Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the ‘Biomarker Laboratory’
Abstract
:1. Introduction
1.1. Prostate Cancer
1.2. Biomarker Research in Prostate Cancer
1.3. Tissue Micro Arrays for Discovery
1.4. Putative Biomarkers
2. Materials and Methods
2.1. Ethics and Specimens
2.2. TMA Design and Construction
2.3. Immunohistochemical Staining of Proteins
2.4. 3,3-Diaminobenzidine (DAB) Stain Imaging and Signal Quantification
2.5. Whole Pipeline in Sequence
3. Results
Main Findings
4. Discussion
4.1. Image Analysis and Implications for Future Study
4.2. Challenges in Prostate Cancer Biomarker Research
4.3. Other Future Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA-Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Statistics OFN. Statistical Bulletin: Cancer Registration Statistics, England: 2015. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2015 (accessed on 15 January 2018).
- National Cancer Intelligence Network. Five and Ten Year Cancer Prevalence 2006. Available online: www.ncin.org.uk/view?rid=76 (accessed on 15 January 2018).
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 2004, 350, 2239–2246. [Google Scholar] [PubMed]
- Thompson, I.M.; Ankerst, D.P.; Chi, C.; Lucia, M.S.; Goodman, P.J.; Crowley, J.J.; Parnes, H.L.; Coltman, C.A., Jr. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/mL or lower. JAMA 2005, 294, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.A. Molecular alterations in prostate cancer. Cancer Lett. 2008, 271, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.R.; Motiwala, H.G.; Karim, O.M.A. The discovery of prostate-specific antigen. BJU Int. 2008, 101, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Lilja, H.; Ulmert, D.; Vickers, A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat. Rev. Cancer 2008, 8, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Doshi, C.; Vacchio, M.; Attwood, K.; Murekeyisoni, C.; Mehedint, D.C.; Badkhshan, S.; Azabdaftari, G.; Sule, N.; Guru, K.A.; Mohler, J.L.; et al. Clinical significance of prospectively assigned Gleason tertiary pattern 4 in contemporary Gleason score 3+3=6 prostate cancer. Prostate 2016, 76, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egevad, L.; Mazzucchelli, R.; Montironi, R. Implications of the International Society of Urological Pathology modified Gleason grading system. Arch. Pathol. Lab. Med. 2012, 136, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Le Manach, Y.; Riou, B.; Houle, T.T. Statistical evaluation of a biomarker. Anesthesiology 2010, 112, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Reddy, P.J.; Jain, R.; Gollapalli, K.; Moiyadi, A.; Srivastava, S. Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead. Proteomics 2011, 11, 2139–2161. [Google Scholar] [CrossRef] [PubMed]
- Tonry, C.L.; Leacy, E.; Raso, C.; Finn, S.P.; Armstrong, J.; Pennington, S.R. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics (Basel) 2016, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- O’Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [PubMed]
- Fredolini, C.; Liotta, L.A.; Petricoin, E.F. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit. Rev. Clin. Lab. Sci. 2010, 47, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Feber, A.; Dhami, P.; Dong, L.; de Winter, P.; Tan, W.S.; Martinez-Fernandez, M.; Paul, D.S.; Hynes-Allen, A.; Rezaee, S.; Gurung, P.; et al. UroMark-a urinary biomarker assay for the detection of bladder cancer. Clin. Epigenetics 2017, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Tzankov, A.; Went, P.; Zimpfer, A.; Dirnhofer, S. Tissue microarray technology: Principles, pitfalls and perspectives--lessons learned from hematological malignancies. Exp. Gerontol. 2005, 40, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Bruggemann, M.; Gromes, A.; Poss, M.; Schmidt, D.; Klumper, N.; Tolkach, Y.; Dietrich, D.; Kristiansen, G.; Muller, S.C.; Ellinger, J. Systematic Analysis of the Expression of the Mitochondrial ATP Synthase (Complex V) Subunits in Clear Cell Renal Cell Carcinoma. Transl. Oncol. 