Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Collection and Inversion of ECa Data
2.4. Prediction of ECe from EMCI Using Site-Specific Calibrations
3. Results
3.1. ECe Data Analysis
3.2. Determination of the Optimal Inversion Parameters and Inversion Technique
3.3. Time-Lapse EMCIs
3.4. Prediction of ECe Using Site-Specific Calibration
3.5. Generation of Soil Salinity Cross-Sections from Time-Lapse EMC
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- FAO. Global Symposium on Salt-Affected Soils: Outcome Document; FAO: Rome, Italy, 2022. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data-scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Bouksila, F.; Persson, M.; Bahri, A.; Berndtsson, R. Electromagnetic induction prediction of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrol. Sci. J. 2012, 57, 1473–1486. [Google Scholar] [CrossRef]
- Li, X.-M.; Yang, J.-S.; Liu, M.-X.; Liu, G.-M.; Yu, M. Spatio-temporal changes of soil salinity in arid areas of south Xinjiang using electromagnetic induction. J. Integr. Agric. 2012, 11, 1365–1376. [Google Scholar] [CrossRef]
- Li, H.; Shi, Z.; Webster, R.; Triantafilis, J. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma 2013, 195, 31–41. [Google Scholar] [CrossRef]
- Li, H.; Webster, R.; Shi, Z. Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma 2015, 237, 71–77. [Google Scholar] [CrossRef]
- Paz, M.C.; Farzamian, M.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Santos, F.M. Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging. Soil 2020, 6, 499–511. [Google Scholar] [CrossRef]
- Akça, E.; Aydin, M.; Kapur, S.; Kume, T.; Nagano, T.; Watanabe, T.; Çilek, A.; Zorlu, K. Long-term monitoring of soil salinity in a semi-arid environment of Turkey. Catena 2020, 193, 104614. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. A semi-empirical model to predict the EM38 electromagnetic induction measurements of soils from basic ground properties. Eur. J. Soil Sci. 2021, 72, 720–738. [Google Scholar] [CrossRef]
- Visconti, F.; de Paz, J.M. Sensitivity of soil electromagnetic induction measurements to salinity, water content, clay, organic matter, and bulk density. Precis. Agric. 2021, 22, 1559–1577. [Google Scholar] [CrossRef]
- Petsetidi, P.A.; Kargas, G. Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land 2023, 12, 1932. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.V.; Kirkegaard, C.; Fiandaca, G.; Schamper, C.; Behroozmand, A.A.; Binley, A.; Nielsen, E.; Effersø, F.; Christensen, N.B. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based, and bore-hole electromagnetic and electric data. Explor. Geophys. 2015, 46, 223–235. [Google Scholar] [CrossRef]
- Santos, F.A.M. 1-D laterally constrained inversion of EM34 profiling data. J. Appl. Geophys. 2004, 56, 123–134. [Google Scholar] [CrossRef]
- Dakak, H.; Huang, J.; Zouahri, A.; Douaik, A.; Triantafilis, J. Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco. Soil Use Manag. 2017, 33, 553–567. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Measurement of soil salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2019, 83, 1–2. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Spatial and temporal variability of soil salinity in the Yangtze River estuary using electromagnetic induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Gómez Flores, J.L.; Ramos Rodríguez, M.; González Jiménez, A.; Farzamian, M.; Herencia Galán, J.F.; Salvatierra Bellido, B.; Cermeño Sacristan, P.; Vanderlinden, K. Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. Remote Sens. 2022, 14, 3389. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital soil mapping of soil salinity using EM38 and quasi-3d modelling software (EM4Soil). Soil Use Manag. 2022, 38, 277–291. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.; Pätzold, S.; Von Hebel, C.; Weihermüller, L.; Kaufmann, M.; Van Der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S.; Shi, Q.; Wei, Y.; Wang, F. Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in Southern Xinjiang, China. Remote Sens. 2020, 12, 2601. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Song, J.; Lv, X.; Li, W.; Li, B.; Shi, J. Impact of saline soil improvement measures on salt content in the abandonment-reclamation process. Soil Tillage Res. 2021, 208, 104867. [Google Scholar] [CrossRef]
