Role of B Cells in Breaking and Maintaining Tolerance to Clotting Factor VIII in Congenital and Acquired Hemophilia A
Abstract
:1. Introduction
2. Congenital Hemophilia A vs. Acquired Hemophilia
3. FVIII Structure, Function, and Inhibition
4. Characteristics of Allo- and Auto-Antibody Response to FVIII
5. Anti-FVIII Antibody Response—A Break in Tolerance
6. Development of Inhibitor Antibodies
7. Role of Memory B Cells in Inhibitor Production
8. Clinical Treatments for Inhibitor Antibodies
9. Effect of Tolerance Induction on Memory B Cells
10. Lessons from Anti-CD20 Therapy
11. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ullman, M.; Hoots, W.K. Assessing the costs for clinical care of patients with high-responding factor VIII and IX inhibitors. Haemophilia 2006, 12 (Suppl. S6), 74–79; discussion 79–80. [Google Scholar] [CrossRef]
- Pandey, G.S.; Tseng, S.C.; Howard, T.E.; Sauna, Z.E. Detection of intracellular Factor VIII protein in peripheral blood mononuclear cells by flow cytometry. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Scandella, D.H. Properties of anti-factor VIII inhibitor antibodies in hemophilia A patients. Semin. Thromb. Hemost. 2000, 26, 137–142. [Google Scholar] [CrossRef]
- Jacquemin, M.; Lavend’homme, R.; Benhida, A.; Vanzieleghem, B.; d’Oiron, R.; Lavergne, J.-M.; Brackmann, H.H.; Schwaab, R.; VandenDriessche, T.; Chuah, M.K.; et al. A novel cause of mild/moderate hemophilia A: Mutations scattered in the factor VIII C1 domain reduce factor VIII binding to von Willebrand factor. Blood 2000, 96, 958–965. [Google Scholar]
- Saenko, E.L.; Scandella, D. A mechanism for inhibition of factor VIII binding to phospholipid by von Willebrand factor. J. Biol. Chem. 1995, 270, 13826–13833. [Google Scholar]
- Fijnvandraat, K.; Celie, P.H.; Turenhout, E.A.; Jan, W.; van Mourik, J.A.; Mertens, K.; Peters, M.; Voorberg, J. A human alloantibody interferes with binding of factor IXa to the factor VIII light chain. Blood 1998, 91, 2347–2352. [Google Scholar]
- Jacquemin, M.; Benhida, A.; Peerlinck, K.; Desqueper, B.; Vander Elst, L.; Lavend’homme, R.; d’Oiron, R.; Schwaab, R.; Bakkus, M.; Thielemans, K.; et al. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Blood 2000, 95, 156–163. [Google Scholar]
- Raut, S.; Villard, S.; Grailly, S.; Gilles, J.-G.; Granier, C.; Saint-Remy, J.-M.; Barrowcliffe, T.W. Anti-heavy-chain monoclonal antibodies directed to the acidic regions of the factor VIII molecule inhibit the binding of factor VIII to phospholipids and von Willebrand factor. Thromb. Haemost. 2003, 90, 385–397. [Google Scholar]
- Van den Brink, E.N.; Bril, W.S.; Turenhout, E.A.M.; Zuurveld, M.; Bovenschen, N.; Peters, M.; Yee, T.T.; Mertens, K.; Lewis, D.A.; Ortel, T.L.; et al. Two classes of germline genes both derived from the V(H)1 family direct the formation of human antibodies that recognize distinct antigenic sites in the C2 domain of factor VIII. Blood 2002, 99, 2828–2834. [Google Scholar] [CrossRef]
- Jacquemin, M.G.; Desqueper, B.G.; Benhida, A.; Vander Elst, L.; Hoylaerts, M.F.; Bakkus, M.; Thielemans, K.; Arnout, J.; Peerlinck, K.; Gilles, J.G.; et al. Mechanism and kinetics of factor VIII inactivation: Study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor. Blood 1998, 92, 496–506. [Google Scholar]
- Spiegel, P.C.; Jacquemin, M.; Saint-Remy, J.M.; Stoddard, B.L.; Pratt, K.P. Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: Identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 2001, 98, 13–19. [Google Scholar] [CrossRef]
- Kurnik, K.; Bidlingmaier, C.; Engl, W.; Chehadeh, H.; Reipert, B.; Auerswald, G. New early prophylaxis regimen that avoids immunological danger signals can reduce FVIII inhibitor development. Haemophilia 2010, 16, 256–262. [Google Scholar] [CrossRef]
