Applications of Artificial Intelligence in the Neuropsychological Assessment of Dementia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
3. Results
4. Discussion
4.1. Neuropsychological Assessment and Clinical Data
4.2. Optimizing Neuropsychological Assessment
4.3. Virtual Reality and Neuropsychological Assessment
5. Conclusions
5.1. Strengths and Weaknesses
5.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, R.C.; Parisi, J.E.; Dickson, D.W.; Johnson, K.A.; Knopman, D.S.; Boeve, B.F.; Jicha, G.A.; Ivnik, R.J.; Smith, G.E.; Tangalos, E.G.; et al. Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 2006, 63, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; et al. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Boeve, B.F.; Petersen, R.C. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin. Proc. 2003, 78, 1290–1308. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Int. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.-O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Int. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment: Current research and clinical implications. Semin. Neurol. 2007, 27, 22–31. [Google Scholar] [CrossRef]
- Boeve, B.F.; Ferman, T.J.; Smith, G.E.; Knopman, D.S.; Jicha, G.A.; Geda, Y.E.; Petersen, R.C. Mild cognitive impairment preceding dementia with Lewy bodies. Neurology 2004, 62, A86. [Google Scholar]
- White, L.R.; Small, B.J.; Petrovitch, H.; Ross, G.W.; Masaki, K.; Abbott, R.D.; Hardman, J.; Davis, D.G.; Nelson, J.S.; Markesbery, W.R. Recent Clinical-Pathologic research on the causes of dementia in late life: Update from the Honolulu-Asia Aging Study. J. Geriatr. Psychiatry Neurol. 2005, 18, 224–227. [Google Scholar] [CrossRef]
- Pons, V.; Rivest, S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol. Rev. 2022, 74, 1–17. [Google Scholar] [CrossRef]
- Vanacore, N.; Di Pucchio, A.; Lacorte, E.; Bacigalupo, I.; Mayer, F.; Grande, G.; Cesari, M.; Canevelli, M. Dal mild cognitive impairment alla demenza: Qual è il ruolo della sanità pubblica? Recenti Prog. Med. 2017, 108, 211–215. [Google Scholar]
- Pirani, A.; Antonelli-Incalzi, R.; Biggio, G.; Cagnin, A.; Marengoni, A.; Marra, C.; Brignoli, O. L’approccio al paziente con declino cognitivo lieve: Risultati di un’indagine in Medicina Generale. Rivista SIMG 2020, 27, 9–18. [Google Scholar]
- Yaffe, K.; Petersen, R.C.; Lindquist, K.; Kramer, J.; Miller, B.L. Subtype of mild cognitive impairment and progression to dementia and death. Dement. Geriatr. Cogn. Disord. 2006, 22, 312–319. [Google Scholar] [CrossRef]
- Purnell, C.; Gao, S.; Callahan, C.M.; Hendrie, H.C. Cardiovascular risk factors and incident Alzheimer disease: A systematic review of the literature. Alzheimer Dis. Assoc. Disord. 2009, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, R.O.; Mukaetova-Ladinska, E.B.; Attems, J.; Ihara, M.; Kalaria, R.N. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer’s disease and vascular dementia. Curr. Alzheimer Res. 2013, 10, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Tan, L.; Wang, H.F.; Tan, M.S.; Tan, L.; Xu, W.; Zhao, Q.F.; Wang, J.; Jiang, T.; Yu, J.T. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: London, UK, 2010. [Google Scholar]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in Healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Suleimenov, I.E.; Vitulyova, Y.S.; Bakirov, A.S.; Gabrielyan, O.A. Artificial Intelligence: What is it? In Proceedings of the 2020 The 6th International Conference on E-Business and Applications; Association for Computing Machinery: New York, NY, USA, 2020; pp. 22–25. [Google Scholar]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef]
- Quek, L.J.; Heikkonen, M.R.; Lau, Y. Use of artificial intelligence techniques for detection of mild cognitive impairment: A systematic scoping review. J. Clin. Nurs. 2023, 32, 5752–5762. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, S.Y.; Na, D.L.; Kim, B.C.; Yang, D.W.; Kim, E.J.; Na, H.R.; Han, H.J.; Lee, J.H.; Kim, J.H.; et al. Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. BMC Med. Inf. Decis. Mak. 2019, 19, 231. [Google Scholar] [CrossRef]
- Wang, T.; Hong, Y.; Wang, Q.; Su, R.; Ng, M.L.; Xu, J.; Wang, L.; