Next Article in Journal
Gentle Slow Start to Alleviate TCP Incast in Data Center Networks
Next Article in Special Issue
Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation
Previous Article in Journal
Analytic Loss Minimization: Theoretical Framework of a Second Order Optimization Method
Previous Article in Special Issue
Positive Solutions of a Fractional Thermostat Model with a Parameter
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some Fractional Integral Inequalities of Hermite-Hadamard’s Type through Convexity

1
Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
2
Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
3
Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51482, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2019, 11(2), 137; https://doi.org/10.3390/sym11020137
Submission received: 7 January 2019 / Revised: 20 January 2019 / Accepted: 22 January 2019 / Published: 26 January 2019
(This article belongs to the Special Issue Fractional Differential Equations: Theory, Methods and Applications)

Abstract

:
In this paper, we incorporate the notion of convex function and establish new integral inequalities of type Hermite–Hadamard via Riemann—Liouville fractional integrals. It is worth mentioning that the obtained inequalities generalize Hermite–Hadamard type inequalities presented by Özdemir, M.E. et. al. (2013) and Sarikaya, M.Z. et. al. (2011).

1. Introduction and Preliminaries

One of the generalizations of classical differentiation and integration is fractional calculus. The contribution of fractional calculus presents in diverse fields, such as pure mathematics, economics, and physical and engineering sciences. The role of inequalities found to be very significant in all fields of mathematics and an attractive and active field of research. Recently, convexity has become the major part in different fields of science. A function g : I R R is named as convex, if the inequality
g ω x + 1 ω y ω g x + 1 ω g y
holds for all x , y I and ω 0 , 1 . In fact, large number of articles has been written on inequalities using classical convexity, but one of the most important and well known is Hermite– Hadamard’s inequality. In [1], this double inequality is stated as: Let g : I R R be a convex function on the interval I of real numbers and x , y I with x < y . Then,
g x + y 2 1 y x x y g ( t ) d t g ( x ) + g ( y ) 2 .
Both inequalities hold in the reversed direction for g to be concave. In the field of mathematical inequalities, Hermite–Hadamard’s inequality has been given more attention by many mathematician due to its applicability and usefulness. Many researchers have extended the Hermite–Hadamard’s inequality, to different forms using the classical convex function. For further details involving Hermite–Hadamard’s type inequality on different concept of convex function and generalizations, the interested reader is referred to [2,3,4,5,6,7,8,9,10,11,12] and references therein.
First, we recall some important definitions and results that will be used in the sequel.
Definition 1.
For g L 1 [ x , y ] . The left-sided and right-sided Riemann–Liouville fractional integrals of order α > 0 with a 0 are defined as J a + α g ( x ) = 1 Γ ( α ) a x ( x t ) α 1 g ( t ) d t ,   f o r   a < x , and J b α g ( x ) = 1 Γ ( α ) x b ( t x ) α 1 g ( t ) d t , f o r x < b , respectively, where Γ ( . ) is Gamma function and is defined as Γ ( α ) = 0 e u u α 1 d u . It is to be noted that J a + 0 g ( x ) = J b 0 g ( x ) = g ( x ) .
In the case of α = 1 , the fractional integral reduces to the classical integral.
Properties relating to these operators can be found in [7]. For useful details on Hermite–Hadamard type inequalities connected with fractional integral inequalities, the readers are directed to [8,9,10,11,12,13,14].
In [15], Özdemir et. al proved some inequalities related to Hermite–Hadamard’s inequalities for functions whose second derivatives in absolute value at certain powers are s-convex functions as follows:
Theorem 1.
Let f : I 0 , R be a twice differentiable mapping on I 0 (where I 0 is the interior of I) such that f L a , b , where a , b I with a < b . If | f | is s-convex on [ a , b ] , for some fixed s 0 , 1 , then the following inequality holds:
f a + b 2 1 b a a b f ( x ) d x b a 2 8 s + 1 s + 2 s + 3 × | f ( a ) | + s + 1 s + 2 | f ( a + b 2 ) | + | f ( b ) | 1 + s + 2 2 1 s b a 2 8 s + 1 s + 2 s + 3 | f ( a ) | + | f ( b ) | .
Corollary 1.
Under the assumptions of Theorem 1, if s = 1 , then we get
f a + b 2 1 b a a b f ( x ) d x b a 2 | f ( a ) | + | f ( b ) | 48 .
Theorem 2.
Let f : I 0 , R be a twice differentiable mapping on I 0 (where I 0 is the interior of I) such that f L a , b , where a , b I with a < b . If | f | is s-concave on [ a , b ] , for some fixed s 0 , 1 and for q > 1 with 1 p + 1 q , then the following inequality holds:
1 b a a b f ( x ) d x f a + b 2 b a 2 16 2 s q 2 p + 1 1 / p f 3 a + b 4 + f a + 3 b 4 .
Corollary 2.
Under the assumptions of Theorem 2, if we choose s = 1 and 1 3 < 1 2 p + 1 1 / p < 1 , for p > 1 , we have
1 b a a b f ( x ) d x f a + b 2 b a 2 16 f 3 a + b 4 + f a + 3 b 4 .
In [6], Sarikaya et al. proved some inequalities related to Hermite–Hadamard’s inequalities for functions whose derivatives in absolute value at certain powers are convex as follows:
Theorem 3.
Let I R be an open interval, a , b I with a < b and f : [ a , b ] R be a twice differentiable function such that f is integrable and 0 < λ 1 on ( a , b ) with a < b . If | f | q is convex on [ a , b ] , for q 1 , then the following inequality holds:
λ 1 f a + b 2 λ f a + f b 2 + 1 b a a b f ( x ) d x b a 2 2 λ 3 3 + 1 3 λ 24 1 1 / q × λ 4 6 + 3 8 λ 3 × 2 6 f ( a ) q + 2 λ λ 3 6 + 5 16 λ 3 × 2 6 f ( b ) q 1 / q + 1 + λ 1 λ 3 6 + 48 λ 27 3 × 2 6 f ( a ) q + λ 4 6 + 3 8 λ 3 × 2 6 f ( b ) q 1 / q , f o r 0 λ 1 / 2 ; b a 2 2 3 λ 1 24 1 1 / q 8 λ 3 3 × 2 6 f ( a ) q + 16 λ 5 3 × 2 6 f ( b ) q 1 / q + 16 λ 5 3 × 2 6 f ( a ) q + 8 λ 3 3 × 2 6 f ( b ) q 1 / q , f o r 1 / 2 λ 1 .
Corollary 3.
Under the assumptions of Theorem 3, if λ = 0 , then we get the following inequality,
1 b a a b f ( x ) d x f a + b 2 b a 2 48 5 | f ( a ) | q + 3 | f ( b ) | q 8 1 / q + b a 2 48 3 | f ( a ) | q + 5 | f ( a ) | q 8 1 / q .
The aim of this article is to establish Hermite–Hadamard type inequalities for Riemann–Liouville fractional integral using the convexity as well as concavity, for functions whose absolute values of second derivative are convex. We derive a general integral inequality for Riemann–Liouville fractional integral.

2. Main Results

To prove our main results, we need to prove the following lemma, which plays the key role in the next developments:
Lemma 1.
Let f : [ a , b ] R be a twice differentiable function on ( a , b ) with a < b . If f L a , b and n N , then the following equality for fractional integrals holds with 0 < α 1 :
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b = b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b + f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( 1 ω n + 1 a + n + ω n + 1 b ) + f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω .
Proof. 
To compute each integral, we use integration by parts successively and get
P 1 = 0 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω = n + 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω a b | 0 1 + n + 1 a + 1 a b 0 1 1 ω α f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω = n + 1 b a f n n + 1 a + 1 n + 1 b + n + 1 α + 1 a b 2 1 ω α f ( 1 + w n + 1 a + 1 ω n + 1 b ) d ω a b | 0 1 + n + 1 α a b 0 1 1 ω α f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω = n + 1 b a f n n + 1 a + 1 n + 1 b + n + 1 α + 1 a b 2 a b f n n + 1 a + 1 n + 1 b n + 1 α b a 0 1 1 ω α 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω = n + 1 b a f n n + 1 a + 1 n + 1 b n + 1 2 α + 1 b a 2 f n n + 1 a + 1 n + 1 b + n + 1 α + 2 b a α + 2 Γ ( α + 2 ) J n n + 1 a + 1 n + 1 b α f ( a ) . P 2 = 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω = 2 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω ) b a | 0 1 + 2 α + 1 b a 0 1 α + 1 1 + ω α 2 α α 2 α f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω ) = n + 1 b a 1 + 2 α α 1 f 1 n + 1 a + n n + 1 b + n + 1 α + 1 b a 0 1 α + 1 1 + ω α 2 α α 2 α f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω ) = n + 1 b a 1 + 2 α α 1 f 1 n + 1 a + n n + 1 b + n + 1 α + 1 b a n + 1 α + 1 1 + ω α 2 α α 2 α f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω ) b a | 0 1 α n + 1 α + 1 b a 0 1 1 + ω α 1 f 1 ω n + 1 a + n + ω n + 1 b d ω = n + 1 b a 1 + 2 α α 1 f 1 n + 1 a + n n + 1 b + n + 1 2 α + 1 b a 2 2 α 1 × f 1 n + 1 a + n n + 1 b n + 1 α + 2 b a α + 2 Γ ( α + 2 ) J 1 n + 1 a + n n + 1 b α f ( b ) .
Analogously:
P 3 = n + 1 b a f n n + 1 a + 1 n + 1 b n + 1 2 α + 1 b a 2 f n n + 1 a + 1 n + 1 b + n + 1 α + 2 b a α + 2 Γ ( α + 2 ) J n n + 1 a + 1 n + 1 b α f ( a ) .
P 4 = n + 1 b a 2 α 1 α 1 f 1 n + 1 a + n n + 1 b n + 1 2 α + 1 b a 2 × 2 α 1 f 1 n + 1 a + n n + 1 b + n + 1 α + 2 b a α + 2 Γ ( α + 2 ) J 1 n + 1 a + n n + 1 b + α f ( b ) .
Adding above equalities, we get
n + 1 b a f n n + 1 a + 1 n + 1 b Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) = P 1 + P 2 + P 3 + P 4 .
This completes the proof. □
Theorem 4.
Let f : [ a , b ] R be a twice differentiable function on ( a , b ) with a < b and n N * . If f L a , b and | f | is convex on [ a , b ] , then the following inequality for Riemann–Liouville fractional integrals holds:
Γ ( α + 2 ) n + 1 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 2 α 1 2 + α 1 α n + 1 α + 3 α + 1 α + 2 ( | f ( a ) | + | f ( b ) | ) .
Proof. 
Using Lemma 1 and properties of modulus, we have
Γ ( α + 2 ) n + 1 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 α + 1 i = 1 4 | P i | .
Now, using convexity of | f | , we have
Γ ( α + 2 ) n + 1 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( n + ω n + 1 a + 1 ω n + 1 b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( 1 ω n + 1 a + n + ω n + 1 b ) d ω = b v a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 | f ( n + ω n + 1 a + 1 ω n + 1 b ) | d ω + b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 | f ( 1 ω n + 1 a + n + ω n + 1 b ) | d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) | f ( n + ω n + 1 a + 1 ω n + 1 b ) | d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) | f ( 1 ω n + 1 a + n + ω n + 1 b ) | d ω b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 n + ω n + 1 f ( a ) + 1 ω n + 1 f ( b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 1 ω α + 1 1 ω n + 1 f ( a ) + n + ω n + 1 f ( b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) × n + ω n + 1 f ( a ) + 1 ω n + 1 f ( b ) d ω + b a 2 n + 1 α + 3 α + 1 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) × 1 ω n + 1 f ( a ) + n + ω n + 1 f ( b ) d ω .
This completes the proof. □
Remark 1.
If we take α = n = 1 in Theorem 4, then the inequality (5) reduces to the inequality (1). The inequality (1) was obtained by Ozdemir [15].
The corresponding version for powers of the absolute value of the derivative is incorporated in the following theorem.
Theorem 5.
Let f : [ a , b ] R be a twice differentiable function on ( a , b ) with a < b and n N . If f L a , b and | f | q is convex on [ a , b ] , then the following inequality for Riemann–Liouville fractional integrals holds with 0 < α 1 :
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 ( α + 1 ) U 5 1 1 / q U 1 | f ( a ) | q + U 2 | f ( b ) | q n + 1 1 / q + U 2 | f ( a ) | q + U 1 | f ( b ) | q n + 1 1 / q + U 6 1 1 / q U 3 | f ( a ) | q + U 4 | f ( b ) | q n + 1 1 / q + U 4 | f ( a ) | q + U 3 | f ( b ) | q n + 1 1 / q .
where
U 1 = n α + 3 n + 1 α + 2 α + 3 , U 2 = 1 α + 3 , U 3 = 6 + 2 α α 3 + 5 α 6 + 3 n α + 3 2 + 2 α 2 + α 1 α 6 α + 2 α + 3 U 4 = 3 α + 4 + 2 α 12 + α 1 α α + 4 3 α + 2 α + 3 , U 5 = 1 α + 2 , a n d U 6 = 2 α + 2 1 α + 2 2 α + 1 + α 2 α 1 + 2 α 1 3 α 2 α 1 .
Proof. 
Using Lemma 1, well-known power-mean integral inequality and the fact that | f | q is convex, we have
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω 1 1 / q × 0 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω 1 1 / q × 0 1 1 ω α + 1 f ( 1 ω n + 1 a + n + ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( n + ω n + 1 a + 1 ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( 1 ω n + 1 a + n + ω n + 1 b ) q d ω 1 / q
= b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω 1 1 / q 0 1 1 ω α + 1 f ( n + ω n + 1 a + 1 ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω 1 1 / q 0 1 1 ω α + 1 f ( 1 ω n + 1 a + n + ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( n + ω n + 1 a + 1 ω n + 1 b ) q d ω 1 / q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) f ( 1 ω n + 1 a + n + ω n + 1 b ) q d ω 1 / q b a 2 n + 1 α + 3 q ( α + 1 ) 1 α + 2 1 1 / q 0 1 1 ω α + 1 n + ω f ( a ) q + 1 ω f ( b ) q d ω 1 / q + b a 2 n + 1 α + 3 q ( α + 1 ) 1 α + 2 1 1 / q 0 1 1 ω α + 1 1 ω f ( a ) q + n + ω f ( b ) q d ω 1 / q + b a 2 n + 1 α + 3 q ( α + 1 ) 2 α + 2 1 α + 2 2 α + 1 + α 2 α 1 + 2 α 1 3 α 2 α 1 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) n + ω f ( a ) q + 1 ω f ( b ) q d ω 1 / q + b a 2 n + 1 α + 3 q ( α + 1 ) 2 α + 2 1 α + 2 2 α + 1 + α 2 α 1 + 2 α 1 3 α 2 α 1 1 1 / q × 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) n + ω f ( a ) q + 1 ω f ( b ) q d ω 1 / q .