- Lewis, K.B.; Hughes, R.J.; Epstein, M.S.; Josephson, N.C.; Kempton, C.L.; Kessler, C.M.; Key, N.S.; Howard, T.E.; Kruse-Jarres, R.; Lusher, J.M.; et al. Phenotypes of allo- and autoimmune antibody responses to FVIII characterized by surface plasmon resonance. PLoS One 2013, 8, e61120. [Google Scholar]
- Kessel, C.; Königs, C.; Linde, R.; Escuriola-Ettinghausen, C.; Stoll, H.; Klingebiel, T.; Dietrich, U.; Kreuz, W. Humoral immune responsiveness to a defined epitope on factor VIII before and after B cell ablation with rituximab. Mol. Immunol. 2008, 46, 8–15. [Google Scholar] [CrossRef]
- Green, D.; Blanc, J.; Foiles, N. Spontaneous inhibitors of factor VIII: kinetics of inactivation of human and porcine factor VIII. J. Lab. Clin. Med. 1999, 133, 260–264. [Google Scholar]
- Prescott, R.; Nakai, H.; Saenko, E.L.; Scharrer, I.; Nilsson, I.M.; Humphries, J.E.; Hurst, D.; Bray, G.; Scandella, D. The Inhibitor Antibody Response Is More Complex in Hemophilia A Patients Than in Most Nonhemophiliacs With Factor VIII Autoantibodies. Blood 1997, 89, 3663–3671. [Google Scholar]
- Reding, M.T.; Wu, H.; Krampf, M.; Okita, D.K.; Diethelm-Okita, B.M.; Key, N.S.; Conti-Fine, B.M. CD4+ T cell response to factor VIII in hemophilia A, acquired hemophilia, and healthy subjects. Thromb. Haemost. 1999, 82, 509–515. [Google Scholar]
- William, J.; Euler, C.; Shlomchik, M.J. Short-lived plasmablasts dominate the early spontaneous rheumatoid factor response: Differentiation pathways, hypermutating cell types, and affinity maturation outside the germinal center. J. Immunol. 2005, 174, 6879–6887. [Google Scholar]
- William, J.; Euler, C.; Christensen, S.; Shlomchik, M.J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 2002, 297, 2066–2070. [Google Scholar] [CrossRef]
- Berland, R.; Fernandez, L.; Kari, E.; Han, J.-H.; Lomakin, I.; Akira, S.; Wortis, H.H.; Kearney, J.F.; Ucci, A.A.; Imanishi-Kari, T. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 2006, 25, 429–440. [Google Scholar] [CrossRef]
- Groom, J.R.; Fletcher, C.A.; Walters, S.N.; Grey, S.T.; Watt, S.V.; Sweet, M.J.; Smyth, M.J.; Mackay, C.R.; Mackay, F. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 2007, 204, 1959–1971. [Google Scholar] [CrossRef] [Green Version]
- Herlands, R.A.; Christensen, S.R.; Sweet, R.A.; Hershberg, U.; Shlomchik, M.J. T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 2008, 29, 249–260. [Google Scholar] [CrossRef]
- Zou, Y.-R.; Diamond, B. Fate determination of mature autoreactive B cells. Adv. Immunol. 2013, 118, 1–36. [Google Scholar]
- Meffre, E. The establishment of early B cell tolerance in humans: Lessons from primary immunodeficiency diseases. Ann. NY Acad. Sci. 2011, 1246, 1–10. [Google Scholar]
- Hardy, R.R.; Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 2001, 19, 595–621. [Google Scholar] [CrossRef]
- André, S.; Meslier, Y.; Dimitrov, J.D.; Repessé, Y.; Kaveri, S.V.; Lacroix-Desmazes, S.; Dasgupta, S. A cellular viewpoint of anti-FVIII immune response in hemophilia A. Clin. Rev. Allergy Immunol. 2009, 37, 105–113. [Google Scholar] [CrossRef]
- Porada, C.D.; Sanada, C.; Kuo, C.-J.; Colletti, E.; Mandeville, W.; Hasenau, J.; Zanjani, E.D.; Moot, R.; Doering, C.; Spencer, H.T.; et al. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. Exp. Hematol. 2011, 39, 1124–1135. [Google Scholar] [CrossRef]
- Kuether, E.L.; Schroeder, J.A.; Fahs, S.A.; Cooley, B.C.; Chen, Y.; Montgomery, R.R.; Wilcox, D.A.; Shi, Q. Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-factor VIII immunity. J. Thromb. Haemost. 2012, 10, 1570–1580. [Google Scholar] [CrossRef]
- Navarrete, A.; Dasgupta, S.; Delignat, S.; Caligiuri, G.; Christophe, O.D.; Bayry, J.; Nicoletti, A.; Kaveri, S.V.; Lacroix-Desmazes, S. Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A. J. Thromb. Haemost. 2009, 7, 1816–1823. [Google Scholar] [CrossRef]
- Hausl, C.; Ahmad, R.U.; Schwarz, H.P.; Muchitsch, E.M.; Turecek, P.L.; Dorner, F.; Reipert, B.M. Preventing restimulation of memory B cells in hemophilia A: A potential new strategy for the treatment of antibody-dependent immune disorders. Blood 2004, 104, 115–122. [Google Scholar] [CrossRef]
- Qian, J.; Borovok, M.; Bi, L.; Kazazian, H.H., Jr.; Hoyer, L.W. Inhibitor antibody development and T cell response to human factor VIII in murine hemophilia A. Thromb. Haemost. 1999, 81, 240–244. [Google Scholar]
- Qian, J.; Collins, M.; Sharpe, A.H.; Hoyer, L.W. Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood 2000, 95, 1324–1329. [Google Scholar]
- Peng, B.; Ye, P.; Blazar, B.R.; Freeman, G.J.; Rawlings, D.J.; Ochs, H.D.; Miao, C.H. Transient blockade of the inducible costimulator pathway generates long-term tolerance to factor VIII after nonviral gene transfer into hemophilia A mice. Blood 2008, 112, 1662–1672. [Google Scholar] [CrossRef]
- Reipert, B.M.; Sasgary, M.; Ahmad, R.U.; Auer, W.; Turecek, P.L.; Schwarz, H.P. Blockade of CD40/CD40 ligand interactions prevents induction of factor VIII inhibitors in hemophilic mice but does not induce lasting immune tolerance. Thromb. Haemost. 2001, 86, 1345–1352. [Google Scholar]
- Rossi, G.; Sarkar, J.; Scandella, D. Long-term induction of immune tolerance after blockade of CD40-CD40L interaction in a mouse model of hemophilia A. Blood 2001, 97, 2750–2757. [Google Scholar] [CrossRef]
- Bray, G.L.; Kroner, B.L.; Arkin, S.; Aledort, L.W.; Hilgartner, M.W.; Eyster, M.E.; Ragni, M.V.; Goedert, J.J. Loss of high-responder inhibitors in patients with severe hemophilia A and human immunodeficiency virus type 1 infection: A report from the Multi-Center Hemophilia Cohort Study. Am. J. Hematol. 1993, 42, 375–379. [Google Scholar]
- Vanzieleghem, B.; Gilles, J.G.; Desqueper, B.; Vermylen, J.; Saint-Remy, J.M. Humanized severe combined immunodeficient mice as a potential model for the study of tolerance to factor VIII. Thromb. Haemost. 2000, 83, 833–839. [Google Scholar]
- Gilles, J.G.; Saint-Remy, J.M. Healthy subjects produce both anti-factor VIII and specific anti-idiotypic antibodies. J. Clin. Invest. 1994, 94, 1496–1505. [Google Scholar] [CrossRef]
- Gilles, J.G.; Vanzieleghem, B.; Saint-Remy, J.M. Factor VIII Inhibitors. Natural autoantibodies and anti-idiotypes. Semin. Thromb. Hemost. 2000, 26, 151–155. [Google Scholar] [CrossRef]
- Hu, G.; Guo, D.; Key, N.S.; Conti-fine, B.M. Cytokine production by CD4 + T cells specific for coagulation factor VIII in healthy subjects and haemophilia A patients. Thromb. Hemost. 2007, 97, 788–794. [Google Scholar]
- Sachen, K.L.; Strohman, M.J.; Singletary, J.; Alizadeh, A.A.; Kattah, N.H.; Lossos, C.; Mellins, E.D.; Levy, S.; Levy, R. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 2012, 120, 4182–4190. [Google Scholar] [CrossRef]
- Herlands, R.A.; William, J.; Hershberg, U.; Shlomchik, M.J. Anti-chromatin antibodies drive in vivo antigen-specific activation and somatic hypermutation of rheumatoid factor B cells at extrafollicular sites. Eur. J. Immunol. 2007, 37, 3339–3351. [Google Scholar] [CrossRef]
- Hausl, C.; Maier, E.; Schwarz, H.P.; Ahmad, R.U.; Turecek, P.L.; Dorner, F.; Reipert, B.M. Long-term persistence of anti-factor VIII antibody-secreting cells in hemophilic mice after treatment with human factor VIII. Thromb. Haemost. 2002, 87, 840–845. [Google Scholar]