- Ben Slimane, A.; Bouksila, F.; Selim, T.; Joumada, F. Soil salinity assessment using electromagnetic induction method in a semi-arid environment—A case study in Tunisia. Arab. J. Geosci. 2022, 15, 1031. [Google Scholar] [CrossRef]
- Utili, S. Monitoring of earthen long linear embankments by geophysical tools integrated with geotechnical probes. In Proceedings of the E3S Web of Conferences, Lisbon, Portugal, 24–26 June 2020; p. 01031. [Google Scholar]
- Apostolopoulos, G.; Kapetanios, A. Geophysical investigation, in a regional and local mode, at Thorikos Valley, Attica, Greece, trying to answer archaeological questions. Archaeol. Prospect. 2021, 28, 435–452. [Google Scholar] [CrossRef]
- Koganti, T.; Narjary, B.; Zare, E.; Pathan, A.L.; Huang, J.; Triantafilis, J. Quantitative mapping of soil salinity using the DUA-LEM-21S instrument and EM inversion software. Land Degrad. Dev. 2018, 29, 1768–1781. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J.; Wu, D.; Xie, W.; Gao, P.; Jin, W. Digital mapping of soil salinity and crop yield across a coastal agricultural landscape using repeated electromagnetic induction (EMI) surveys. PLoS ONE 2016, 11, e0153377. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Corwin, D.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Adv. Agron. 2019, 158, 1–130. [Google Scholar]
- USDA. Soil survey manual. In Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18; U.S. Department of Agriculture: Washington, DC, USA, 2017; Chapter 3. [Google Scholar]
- Geiger, R. Classification of Climates after W. Köppen. Landolt-Börnstein-Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin/Heidelberg, Germany, 1954; pp. 603–607. [Google Scholar]
- Aziz, A.; Berndtsson, R.; Attia, T.; Hamed, Y.; Selim, T. Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. Water 2022, 15, 110. [Google Scholar] [CrossRef]
- Available online: https://en.tutiempo.net/ (accessed on 6 October 2023).
- Between Clay and Cement: Is Egypt’s Canal Lining a Solution or Dilemma for Farmers? Available online: https://infonile.org/en/2023/01/is-egypts-canal-lining-a-solution-or-dilemma-for-farmers/ (accessed on 11 September 2023).
- Rhoades, J.; Kandiah, A.; Mashali, A. The Use of Saline Waters for Crop Production-FAO Irrigation and Drainage Paper 48; FAO: Rome, Italy, 1992; p. 133. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Yollybayev, A.; Gurbanov, A. Cultivation of Sorghum and Sudan Grass on Saline Areas. Available online: https://tohi.edu.tm/usuly-gollanma/en/file/21.pdf (accessed on 10 November 2023).
- Clark, A. Managing Cover Crops Profitably; Diane Publishing: Darby, PA, USA, 2008. [Google Scholar]
- Mirsharipova, G.; Mustafakulov, D. Planting rate of Sudan grass photosynthetic activity and dependence on the period of harvest. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 13–16 October 2023; p. 012062. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954.
- Barrett-Lennard, E.; Bennett, S.J.; Colmer, T. Standardising terminology for describing the level of salinity in soils in Australia. In Proceedings of the 2nd International Salinity Forum: Salinity, Water and Society: Global Issues, Local Action, Adelaide, Australia, 31 March–3 April 2005. [Google Scholar]
- EMTOMO. EMTOMO Manual for EM4Soil, A Program for 1-D Laterally Constrained Inversion of EM Data; EMTOMO: Lisbon, Portugal, 2018. [Google Scholar]
- Monteiro Santos, F.; Triantafilis, J.; Bruzgulis, K.; Roe, J. Inversion of multiconfiguration electromagnetic (DUALEM-421) profiling data using a one-dimensional laterally constrained algorithm. Vadose Zone J. VZJ 2010, 9, 117–125. [Google Scholar] [CrossRef]
- Monteiro Santos, F.A.; Triantafilis, J.; Bruzgulis, K. A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: Application to DUALEM-421 data collected in a riverine plain. Geophysics 2011, 76, B43–B53. [Google Scholar] [CrossRef]
- Kaufman, A.A.; Keller, G.V. Frequency and transient soundings methods in geochemistry and geophysics. Geophys. J. Int. 1983, 77, 935–937. [Google Scholar] [CrossRef]
- Sasaki, Y. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics 1989, 54, 254–262. [Google Scholar] [CrossRef]