Simple computations give
0 1 1 ω α + 1 n + ω d ω = n α + 3 n + 1 α + 2 α + 3 = U 1 , 0 1 1 ω α + 1 1 ω d ω = 1 α + 3 = U 2 ,
0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) n + ω d ω = 6 + 2 α α 3 + 5 α 6 + 3 n α + 3 2 + 2 α 2 + α 1 α 6 α + 2 α + 3 = U 3 ,
0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) 1 ω d ω = 3 α + 4 + 2 α 12 + α 1 α α + 4 3 α + 2 α + 3 = U 4 , 0 1 1 ω α + 1 d ω = 1 α + 2 = U 5 , 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω = 2 α + 2 1 α + 2 2 α + 1 + α 2 α 1 + 2 α 1 3 α 2 α 1 = U 6 .
This completes the proof. □
Remark 2.
If we take α = n = 1 in Theorem 5, then the inequality (6) reduces to the inequality (4). The inequality in (1) was obtained by Sarikaya [6].
In the following theorem, we obtain estimate of Hermite–Hadamard inequality for concave function.
Theorem 6.
Let f : [ a , b ] R be a twice differentiable function on ( a , b ) with a < b and n N . If f L a , b and | f | q is concave on [ a , b ] , then the following inequality for Riemann–Liouville fractional integrals holds with 0 < α 1 :
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 ( α + 1 ) × U 5 f U 1 a + U 2 b U 5 n + 1 + f U 1 b + U 2 a U 5 n + 1 + U 6 f ( U 3 a + U 4 b U 6 n + 1 + f ( U 3 b + U 4 a U 6 n + 1 .
Proof. 
Using the concavity of | f | q and the power-mean inequality, we obtain
| f ( λ a + ( 1 λ ) b ) | q > λ | f ( a ) | q + ( 1 λ ) | f ( b ) | q λ | f ( a ) | + ( 1 λ ) | f ( b ) | q .
Hence,
| f ( λ a + ( 1 λ ) b ) | λ | f ( a ) | + ( 1 λ ) | f ( b ) | ,
thus | f | is also concave. Using Jensen integral inequality, we have
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω f 0 1 1 ω α + 1 ( n + ω n + 1 a + 1 ω n + 1 b ) q d ω 0 1 1 ω α + 1 d ω q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 1 ω α + 1 d ω f 0 1 1 ω α + 1 ( 1 ω n + 1 a + n + ω n + 1 b ) q d ω 0 1 1 ω α + 1 d ω q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω × f 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) ( n + ω n + 1 a + 1 ω n + 1 b ) d ω 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω q + b a 2 n + 1 α + 3 ( α + 1 ) 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) d ω × f 0 1 ( 1 + ω α + 1 2 α 1 + ω + α 2 α 1 ω ) ( 1 ω n + 1 a + n + ω n + 1 b ) d ω 0 1 ( 1 + ω α + 1 2 α 1 ω + α 2 α 1 ω ) d ω q b a 2 n + 1 α + 3 ( α + 1 ) U 5 f U 1 a + U 2 b U 5 n + 1 q + b a 2 n + 1 α + 3 ( α + 1 ) U 5 f U 1 b + U 2 a U 5 n + 1 q + b a 2 n + 1 α + 3 ( α + 1 ) U 6 f ( U 3 a + U 4 b U 6 n + 1 q + b a 2 n + 1 α + 3 ( α + 1 ) U 6 f ( U 3 b + U 4 a U 6 n + 1 q
Γ ( α + 2 ) n + 1 2 ( b a ) α J n n + 1 a + 1 n + 1 b α f ( a ) + J 1 n + 1 a + n n + 1 b + α f ( b ) f n n + 1 a + 1 n + 1 b b a 2 n + 1 α + 3 ( α + 1 ) × U 5 f U 1 a + U 2 b U 5 n + 1 + f U 1 b + U 2 a U 5 n + 1 + U 6 f ( U 3 a + U 4 b U 6 n + 1 + f ( U 3 b + U 4 a U 6 n + 1 .
The proof is completed. □
Corollary 4.
On letting α = n = 1 in Theorem 6, the inequality in Equation (8) becomes:
1 b a a b f ( x ) d x f a + b 2 b a 2 48 f 5 a + 3 b 8 + f 3 a + 5 b 8 .
Remark 3.
The inequality in (8) is an improvement of the obtained inequality in Corollary 4 of [15]. This gives us a comparatively better estimate.