- O’Connor, B.P.; Gleeson, M.W.; Noelle, R.J.; Erickson, L.D. The rise and fall of long-lived humoral immunity: Terminal differentiation of plasma cells in health and disease. Immunol. Rev. 2003, 194, 61–76. [Google Scholar]
- Slocombe, T.; Brown, S.; Miles, K.; Gray, M.; Barr, T.A.; Gray, D. Plasma cell homeostasis: the effects of chronic antigen stimulation and inflammation. J. Immunol. 2013, 191, 3128–3138. [Google Scholar] [CrossRef]
- Van Helden, P.M.W.; Kaijen, P.H.P.; Fijnvandraat, K.; van den Berg, H.M.; Voorberg, J. Factor VIII-specific memory B cells in patients with hemophilia A. J. Thromb. Haemost. 2007, 5, 2306–2308. [Google Scholar] [CrossRef]
- Hausl, C.; Ahmad, R.U.; Sasgary, M.; Doering, C.B.; Lollar, P.; Richter, G.; Schwarz, H.P.; Turecek, P.L.; Reipert, B.M. High-dose factor VIII inhibits factor VIII-specific memory B cells in hemophilia A with factor VIII inhibitors. Blood 2005, 106, 3415–3422. [Google Scholar] [CrossRef]
- Pordes, A.G.; Baumgartner, C.K.; Allacher, P.; Ahmad, R.U.; Weiller, M.; Schiviz, A.N.; Schwarz, H.P.; Reipert, B.M. T cell-independent restimulation of FVIII-specific murine memory B cells is facilitated by dendritic cells together with toll-like receptor 7 agonist. Blood 2011, 118, 3154–3162. [Google Scholar] [CrossRef]
- Allacher, P.; Baumgartner, C.K.; Pordes, A.G.; Ahmad, R.U.; Schwarz, H.P.; Reipert, B.M. Stimulation and inhibition of FVIII-specific memory B-cell responses by CpG-B (ODN 1826), a ligand for Toll-like receptor 9. Blood 2011, 117, 259–267. [Google Scholar] [CrossRef]
- Cerutti, A.; Cols, M.; Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 2013, 13, 118–132. [Google Scholar] [CrossRef]
- Sweet, R.A.; Cullen, J.L.; Shlomchik, M.J. Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses. J. Immunol. 2013, 190, 1974–1981. [Google Scholar] [CrossRef]
- Wei, C.; Anolik, J.; Cappione, A.; Zheng, B.; Pugh-Bernard, A.; Brooks, J.; Lee, E.H.; Milner, E.C.; Sanz, I. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 2007, 178, 6624–6633. [Google Scholar]
- Cappione, A.; Anolik, J.H.; Pugh-Bernard, A.; Barnard, J.; Dutcher, P.; Silverman, G.; Sanz, I. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 2005, 115, 3205–3216. [Google Scholar] [CrossRef]
- Huth-Kühne, A.; Baudo, F.; Collins, P.; Ingerslev, J.; Kessler, C.M.; Lévesque, H.; Castellano, M.E.; Shima, M.; St-Louis, J. International recommendations on the diagnosis and treatment of patients with acquired hemophilia A. Haematologica 2009, 94, 566–575. [Google Scholar] [CrossRef]
- Benson, G.; Auerswald, G.; Elezović, I.; Lambert, T.; Ljung, R.; Morfini, M.; Remor, E.; Salek, S.Z. Immune tolerance induction in patients with severe hemophilia with inhibitors: Expert panel views and recommendations for clinical practice. Eur. J. Haematol. 2012, 88, 371–379. [Google Scholar] [CrossRef]
- Hay, C.R.M.; DiMichele, D.M. The principal results of the International Immune Tolerance Study: A randomized dose comparison. Blood 2012, 119, 1335–1344. [Google Scholar] [CrossRef]
- Dimichele, D. The North American Immune Tolerance Registry: Contributions to the thirty-year experience with immune tolerance therapy. Haemophilia 2009, 15, 320–328. [Google Scholar] [CrossRef]
- Collins, P.W. Therapeutic challenges in acquired factor VIII deficiency. Hematology Am. Soc. Hematol. Educ. Program 2012, 2012, 369–374. [Google Scholar]
- Van Helden, P.M.W.; Van Haren, S.D.; Fijnvandraat, K.; van den Berg, H.M.; Voorberg, J. Factor VIII-specific B cell responses in haemophilia A patients with inhibitors. Haemophilia 2010, 16, 35–43. [Google Scholar]
- Irigoyen, M.B.; Felippo, M.E.; Primiani, L.; Candela, M.; Bianco, R.P.; De Bracco, M.M.; Galassi, N. Severe haemophilia A patients have reduced numbers of peripheral memory B cells. Haemophilia 2012, 18, 437–443. [Google Scholar] [CrossRef]
- Garvey, B. Rituximab in the treatment of autoimmune haematological disorders. Br. J. Haematol. 2008, 141, 149–169. [Google Scholar] [CrossRef]
- Cartron, G. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcgamma RIIIa gene. Blood 2002, 99, 754–758. [Google Scholar] [CrossRef]
- Uchida, J.; Hamaguchi, Y.; Oliver, J.A.; Ravetch, J.V.; Poe, J.C.; Haas, K.M.; Tedder, T.F. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 2004, 199, 1659–1669. [Google Scholar]
- Singh, A.G.; Hamarneh, I.S.; Karwal, M.W.; Lentz, S.R. Durable responses to rituximab in acquired factor VIII deficiency. Thromb. Haemost. 2011, 106, 172–174. [Google Scholar] [CrossRef]
- Aggarwal, A.; Grewal, R.; Green, R.J.; Boggio, L.; Green, D.; Weksler, B.B.; Wiestner, A.; Schechter, G.P. Rituximab for autoimmune haemophilia: A proposed treatment algorithm. Haemophilia 2005, 11, 13–19. [Google Scholar] [CrossRef]
- Carcao, M.; St Louis, J.; Poon, M.-C.; Grunebaum, E.; Lacroix, S.; Stain, A.M.; Blanchette, V.S.; Rivard, G.E. Rituximab for congenital haemophiliacs with inhibitors: A Canadian experience. Haemophilia 2006, 12, 7–18. [Google Scholar]
- Stasi, R.; Brunetti, M.; Stipa, E.; Amadori, S. Selective B-cell depletion with rituximab for the treatment of patients with acquired hemophilia. Blood 2004, 103, 4424–4428. [Google Scholar]
- Sack, B.K.; Merchant, S.; Markusic, D.M.; Nathwani, A.C.; Davidoff, A.M.; Byrne, B.J.; Herzog, R.W. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy. PLoS One 2012, 7, e37671. [Google Scholar]
- Wiestner, A.; Cho, H.J.; Asch, A.S.; Michelis, M.A.; Zeller, J.A.; Peerschke, E.I.B.; Weksler, B.B.; Schechter, G.P. Rituximab in the treatment of acquired factor VIII inhibitors. Blood 2002, 100, 3426–3428. [Google Scholar] [CrossRef]
- Gong, Q.; Ou, Q.; Ye, S.; Lee, W.P.; Diehl, L.; Lin, W.Y.; Hu, Z.; Lu, Y.; Chen, Y.; Wu, Y.; et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 2005, 174, 817–826. [Google Scholar]
- Anolik, J.H.; Barnard, J.; Owen, T.; Zheng, B.; Kemshetti, S.; Looney, R.J.; Sanz, I. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 2007, 56, 3044–3056. [Google Scholar] [CrossRef]
- Bouaziz, J.-D.; Yanaba, K.; Tedder, T.F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 2008, 224, 201–214. [Google Scholar] [CrossRef]
- Sun, F.; Ladha, S.S.; Yang, L.; Liu, Q.; Shi, S.X.Y.; Su, N.; Bomprezzi, R.; Shi, F.D. Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve 2014, 49, 487–494. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Actor, A.M.; Holley, C.K.; Csencsits-Smith, K. Role of B Cells in Breaking and Maintaining Tolerance to Clotting Factor VIII in Congenital and Acquired Hemophilia A. Antibodies 2014, 3, 192-204. https://doi.org/10.3390/antib3020192
Actor AM, Holley CK, Csencsits-Smith K. Role of B Cells in Breaking and Maintaining Tolerance to Clotting Factor VIII in Congenital and Acquired Hemophilia A. Antibodies. 2014; 3(2):192-204. https://doi.org/10.3390/antib3020192
Chicago/Turabian StyleActor, Amanda M., Claire K. Holley, and Keri Csencsits-Smith. 2014. "Role of B Cells in Breaking and Maintaining Tolerance to Clotting Factor VIII in Congenital and Acquired Hemophilia A" Antibodies 3, no. 2: 192-204. https://doi.org/10.3390/antib3020192
APA StyleActor, A. M., Holley, C. K., & Csencsits-Smith, K. (2014). Role of B Cells in Breaking and Maintaining Tolerance to Clotting Factor VIII in Congenital and Acquired Hemophilia A. Antibodies, 3(2), 192-204. https://doi.org/10.3390/antib3020192