- Sasaki, Y. Full 3-D inversion of electromagnetic data on PC. J. Appl. Geophys. 2001, 46, 45–54. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Triantafilis, J.; Santos, F.M. Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil). Geoderma 2013, 211, 28–38. [Google Scholar] [CrossRef]
- Zare, E.; Li, N.; Khongnawang, T.; Farzamian, M.; Triantafilis, J. Identifying Potential Leakage Zones in an Irrigation Supply Channel by Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling and a Support Vector Machine. Soil Syst. 2020, 4, 25. [Google Scholar] [CrossRef]
- Farzamian, M.; Autovino, D.; Basile, A.; De Mascellis, R.; Dragonetti, G.; Monteiro Santos, F.; Binley, A.; Coppola, A. Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrol. Earth Syst. Sci. 2021, 25, 1509–1527. [Google Scholar] [CrossRef]
- Moore, D.S.; Kirkland, S. The Basic Practice of Statistics; WH Freeman: New York, NY, USA, 2007; Volume 2. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Bouksila, F. Sustainability of Irrigated Agriculture under Salinity Pressure—A Study in Semiarid Tunisia; Lund University Publications: Lund, Sweden, 2011. [Google Scholar]
- Zare, E.; Huang, J.; Santos, F.M.; Triantafilis, J. Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software. Soil Sci. Soc. Am. J. 2015, 79, 1729–1740. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Triantafilis, J. Comparing electromagnetic induction instruments to map soil salinity in two-dimensional cross-sections along the Kham-rean Canal using EM inversion software. Geoderma 2020, 377, 114611. [Google Scholar] [CrossRef]
- Ramos, T.B.; Oliveira, A.R.; Darouich, H.; Gonçalves, M.C.; Martínez-Moreno, F.J.; Rodríguez, M.R.; Vanderlinden, K.; Farzamian, M. Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging. Agric. Water Manag. 2023, 288, 108472. [Google Scholar] [CrossRef]
- Dawoud, M.A. Design of national groundwater quality monitoring network in Egypt. Environ. Monit. Assess. 2004, 96, 99–118. [Google Scholar] [CrossRef]
- Salem, Z.E.; Elsaiedy, G.; ElNahrawy, A. Assessment of the groundwater quality for drinking and irrigation purposes in the Central Nile Delta Region, Egypt. In Groundwater in the Nile Delta; Springer: Berlin/Heidelberg, Germany, 2019; pp. 647–684. [Google Scholar] [CrossRef]
- Mabrouk, M.; Jonoski, A.; Solomatine, D.; Uhlenbrook, S. A review of seawater intrusion in the Nile Delta groundwater system–the basis for assessing impacts due to climate changes and water resources development. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 10873–10911. [Google Scholar] [CrossRef]
- Francois, L.E.; Donovan, T.; Maas, E.V. Salinity effects on seed yield, growth and germination of grain sorghum. Agron. J. 1984, 76, 741–744. [Google Scholar] [CrossRef]
- Calone, R.; Sanoubar, R.; Lambertini, C.; Speranza, M.; Vittori Antisari, L.; Vianello, G.; Barbanti, L. Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants 2020, 9, 561. [Google Scholar] [CrossRef]
- Almodares, A.; Sharif, M. Effects of irrigation water qualities on biomass and sugar contents of sugar beet and sweet sorghum cultivars. J. Environ. Biol. 2007, 28, 213–218. [Google Scholar]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Technical note TN-6; Geonics Limited: Mississauga, ON, Canada, 1980. [Google Scholar]
- Dragonetti, G.; Farzamian, M.; Basile, A.; Monteiro Santos, F.; Coppola, A. In situ estimation of soil hydraulic and hydrodisper-sive properties by inversion of electromagnetic induction measurements and soil hydrological modeling. Hydrol. Earth Syst. Sci. 2022, 26, 5119–5136. [Google Scholar] [CrossRef]
- Farzamian, M.; Bouksila, F.; Paz, A.M.; Santos, F.A.; Zemin, N.; Salma, F.; Ben Slimane, A.; Selimi, T.; Triantafilis, J. Landscape-scale mapping of soil salinity with multi-height electromagnetic induction and quasi-3D inversion (Saharan Oasis, Tunisia). Agric. Water Manag. 2023, 284, 108330. [Google Scholar] [CrossRef]
- Worku, A.; Nekir, B.; Mamo, L.; Bekele, T. Comparative Advantage of Forage Grasses for Salt Tolerance and Ameliorative Effect under Salt Affected Soil of Amibara, Afar. Results of Natural Resources Management Research 2020. Available online: https://www.researchgate.net/publication/347468684_Comparative_Advantage_of_Forage_Grasses_for_Salt_Tolerance_and_Ameliorative_Effect_under_Salt_Affected_Soil_of_Amibara_Afar (accessed on 10 November 2023).
Campaign | Date of Measurement | State of Agriculture | Number of Boreholes | Survey Data Utilization |
---|---|---|---|---|
1st | August 2021 | Before cultivation | 1 | Validation |
2nd | September 2021 | After fertilization and sowing | 2 | |
3rd | February 2022 | After second harvesting | 6 | Calibration |
4th | April 2022 | After fourth harvesting | 6 | Validation |
5th | June 2022 | After the last harvesting | 6 | |
6th | June 2023 | One year later | 4 |
Surveys | ECe Min (dS m−1) | ECe Max (dS m−1) | ECe Range * | Number of Soil Samples |
---|---|---|---|---|
First survey | 5.29 | 15.24 | 9.95 | 3 |
Second survey | 9.51 | 15.70 | 6.19 | 6 |
Third (calibration) survey | 4.63 | 16.95 | 12.32 | 18 |
Fourth survey | 5.45 | 13.58 | 8.13 | 18 |
Fifth survey | 6.10 | 15.16 | 9.06 | 18 |
Sixth survey | 6.40 | 14.90 | 8.50 | 12 |
All surveys | 4.63 | 16.95 | 12.32 | 75 |
Validation surveys (all surveys except the 3rd survey) | 5.29 | 15.70 | 10.41 | 57 |
ECe Calibration Data (dS m−1) | ||||||
Soil Layer (m) | N | Min | Max | Mean | SD | Cv |
All soil layers | 18 | 4.63 | 16.95 | 10.68 | 3.52 | 32.92 |
0.0–0.3 | 6 | 4.63 | 8.19 | 7.16 | 1.37 | 19.11 |
0.3–0.6 | 6 | 8.66 | 11.50 | 9.96 | 1.06 | 10.65 |
0.6–0.9 | 6 | 12.95 | 16.95 | 14.92 | 1.39 | 9.30 |
ECe Validation Data (dS m−1) | ||||||
Soil Layer (m) | N | Min | Max | Mean | SD | Cv |
All soil layers | 57 | 5.29 | 15.70 | 10.55 | 2.94 | 27.87 |
0.0–0.3 | 19 | 5.29 | 11.80 | 7.47 | 1.82 | 24.39 |
0.3–0.6 | 19 | 8.00 | 12.59 | 10.89 | 1.55 | 14.23 |
0.6–0.9 | 19 | 10.90 | 15.70 | 13.38 | 1.46 | 10.91 |
Surveys | Type of Inversion | RMSE (dS m−1) | ME (dS m−1) | Lin’s CCC | R2 |
---|---|---|---|---|---|
All surveys | IN | 1.91 | 0.85 | 0.84 | 0.77 |
TL | 1.38 | 0.17 | 0.90 | 0.81 | |
Validation surveys (all surveys except third survey) | IN | 2.10 | 1.15 | 0.81 | 0.77 |
TL | 1.45 | 0.24 | 0.88 | 0.79 | |
First survey | IN | 1.48 | 0.04 | 0.93 | 0.87 |
TL | 1.52 | 0.95 | 0.92 | 0.93 | |
Second survey | IN | 3.65 | 3.48 | 0.55 | 0.96 |
TL | 1.24 | −0.26 | 0.90 | 0.92 | |
Third (calibration) survey | IN | 1.15 | 0.00 | 0.94 | 0.88 |
TL | 1.14 | 0.00 | 0.94 | 0.89 | |
Fourth survey | IN | 1.94 | 0.63 | 0.79 | 0.69 |
TL | 1.58 | 0.06 | 0.84 | 0.73 | |
Fifth survey | IN | 1.62 | 0.57 | 0.86 | 0.79 |
TL | 1.35 | −0.07 | 0.89 | 0.80 | |
Sixth survey | IN | 1.96 | 1.81 | 0.81 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltarabily, M.G.; Amer, A.; Farzamian, M.; Bouksila, F.; Elkiki, M.; Selim, T. Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions. Land 2024, 13, 225. https://doi.org/10.3390/land13020225
Eltarabily MG, Amer A, Farzamian M, Bouksila F, Elkiki M, Selim T. Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions. Land. 2024; 13(2):225. https://doi.org/10.3390/land13020225
Chicago/Turabian StyleEltarabily, Mohamed G., Abdulrahman Amer, Mohammad Farzamian, Fethi Bouksila, Mohamed Elkiki, and Tarek Selim. 2024. "Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions" Land 13, no. 2: 225. https://doi.org/10.3390/land13020225