2017, 10, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Draz, H.; Goldberg, A.A.; Titorenko, V.I.; Tomlinson Guns, E.S.; Safe, S.H.; Sanderson, J.T. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell Signal. 2017, 40, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Li, C.; Chen, R.; Huang, Y.; Chen, Q.; Cui, X.; Liu, H.; Thrasher, J.B.; Li, B. GSK-3beta controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate 2016, 76, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Y.; Li, G.; Zhou, Z.; Chang, X.; Xia, Y.; Dong, X.; Liu, Z.; Ren, B.; Liu, W.; et al. Ectopic expression of the ATP synthase beta subunit on the membrane of PC-3M cells supports its potential role in prostate cancer metastasis. Int. J. Oncol. 2017, 50, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, J.V.; Alen, P.; Heyns, W.; Verhoeven, G. Identification of diazepam-binding Inhibitor/Acyl-CoA-binding protein as a sterol regulatory element-binding protein-responsive gene. J. Biol. Chem. 1998, 273, 19938–19944. [Google Scholar] [CrossRef] [PubMed]
- Harris, F.T.; Rahman, S.M.J.; Hassanein, M.; Qian, J.; Hoeksema, M.D.; Chen, H.; Eisenberg, R.; Chaurand, P.; Caprioli, R.M.; Shiota, M.; et al. Acyl-coenzyme A-binding protein regulates Beta-oxidation required for growth and survival of non-small cell lung cancer. Cancer Prev. Res. (Phila) 2014, 7, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, K.-J.; Pang, X.-W.; Vaughan, H.A.; Qu, W.; Dong, X.-Y.; Peng, J.-R.; Zhao, H.-T.; Rui, J.-A.; Leng, X.-S.; et al. Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J. Immunol. 2002, 169, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Pollard, C.; Nitz, M.; Baras, A.; Williams, P.; Moskaluk, C.; Theodorescu, D. Genoproteomic mining of urothelial cancer suggests {gamma}-glutamyl hydrolase and diazepam-binding inhibitor as putative urinary markers of outcome after chemotherapy. Am. J. Pathol. 2009, 175, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, J.V.; Esquenet, M.; Heyns, W.; Rombauts, W.; Verhoeven, G. Androgen regulation of the messenger RNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in the human prostatic adenocarcinoma cell line LNCaP. Mol. Cell. Endocrinol. 1994, 104, 153–162. [Google Scholar] [CrossRef]
- Swinnen, J.V.; Esquenet, M.; Rosseels, J.; Claessens, F.; Rombauts, W.; Heyns, W.; Verhoeven, G. A human gene encoding diazepam-binding inhibitor/acy1-CoA-binding protein: Transcription and hormonal regulation in the androgen-sensitive human prostatic adenocarcinoma cell line LNCaP. DNA Cell Biol. 1996, 15, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Frydman, J.; Hartl, F.U. Principles of chaperone-assisted protein folding: Differences between in vitro and in vivo mechanisms. Science 1996, 272, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Multhoff, G.; Botzler, C.; Wiesnet, M.; Muller, E.; Meier, T.; Wilmanns, W.; Issels, R.D. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer 1995, 61, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Franzen, B.; Linder, S.; Alaiya, A.A.; Eriksson, E.; Fujioka, K.; Bergman, A.C.; Jornvall, H.; Auer, G. Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis 1997, 18, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Chant, I.D.; Rose, P.E.; Morris, A.G. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol. 1995, 90, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, I.; Sakiyama, M.J.; Ma, T.; Fair, L.; Zhou, X.; Hassan, M.; Zabaleta, J.; Gomez, C.R. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front. Oncol. 2016, 6, 144. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, S.; Schafer, G.; Stasyk, T.; Fuchsberger, C.; Bonn, G.K.; Bartsch, G.; Klocker, H.; Huber, L.A. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome Res. 2011, 10, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.C.; Siegelin, M.D.; Dohi, T.; Altieri, D.C. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 2010, 70, 8988–8993. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.A.; Dodson, A.R.; Parsons, K.F.; Desmond, A.D.; Woolfenden, A.; Fordham, M.; Neoptolemos, J.P.; Ke, Y.; Foster, C.S. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000, 60, 7099–7105. [Google Scholar] [PubMed]
- Castilla, C.; Congregado, B.; Conde, J.M.; Medina, R.; Torrubia, F.J.; Japon, M.A.; Saez, C. Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 2010, 76, 1017.e1–1017.e6. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ru, Y.; Sanchez-Carbayo, M.; Wang, X.; Kieft, J.S.; Theodorescu, D. Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization. Clin. Cancer Res. 2013, 19, 2850–2860. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, S.; Wong, R.P.C.; Ardekani, G.S.; Zhang, G.; Martinka, M.; Ong, C.J.; Li, G. Role of EIF5A2, a downstream target of Akt, in promoting melanoma cell invasion. Br. J. Cancer 2014, 110, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Nimick, M.; Cridge, A.G.; Hawkins, B.C.; Rosengren, R.J. Anticancer potential of novel curcumin analogs towards castrate-resistant prostate cancer. Int. J. Oncol. 2018, 52, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, V.P.; Ramalingam, S.; Kwegyir-Afful, A.K.; Hussain, A.; Njar, V.C.O. Targeting of protein translation as a new treatment paradigm for prostate cancer. Curr. Opin. Oncol. 2017, 29, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Smit-McBride, Z.; Pan, X.; Rheinhardt, J.; Hershey, J.W.B. An oncogenic role for the phosphorylated h-subunit of human translation initiation factor eIF3. J. Biol. Chem. 2008, 283, 24047–24060. [Google Scholar] [CrossRef] [PubMed]
- Savinainen, K.J.; Linja, M.J.; Saramaki, O.R.; Tammela, T.L.J.; Chang, G.T.G.; Brinkmann, A.O.; Visakorpi, T. Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br. J. Cancer 2004, 90, 1041–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visakorpi, T. The molecular genetics of prostate cancer. Urology 2003, 62 (Suppl. 1), 3–10. [Google Scholar] [CrossRef]
- Nupponen, N.N.; Isola, J.; Visakorpi, T. Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer 2000, 28, 203–210. [Google Scholar] [CrossRef]
- Hershey, J.W.B. Regulation of protein synthesis and the role of eIF3 in cancer. Braz. J. Med. Biol. Res. 2010, 43, 920–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershey, J.W.B. The role of eIF3 and its individual subunits in cancer. Biochim. Biophys. Acta 2015, 1849, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Saramaki, O.; Willi, N.; Bratt, O.; Gasser, T.C.; Koivisto, P.; Nupponen, N.N.; Bubendorf, L.; Visakorpi, T. Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am. J. Pathol. 2001, 159, 2089–2094. [Google Scholar] [CrossRef]
- Nupponen, N.N.; Porkka, K.; Kakkola, L.; Tanner, M.; Persson, K.; Borg, A.; Isola, J.; Visakorpi, T. Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am. J. Pathol. 1999, 154, 1777–1783. [Google Scholar] [CrossRef]
- Del Campo, M.; Oliveira, C.R.; Scheper, W.; Zwart, R.; Korth, C.; Muller-Schiffmann, A.; Kostallas, G.; Biverstal, H.; Presto, J.; Johansson, J.; et al. BRI2 ectodomain affects Abeta42 fibrillation and tau truncation in human neuroblastoma cells. Cell. Mol. Life Sci. 2015, 72, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Baron, B.W.; Baron, R.M.; Baron, J.M. The ITM2B (BRI2) gene is a target of BCL6 repression: Implications for lymphomas and neurodegenerative diseases. Biochim. Biophys. Acta 2015, 1852, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Creytens, D.; van Gorp, J.; Savola, S.; Ferdinande, L.; Mentzel, T.; Libbrecht, L. Atypical spindle cell lipoma: A clinicopathologic, immunohistochemical, and molecular study emphasizing its relationship to classical spindle cell lipoma. Virchows Arch. 2014, 465, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Han, C.; Jin, S.; Kwon, J.T.; Kim, J.; Jeong, J.; Kim, J.; Ham, S.; Jeon, S.; Yoo, Y.-J.; et al. Reduced Fertility and Altered Epididymal and Sperm Integrity in Mice Lacking ADAM7. Biol. Reprod. 2015, 93, 70. [Google Scholar] [CrossRef] [PubMed]
- Latil, A.; Chene, L.; Mangin, P.; Fournier, G.; Berthon, P.; Cussenot, O. Extensive analysis of the 13q14 region in human prostate tumors: DNA analysis and quantitative expression of genes lying in the interval of deletion. Prostate 2003, 57, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Ruppender, N.; Larson, S.; Lakely, B.; Kollath, L.; Brown, L.; Coleman, I.; Coleman, R.; Nguyen, H.; Nelson, P.S.; Corey, E.; et al. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE 2015, 10, e0130565. [Google Scholar] [CrossRef] [PubMed]
- Tohtong, R.; Phattarasakul, K.; Jiraviriyakul, A.; Sutthiphongchai, T. Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dis. 2003, 6, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Teja, M.; Gronau, J.H.; Breit, C.; Zhang, Y.Z.; Minamidate, A.; Caley, M.P.; McCarthy, A.; Cox, T.R.; Erler, J.T.; Gaughan, L.; et al. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival. J. Pathol. 2015, 235, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Jerbi, S.; Jolles, B.; Bouceba, T.; Jean-Jean, O. Studies on human eRF3-PABP interaction reveal the influence of eRF3a N-terminal glycin repeat on eRF3-PABP binding affinity and the lower affinity of eRF3a 12-GGC allele involved in cancer susceptibility. RNA Biol. 2016, 13, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sheng, C.; Yin, Y.; Wen, S.; Yang, G.; Cheng, Z.; Zhu, Q. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett. 2015, 367, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Kanto, K.; Hatakeyama, K.; Ide, T.; Wakabayashi-Nakao, K.; Watanabe, Y.; Sakura, N.; Terashima, M.; Yamaguchi, K.; Mochizuki, T. Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics 2014, 14, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Eisermann, K.; Dar, J.A.; Dong, J.; Wang, D.; Masoodi, K.Z.; Wang, Z. Poly (A) Binding Protein Cytoplasmic 1 Is a Novel Co-Regulator of the Androgen Receptor. PLoS ONE 2015, 10, e0128495. [Google Scholar] [CrossRef] [PubMed]
- Symes, A.J.; Eilertsen, M.; Millar, M.; Nariculam, J.; Freeman, A.; Notara, M.; Feneley, M.R.; Patel, H.R.; Masters, J.R.; Ahmed, A. Quantitative analysis of BTF3, HINT1, NDRG1 and ODC1 protein over-expression in human prostate cancer tissue. PLoS ONE 2013, 8, e84295. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, C.; Murtaza, B.N.; Thomson, C.; Dickens, K.; Henrique, R.; Patel, H.R.H.; Beltran, M.; Millar, M.; Thrasivoulou, C.; Ahmed, A. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS ONE 2017, 12, e0186047. [Google Scholar] [CrossRef] [PubMed]
- Nariculam, J.; Freeman, A.; Bott, S.; Munson, P.; Cable, N.; Brookman-Amissah, N.; Williamson, M.; Kirby, R.S.; Masters, J.; Feneley, M. Utility of tissue microarrays for profiling prognostic biomarkers in clinically localized prostate cancer: The expression of BCL-2, E-cadherin, Ki-67 and p53 as predictors of biochemical failure after radical prostatectomy with nested control for clinical and pathological risk factors. Asian J. Androl. 2009, 11, 109–118. [Google Scholar] [PubMed]
- Wang, Q.; Symes, A.J.; Kane, C.A.; Freeman, A.; Nariculam, J.; Munson, P.; Thrasivoulou, C.; Masters, J.R.; Ahmed, A. A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS ONE 2010, 5, e10456. [Google Scholar]
- Kononen, J.; Bubendorf, L.; Kallioniemi, A.; Barlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 1998, 4, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Torhorst, J.; Bucher, C.; Kononen, J.; Haas, P.; Zuber, M.; Kochli, O.R.; Mross, F.; Dieterich, H.; Moch, H.; Mihatsch, M.; et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am. J. Pathol. 2001, 159, 2249–2256. [Google Scholar] [CrossRef]
- Parekh, D.J.; Ankerst, D.P.; Troyer, D.; Srivastava, S.; Thompson, I.M. Biomarkers for prostate cancer detection. J. Urol. 2007, 178, 2252–2259. [Google Scholar] [CrossRef] [PubMed]
- Pin, E.; Fredolini, C.; Petricoin, E.F. The role of proteomics in prostate cancer research: Biomarker discovery and validation. Clin. Biochem. 2013, 46, 524–538. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Wang, X.; Yang, W.; Toghi Eshghi, S.; Sun, S.; Hoti, N.; Chen, L.; Yang, S.; Pasay, J.; Rubin, A.; et al. Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation. Mol. Cell. Proteom. 2015, 14, 2753–2763. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Florentinus, A.K.; Bowden, P.; Sardana, G.; Diamandis, E.P.; Marshall, J.G. Identification and quantification of peptides and proteins secreted from prostate epithelial cells by unbiased liquid chromatography tandem mass spectrometry using goodness of fit and analysis of variance. J. Proteom. 2012, 75, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Sardana, G.; Marshall, J.; Diamandis, E.P. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin. Chem. 2007, 53, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Saraon, P.; Cretu, D.; Musrap, N.; Karagiannis, G.S.; Batruch, I.; Drabovich, A.P.; van der Kwast, T.; Mizokami, A.; Morrissey, C.; Jarvi, K.; et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell. Proteom. 2013, 12, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Miyake, H.; Pollak, M.; Gleave, M.E. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res. 2000, 60, 3058–3064. [Google Scholar] [PubMed]
- Brooks, J.D.; Wei, W.; Hawley, S.; Auman, H.; Newcomb, L.; Boyer, H.; Fazli, L.; Simko, J.; Hurtado-Coll, A.; Troyer, D.A.; et al. Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients. PLoS ONE 2015, 10, e0132343. [Google Scholar] [CrossRef] [PubMed]
- Champy, J.; Hammer, M. Reengineering the Corporation: A Manifesto for Business Revolution; Nichlas Brealey Publishing Co.: London, UK, 1995. [Google Scholar]
- Chase, R.B.; Jacobs, F.R.; Aquilano, N.J. Operations Management for Competitive Advantage, 11th ed.; McGraw-Hill Higher Education; Publishing Co.: New York, NY, USA, 2005. [Google Scholar]
Phase | Description | Samples/Tissue | No. of Analytes | No. of Samples |
---|---|---|---|---|
I | Discovery: Identifying candidate biomarkers | Proximal fluids Cells line supernatants Animal model plasma ‘Gold standard’ human plasma (reduced biological variation) | 1000s | 10s |
II | Qualification: Confirm differential abundance of candidates in human plasma | ‘Gold standard’ Human plasma (reduced biological variation) | 30–100 | 10s |
III | Verification: Begin to assess specificity of candidates | Population-derived human plasma (normal biological variation) | 10s | 100s |
IV/V | Validation and clinical assay development: Establish sensitivity and specificity, assay optimisation | Population-derived human plasma (normal biological variation) | 4–10 | Many 1000s |
Putative Biomarkers | |
---|---|
ATP5A1 ATP5A1 is one of two subunits of the mitochondrial ATP synthase, which catalyses ATP synthesis during oxidative phosphorylation. Subunits of ATP synthase are implicated in various malignancies including Clear Cell Renal Cancer, Thyroid, and Prostate malignancy [21]. Research with prostate cancer cells has suggested a role for ATP synthase subunits in protective autophagy as well as binding partners for metastasis-associated membrane proteins [22,23,24]. | DBI or ACBP ACBP is a protein that is involved in various functions including steroidogenesis and peptide hormone release [25]. It is overexpressed in lung and hepatocellular carcinoma [26,27] and has been suggested as a predictive marker of outcome after chemotherapy for urothelial cancers [28]. There is also evidence that it has a role as a secreted peptide from prostatic epithelial cells, whose levels rise when exposed to androgens [29,30]. |
HSP60 Heat shock protein 60 is a mitochondrial protein that assists with the assembly of newly imported proteins in the mitochondria [31]. HSP60 has a role, together with HSP70, in antigen presentation in malignant diseases [32], is enhanced in activity in breast carcinoma [33], and myeloid leukaemia [34]. HSP60 is upregulated in prostate cancer and interacts with cyclophilin D to affect mitochondrial permeability [35,36,37]. It is significantly raised in prostate cancer [38] and has overexpression in associated Gleason score, initial serum PSA levels, and lymph node metastasis as well as androgen independence in locally advanced prostate cancers. Intensity and immunoreactivity of HSP60 predict recurrence and decreased recurrence-free survival [39]. | EIF3 complex The Eukaryotic Translation Initiation Factor (EIF) 3 multiprotein complex plays a central role in translation initiation. IF3EI is part of EIF3 complex along with proteins such as EIF3b. Overexpression of EIF3b has been observed in both prostate and bladder tumours [40]. Research suggests other eukaryotic translation initiation factor complexes are involved in tumour advancement in castration-resistant prostate cancer [41,42,43]. Several subunits of the EIF3 protein complex, either through upregulation or downregulation, have been implicated in prostate cancer tumorigenesis [44,45,46,47,48,49]. Gain in function through the addition of the long arm of chromosome 8 is seen commonly along with a gain of EIF function in late-stage prostate cancer in as much as 30% of cases [50,51]. |
ITM2B ITM2B (formerly BRI2) is a transmembrane protein that processes amyloid, inhibits beta-amyloid peptide aggregation and fibril deposition and induction of neurone outgrowth. It is implicated in neuroblastoma and lymphoma [52,53,54]. In the genitourinary system, it has functional implications in motility and tail formation of spermatozoa [55]. In the realm of cancer research, its gene has been implicated as being lost in mutations of the 13q14 chromosomal arm seen in many sporadic prostate cancers [56]. | MYL6 MYL6, one of many myosin alkali light chains that are expressed in smooth muscle and non-muscle tissues. There is evidence for the activation of myosin light chain kinase as a possible mechanism by which PCa may escape dormancy [57] as well as phosphorylation of myosin in the regulation of metastases [58]. Regarding the light chain protein, there is evidence of its importance in maintaining basal lamina matrix integrity; breach of may occur more readily in older individuals, possibly explaining an age-related prostate cancer risk [59]. |
PABPC family Poly(A)-binding proteins play a role in mRNA stability and translation initiation. Evidence about other proteins in the family, such as PABPC1, suggests it is unregulated in gastric [60], hepatocellular [61], and duodenal [62] carcinomas as well as interacting with the androgen receptor, which is the primary target for prostate cancer treatment [63]. |
Protein | Sensitivity | Specificity | Criteria > | AUC |
---|---|---|---|---|
ATP5A1 | 71.43 | 78.05 | 3.37 | 0.806 ± 0.026 |
HSP60 | 59.18 | 88.62 | 3.29 | 0.800 ± 0.026 |
PABPC3 | 63.95 | 78.86 | 3.26 | 0.740 ± 0.030 |
ITM2B | 65.99 | 72.36 | 3.16 | 0.738 ± 0.30 |
IF3EI | 68.71 | 66.61 | 3.10 | 0.720 ± 0.031 |
DBI | 78.23 | 57.72 | 2.68 | 0.715 ± 0.031 |
MYL6 | 42.26 | 73.17 | 3.77 | 0.610 ± 0.034 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, K.; Arthurs, C.; Atta-ul, A.; Millar, M.; Beltran, M.; Neuhaus, J.; Horn, L.-C.; Henrique, R.; Ahmed, A.; Thrasivoulou, C. Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the ‘Biomarker Laboratory’. Diagnostics 2018, 8, 49. https://doi.org/10.3390/diagnostics8030049
Cao K, Arthurs C, Atta-ul A, Millar M, Beltran M, Neuhaus J, Horn L-C, Henrique R, Ahmed A, Thrasivoulou C. Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the ‘Biomarker Laboratory’. Diagnostics. 2018; 8(3):49. https://doi.org/10.3390/diagnostics8030049
Chicago/Turabian StyleCao, Kevin, Callum Arthurs, Ali Atta-ul, Michael Millar, Mariana Beltran, Jochen Neuhaus, Lars-Christian Horn, Rui Henrique, Aamir Ahmed, and Christopher Thrasivoulou. 2018. "Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the ‘Biomarker Laboratory’" Diagnostics 8, no. 3: 49. https://doi.org/10.3390/diagnostics8030049
APA StyleCao, K., Arthurs, C., Atta-ul, A., Millar, M., Beltran, M., Neuhaus, J., Horn, L.-C., Henrique, R., Ahmed, A., & Thrasivoulou, C. (2018). Quantitative Analysis of Seven New Prostate Cancer Biomarkers and the Potential Future of the ‘Biomarker Laboratory’. Diagnostics, 8(3), 49. https://doi.org/10.3390/diagnostics8030049