3. Conclusions

We have derived some inequalities of Hermite–Hadamard type by establishing more general inequalities for functions that possesses second derivative on interior of an interval of real numbers, by using the Holder inequality and the assumptions that the mappings f q , for q 1 are convex, as well as concave. The results presented here, certainly, provided refinements of those results proved in [6,15], since, by putting α = n = 1 in our obtained inequalities, we achieve the already-presented inequalities in [6,15].

Author Contributions

All authors contributed equally for writing and analyzing this paper.

Funding

This research was partially supported by the Higher Education Commission of Pakistan [Grant number No. 5325/Federal/NRPU/ R & D /HEC/2016].

Acknowledgments

The first author is grateful to S. M. Junaid Zaidi, Executive Director and Raheel Qamar Rector, COMSATS University Islamabad, Pakistan for providing excellent research facilities.

Conflicts of Interest

Authors declare no conflict of interest.

References

  1. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. Available online: http://www.sta.vu.edu.au/RGMIA/monographs/hermite_hadamard.html (accessed on 12 December 2018).
  2. Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2000, 9, 493–497. [Google Scholar]
  3. Dahmani, Z.; Tabharit, L.; Taf, S. Some fractional integral inequalities. Nonlinear Sci. Lett. A 2010, 1, 155–160. [Google Scholar]
  4. Dragomir, S.S.; Bhatti, M.I.; Iqbal, M.; Muddassar, M. Some new Hermite–Hadamard type fractional Integral inequalities. J. Comput. Anal. Appl. 2015, 18, 655–661. [Google Scholar]
  5. Iqbal, M.; Qaisar, S.; Muddassar, M. A short note on integral inequality of type Hermite-Hadamard through convexity. J. Comput. Anal. Appl. 2016, 21, 946–953. [Google Scholar]
  6. Sarikaya, M.Z.; Aktan, N. On the generalization of some integral inequalities and their applications. Math. Comput. Model. 2011, 54, 2175–2182. [Google Scholar] [CrossRef]
  7. Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
  8. Anastassiou, G.; Hooshmandasl, M.R.; Ghasemi, A.; Moftakharzadeh, F. Montogomery identities for fractional integrals and related fractional inequalities. J. Ineq. Pure Appl. Math. 2009, 10, 97. [Google Scholar]
  9. Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Ineq. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
  10. Dahmani, Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
  11. Dahmani, Z.; Tabharit, L.; Taf, S. New generalizations of Gruss inequality using Riemann–Liouville fractional integrals. Bull. Math. Anal. Appl. 2010, 2, 93–99. [Google Scholar]
  12. Bahtti, M.I.; Iqbal, M.; Dragomir, S.S. Some new integral ineuqalities of the type of Hermite-Hadamard’s for the mappings whose absolute values of their derivativeare convex. J. Comput. Anal. Appl. 2014, 16, 643–653. [Google Scholar]
  13. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  14. Qaisar, S.; Iqbal, M.; Muddassar, M. New Hermite-Hadamard’s inequalities for pre-invex function via fractional integrals. J. Comput. Anal. Appl. 2016, 20, 1318–1328. [Google Scholar]
  15. Özdemir, M.E.; Yıldız, C.; Akdemir, A.O.; Set, E. On some inequalities for s-convex functions and applications. J. Ineq. Appl. 2013, 2013, 333. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Qaisar, S.; Nasir, J.; Butt, S.I.; Hussain, S. On Some Fractional Integral Inequalities of Hermite-Hadamard’s Type through Convexity. Symmetry 2019, 11, 137. https://doi.org/10.3390/sym11020137

AMA Style

Qaisar S, Nasir J, Butt SI, Hussain S. On Some Fractional Integral Inequalities of Hermite-Hadamard’s Type through Convexity. Symmetry. 2019; 11(2):137. https://doi.org/10.3390/sym11020137

Chicago/Turabian Style

Qaisar, Shahid, Jamshed Nasir, Saad Ihsan Butt, and Sabir Hussain. 2019. "On Some Fractional Integral Inequalities of Hermite-Hadamard’s Type through Convexity" Symmetry 11, no. 2: 137. https://doi.org/10.3390/sym11020137

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop