.
This study proposes variable balancing approaches for the exploration (diversification) and exploitation (intensification) of the non-dominated sorting genetic algorithm-II (NSGA-II) with simulated binary crossover (SBX) and polynomial mutation (PM) in the multiobjective automatic parameter calibration of a lumped hydrological model, the HYMOD model. Two objectives—minimizing the percent bias and minimizing three peak flow differences—are considered in the calibration of the six parameters of the model. The proposed balancing approaches, which migrate the focus between exploration and exploitation over generations by varying the crossover and mutation distribution indices of SBX and PM, respectively, are compared with traditional static balancing approaches (the two dices value is fixed during optimization) in a benchmark hydrological calibration problem for the Leaf River (1950 km2) near Collins, Mississippi. Three performance metrics—solution quality, spacing, and convergence—are used to quantify and compare the quality of the Pareto solutions obtained by the two different balancing approaches. The variable balancing approaches that migrate the focus of exploration and exploitation differently for SBX and PM outperformed other methods. Full article
Figures

Figure 1

Open AccessArticle A Thermodynamical Approach for Evaluating Energy Consumption of the Forward Osmosis Process Using Various Draw Solutes
Water 2017, 9(3), 189; doi:10.3390/w9030189
Received: 26 December 2016 / Accepted: 2 March 2017 / Published: 6 March 2017
PDF Full-text (3204 KB) | HTML Full-text | XML Full-text
Abstract
The forward-osmosis (FO) processes have received much attention in past years as an energy saving desalination process. A typical FO process should inclu de a draw solute recovery step which contributes to the main operation costs of the process. Therefore, investigating the energy
[...] Read more.
The forward-osmosis (FO) processes have received much attention in past years as an energy saving desalination process. A typical FO process should inclu de a draw solute recovery step which contributes to the main operation costs of the process. Therefore, investigating the energy consumption is very important for the development and employment of the forward osmosis process. In this work, NH3-CO2, Na2SO4, propylene glycol mono-butyl ether, and dipropylamine were selected as draw solutes. The FO processes of different draw solute recovery approaches were simulated by Aspen PlusTM with a customized FO unit model. The electrolyte Non-Random Two-Liquid (Electrolyte-NRTL) and Universal Quasi Chemical (UNIQUAC) models were employed to calculate the thermodynamic properties of the feed and draw solutions. The simulation results indicated that the FO performance decreased under high feed concentration, while the energy consumption was improved at high draw solution concentration. The FO process using Na2SO4 showed the lowest energy consumption, followed by NH3-CO2, and dipropylamine. The propylene glycol mono-butyl ether process exhibited the highest energy consumption due to its low solubility in water. Finally, in order to compare the equivalent work of the FO processes, the thermal energy requirements were converted to electrical work. Full article
(This article belongs to the Special Issue Advanced Membranes for Water Treatment)
Figures

Figure 1

Open AccessArticle Stakeholder Engagement and Knowledge Co-Creation in Water Planning: Can Public Participation Increase Cost-Effectiveness?
Water 2017, 9(3), 191; doi:10.3390/w9030191
Received: 4 January 2017 / Revised: 21 February 2017 / Accepted: 2 March 2017 / Published: 7 March 2017
PDF Full-text (8279 KB) | HTML Full-text | XML Full-text
Abstract
In 2014, a radical shift took place in Danish water planning. Following years of a top-down water planning approach, 23 regional water councils were established to co-create and provide input to Danish authorities on the development of River Basin Management Plans (RBMP). The
[...] Read more.
In 2014, a radical shift took place in Danish water planning. Following years of a top-down water planning approach, 23 regional water councils were established to co-create and provide input to Danish authorities on the development of River Basin Management Plans (RBMP). The water councils advised local authorities on the application of measures to improve the physical conditions in Danish streams within a given economic frame. The paper shows the difference the use of water councils (public participation) made by comparing the final water council proposal included in the 2015 RBMP to the RBMPs proposed by the central government (Nature Agency) in 2014. The study concludes that the measures proposed by the water councils will generally deliver better results than the proposed Nature Agency plans, which do not include the same level of participation. Specifically, the water councils with stakeholder involvement proposed a much longer network of streams (3800 km), yielding a better ecological outcome than the shorter stream network (1615 km) proposed by the Nature Agency for the same budget. Having a structured and fixed institutional frame around public participation (top-down meeting bottom-up) can produce cost-effective results, but the results show that cost-effectiveness was not the only deciding factor, and that local circumstances like the practicalities of implementing the measures were also considered when developing the Programmes of Measures. The findings suggest that the use of water councils in water planning has significant advantages, including the fact that the knowledge of local conditions helps to identify efficient solutions at lower costs, which can be useful for administrators, policy-makers, and other stakeholders implementing the Water Framework Directive in years to come. Full article
(This article belongs to the Special Issue Water Economics and Policy)
Figures

Figure 1

Open AccessArticle Photoautotrophic Microalgae Screening for Tertiary Treatment of Livestock Wastewater and Bioresource Recovery
Water 2017, 9(3), 192; doi:10.3390/w9030192
Received: 17 November 2016 / Revised: 22 February 2017 / Accepted: 27 February 2017 / Published: 7 March 2017
PDF Full-text (945 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Photoautotrophic microalgae offer high promise for a tertiary treatment of livestock wastewater owing to their rapid growth and nutrient uptake. To screen better microalga for the tertiary treatment, batch photobioreactor tests were conducted using Chlorella emersonii, Chlorella sorokiniana, and Botryococcus braunii
[...] Read more.
Photoautotrophic microalgae offer high promise for a tertiary treatment of livestock wastewater owing to their rapid growth and nutrient uptake. To screen better microalga for the tertiary treatment, batch photobioreactor tests were conducted using Chlorella emersonii, Chlorella sorokiniana, and Botryococcus braunii. This study evaluated their specific growth rates, CO2 utilization rates, and nutrient removal rates to provide appropriate selection guidelines. Based on statistical comparisons, results indicate that selecting the right microalgae was the key to success in the tertiary treatment since each microalga responded differently, even under the same light, temperature, and nutrient conditions. Among the tested species, Chlorella emersonii was found to present the fastest photoautotrophic growth, total inorganic carbon (TIC) utilization, and nutrient removal for livestock wastewater treatment. Regression results identified that its specific growth and total nitrogen removal rates were as high as 0.51 day−1 and 0.18 day−1, respectively. Estimated TIC utilization over the supplied TIC was much higher (~34%) than those of others (11%–18%). This systemic evaluation of rate-limiting factors provides a quantitative understanding of the kinetic-based selection strategy of microalgae to polish livestock wastewater with better effluent quality. Full article
Figures

Figure 1

Open AccessArticle Evaluating the Impact of Low Impact Development (LID) Practices on Water Quantity and Quality under Different Development Designs Using SWAT
Water 2017, 9(3), 193; doi:10.3390/w9030193
Received: 29 December 2016 / Revised: 1 March 2017 / Accepted: 2 March 2017 / Published: 7 March 2017
PDF Full-text (2784 KB) | HTML Full-text | XML Full-text
Abstract
The effects of Low Impact Development (LID) practices on urban runoff and pollutants have proven to be positive in many studies. However, the effectiveness of LID practices can vary depending on different urban patterns. In the present study, the performance of LID practices
[...] Read more.
The effects of Low Impact Development (LID) practices on urban runoff and pollutants have proven to be positive in many studies. However, the effectiveness of LID practices can vary depending on different urban patterns. In the present study, the performance of LID practices was explored under three land uses with different urban forms: (1) a compact high-density urban form; (2) a conventional medium-density urban form; and (3) a conservational medium-density urban form. The Soil and Water Assessment Tool (SWAT) was used and model development was performed to reflect hydrologic behavior by the application of LID practices. Rain gardens, permeable pavements, and rainwater harvesting tanks were considered for simulations, and a modeling procedure for the representation of LID practices in SWAT was specifically illustrated in this context. Simulations were done for each land use, and the results were compared and evaluated. The application of LID practices demonstrated a decrease in surface runoff and pollutant loadings for all land uses, and different reductions were represented in response to the land uses with different urban forms on a watershed scale. In addition, the results among post-LIDs scenarios generally showed lower values for surface runoff and nitrate in the compact high-density urban land use and for total phosphorus in the conventional medium-density urban land use compared to the other land uses. We suggest effective strategies for implementing LID practices. Full article
Figures

Figure 1

Open AccessArticle A Methodology to Model Environmental Preferences of EPT Taxa in the Machangara River Basin (Ecuador)
Water 2017, 9(3), 195; doi:10.3390/w9030195
Received: 28 December 2016 / Accepted: 3 March 2017 / Published: 8 March 2017
PDF Full-text (11071 KB) | HTML Full-text | XML Full-text
Abstract
Rivers have been frequently assessed based on the presence of the Ephemeroptera— Plecoptera—Trichoptera (EPT) taxa in order to determine the water quality status and develop conservation programs. This research evaluates the abiotic preferences of three families of the EPT taxa Baetidae, Leptoceridae and
[...] Read more.
Rivers have been frequently assessed based on the presence of the Ephemeroptera— Plecoptera—Trichoptera (EPT) taxa in order to determine the water quality status and develop conservation programs. This research evaluates the abiotic preferences of three families of the EPT taxa Baetidae, Leptoceridae and Perlidae in the Machangara River Basin located in the southern Andes of Ecuador. With this objective, using generalized linear models (GLMs), we analyzed the relation between the probability of occurrence of these pollution-sensitive macroinvertebrates families and physicochemical water quality conditions. The explanatory variables of the constructed GLMs differed substantially among the taxa, as did the preference range of the common predictors. In total, eight variables had a substantial influence on the outcomes of the three models. For choosing the best predictors of each studied taxa and for evaluation of the accuracy of its models, the Akaike information criterion (AIC) was used. The results indicated that the GLMs can be applied to predict either the presence or the absence of the invertebrate taxa and moreover, to clarify the relation to the environmental conditions of the stream. In this manner, these modeling tools can help to determine key variables for river restoration and protection management. Full article
Figures

Figure 1

Open AccessArticle Putting Flow–Ecology Relationships into Practice: A Decision-Support System to Assess Fish Community Response to Water-Management Scenarios
Water 2017, 9(3), 196; doi:10.3390/w9030196
Received: 21 December 2016 / Revised: 21 February 2017 / Accepted: 6 March 2017 / Published: 8 March 2017
PDF Full-text (1851 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses
[...] Read more.
This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use. Full article
Figures

Open AccessArticle Establishment and Application of Wetlands Ecosystem Services and Sustainable Ecological Evaluation Indicators
Water 2017, 9(3), 197; doi:10.3390/w9030197
Received: 8 November 2016 / Accepted: 7 March 2017 / Published: 8 March 2017
PDF Full-text (211 KB) | HTML Full-text | XML Full-text
Abstract
Gaomei wetlands are national Taiwanese coastal wetlands. Over the past few years, they have grown into an important water bird habitat and popular bird-watching location. However, the rapid growth in tourism has begun to affect the environmental quality in the Gaomei wetlands. This
[...] Read more.
Gaomei wetlands are national Taiwanese coastal wetlands. Over the past few years, they have grown into an important water bird habitat and popular bird-watching location. However, the rapid growth in tourism has begun to affect the environmental quality in the Gaomei wetlands. This study combined ecosystem services (ES) and ecological footprint (EF) assessments to evaluate the sustainability status according to the features of each ecosystem service for the different Gaomei wetlands land uses. The results found that (a) the total Gaomei wetlands ecosystem service value increased from 59.24 million TWD in 2008 to 98.10 million TWD in 2015, and the ecosystem service function was continuously improving; (b) the EF increased by 56.12% over 8 years; and (c) there was a negative growth rate of 106.54% in the ecological deficit (ED) in the sustainable ecological evaluation indicators (SEEI). The ecological footprint index (EFI) in 2015 was at Level 4 at 1.02, and the environmental sustainability index (ESI) was at Level 3 at 0.49. Results show that Gaomei wetlands have a low sustainability; therefore, the local, regional, and national governments need to implement regulations to strictly control the Gaomei wetlands land use. This study demonstrated that ES and EF theory application can give an objective guidance to decision-makers to ensure that wetlands eco-security can be maintained at safe levels. Full article
Open AccessArticle Multivariate Analysis of Joint Probability of Different Rainfall Frequencies Based on Copulas
Water 2017, 9(3), 198; doi:10.3390/w9030198
Received: 30 December 2016 / Revised: 25 February 2017 / Accepted: 6 March 2017 / Published: 9 March 2017
PDF Full-text (3897 KB) | HTML Full-text | XML Full-text
Abstract
The performance evaluation of a city’s flood control system is essentially based on accurate storm designs, where a particular challenge is the development of the joint distributions of dependent rainfall variables. When it comes to the research design for consecutive rainfall, the analytical
[...] Read more.
The performance evaluation of a city’s flood control system is essentially based on accurate storm designs, where a particular challenge is the development of the joint distributions of dependent rainfall variables. When it comes to the research design for consecutive rainfall, the analytical investigation is only focused on the maximum of consecutive rainfalls, and it does not consider the probabilistic relations between the first day of rainfall and the overall rainfall included in consecutive rainfall events. In this study, the copula method is used to separate the dependence structure of multi-day rainfall from its marginal distribution and analyse the different impacts of the dependence structure and marginal distribution on system performance. Three one-parameter Archimedean copulas, including the Clayton, Gumbel, and Frank families, are fitted and compared for different combinations of marginal distributions that cannot be rejected by statistical tests. The fitted copulas are used to generate rainfall events for a system performance analysis, including the conditional probability and design values for different return periods. The results obtained in this study highlight the importance of taking into account the dependence structure of one-day and multi-day rainfall in the context of storm design evaluations and reveal the different impacts of the dependence structure and the marginal distributions on the probability. Full article
Figures

Figure 1

Open AccessArticle Impacts of Climate Change on the Water Quality of a Regulated Prairie River
Water 2017, 9(3), 199; doi:10.3390/w9030199
Received: 29 November 2016 / Revised: 2 March 2017 / Accepted: 7 March 2017 / Published: 10 March 2017
PDF Full-text (3737 KB) | HTML Full-text | XML Full-text
Abstract
Flows along the upper Qu’Appelle River are expected to increase in the future via increased discharge from Lake Diefenbaker to meet the demands of increased agricultural and industrial activity and population growth in southern Saskatchewan. This increased discharge and increased air temperature due
[...] Read more.
Flows along the upper Qu’Appelle River are expected to increase in the future via increased discharge from Lake Diefenbaker to meet the demands of increased agricultural and industrial activity and population growth in southern Saskatchewan. This increased discharge and increased air temperature due to climate change are both expected to have an impact on the water quality of the river. The Water Quality Analysis Simulation Program (WASP7) was used to model current and future water quality of the upper Qu’Appelle River. The model was calibrated and validated to characterize the current state of the water quality of the river. The model was then used to predict water quality [nutrient (nitrogen and phosphorus) concentrations and oxygen dynamics] for the years 2050–2055 and 2080–2085. The modelling results indicate that global warming will result in a decrease in ice thickness, a shorter ice cover period, and decreased nutrient concentrations in 2050 or 2080 relative to 2010, with a greater decrease of nutrient concentrations in open water. In contrast to the effect of warmer water temperatures, increased flow through water management may cause increases in ammonium, nitrate, and dissolved oxygen concentrations and decreases in orthophosphate concentrations in summer. Full article
Figures

Figure 1

Review

Jump to: Editorial, Research

Open AccessReview CryoSat-2 Altimetry Applications over Rivers and Lakes
Water 2017, 9(3), 211; doi:10.3390/w9030211
Received: 3 February 2017 / Revised: 5 March 2017 / Accepted: 9 March 2017 / Published: 13 March 2017
PDF Full-text (6084 KB) | HTML Full-text | XML Full-text
Abstract
Monitoring the variation of rivers and lakes is of great importance. Satellite radar altimetry is a promising technology to do this on a regional to global scale. Satellite radar altimetry data has been used successfully to observe water levels in lakes and (large)
[...] Read more.
Monitoring the variation of rivers and lakes is of great importance. Satellite radar altimetry is a promising technology to do this on a regional to global scale. Satellite radar altimetry data has been used successfully to observe water levels in lakes and (large) rivers, and has also been combined with hydrologic/hydrodynamic models. Except CryoSat-2, all radar altimetry missions have been operated in conventional low resolution mode with a short repeat orbit (35 days or less). CryoSat-2, carrying a Synthetic Aperture Radar (SAR) altimeter, has a 369-day repeat and a drifting ground track pattern and provides new opportunities for hydrologic research. The narrow inter-track distance (7.5 km at the equator) makes it possible to monitor many lakes and rivers and SAR mode provides a finer along-track resolution, higher return power and speckle reduction through multi-looks. However, CryoSat-2 challenges conventional ways of dealing with satellite inland water altimetry data because virtual station time series cannot be directly derived for rivers. We review the CryoSat-2 mission characteristics, data products, and its use and perspectives for inland water applications. We discuss all the important steps in the workflow for hydrologic analysis with CryoSat-2, and conclude with a discussion of promising future research directions. Full article
(This article belongs to the Special Issue The Use of Remote Sensing in Hydrology)
Figures

Figure 1

Open AccessReview Achieving Resilience through Water Recycling in Peri-Urban Agriculture
Water 2017, 9(3), 223; doi:10.3390/w9030223
Received: 19 December 2016 / Revised: 7 March 2017 / Accepted: 15 March 2017 / Published: 18 March 2017
PDF Full-text (162 KB) | HTML Full-text | XML Full-text
Abstract
Pressures on urban, peri-urban and rural water and agricultural systems are increasingly complex with multiple interacting stresses and impacts. As a way of addressing these issues there has been increasing consideration as to how to build and manage resilience in these complex social-ecological
[...] Read more.
Pressures on urban, peri-urban and rural water and agricultural systems are increasingly complex with multiple interacting stresses and impacts. As a way of addressing these issues there has been increasing consideration as to how to build and manage resilience in these complex social-ecological systems. This paper presents a case study of the role of water recycling for agricultural use within the context of the peri-urban water cycle in Western Sydney, Australia. Building upon a description of the water cycle associated with water reclaimed from urban wastewater and stormwater harvesting; aspects which enhance resilience are identified and discussed. These include water resource security, avoidance of wastewater discharges to receiving waters, enhanced processes of landscape ecology, provision of ecosystem services, environmental risk management, local agricultural products and services, social values, livelihood opportunity, and the industrial ecology of recycled organics. Full article
(This article belongs to the Special Issue Resilient Water Management in Agriculture)
Open AccessReview A Comparison of Flood Control Standards for Reservoir Engineering for Different Countries
Water 2017, 9(3), 152; doi:10.3390/w9030152
Received: 18 October 2016 / Revised: 9 February 2017 / Accepted: 15 February 2017 / Published: 23 February 2017
PDF Full-text (219 KB) | HTML Full-text | XML Full-text
Abstract
Across the globe, flood control standards for reservoir engineering appear different due to various deciding factors such as flood features, society, economy, culture, morality, politics, and technology resources, etc. This study introduces an in-depth comparison of flood control standards for reservoir engineering for
[...] Read more.
Across the globe, flood control standards for reservoir engineering appear different due to various deciding factors such as flood features, society, economy, culture, morality, politics, and technology resources, etc. This study introduces an in-depth comparison of flood control standards for reservoir engineering for different countries. After the comparison and analysis, it is concluded that the determination of flood control standards is related to engineering grade, dam type, dam height, and the hazard to downstream after dam-breaking, etc. Each country should adopt practical flood control standards according to the characteristics of local reservoir engineering. The constitutive flood control standards should retain certain flexibility in the basis of constraint force. This review could offer a reference for developing countries in the enactment of flood control standards for reservoir engineering. Full article
Open AccessFeature PaperReview Sludge Dewatering and Mineralization in Sludge Treatment Reed Beds
Water 2017, 9(3), 160; doi:10.3390/w9030160
Received: 6 November 2016 / Revised: 18 December 2016 / Accepted: 21 February 2017 / Published: 24 February 2017
PDF Full-text (3168 KB) | HTML Full-text | XML Full-text
Abstract
Sludge Treatment Reed Beds (STRBs) are widely used in Northern Europe to dewater and mineralize surplus sludge from activated sludge systems used to treat urban domestic sewage. STRBs are low-technology, energy-efficient, and do not require addition of chemicals. They dewater and stabilize the
[...] Read more.
Sludge Treatment Reed Beds (STRBs) are widely used in Northern Europe to dewater and mineralize surplus sludge from activated sludge systems used to treat urban domestic sewage. STRBs are low-technology, energy-efficient, and do not require addition of chemicals. They dewater and stabilize the sludge and produce a final product that can be safely used as a fertilizer for agricultural crops. Long-term sludge reduction takes place in the reed beds due to dewatering and mineralization of the organic matter in the sludge. Although, in theory, a simple technique relying largely on natural processes, experience has shown that it is very important to understand and respect the basic design and operation requirements of STRBs. This paper describes the basic design and operation requirements of STRBs, with special focus on pivotal requirements to respect in order to secure proper functioning. Also, the paper summarizes performance experience concerning final dry matter content, degree of mineralization, emission of greenhouse gases, and degradation of micro-pollutants in STRBs. There are still a number of outstanding issues that are not fully understood, particularly in relation to the importance of the sludge quality for the dewatering in an STRB. Therefore, extreme care should be taken when attempting to extrapolate the use of STRBs to applications and regions outside of their ‘normal’ and documented area of application. Full article
(This article belongs to the Special Issue Constructed Wetlands for Water Treatment: New Developments)
Figures

Figure 1

Open AccessReview Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?
Water 2017, 9(3), 174; doi:10.3390/w9030174
Received: 1 September 2016 / Revised: 4 February 2017 / Accepted: 7 February 2017 / Published: 28 February 2017
Cited by 1 | PDF Full-text (237 KB) | HTML Full-text | XML Full-text
Abstract
Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies
[...] Read more.
Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46%) explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35%) used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change. Full article
Open AccessFeature PaperReview Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar
Water 2017, 9(3), 194; doi:10.3390/w9030194
Received: 20 January 2017 / Revised: 2 March 2017 / Accepted: 5 March 2017 / Published: 8 March 2017
PDF Full-text (10995 KB) | HTML Full-text | XML Full-text
Abstract
Space-borne Synthetic Aperture Radar (SAR) has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission.
[...] Read more.
Space-borne Synthetic Aperture Radar (SAR) has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz) and P-band (435 MHz) airborne SAR acquisitions over a desert site in southern Tunisia. Full article
(This article belongs to the Special Issue The Use of Remote Sensing in Hydrology)
Figures

Figure 1

Journal Contact

MDPI AG
Water Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Water Edit a special issue Review for Water
loading...
Back to Top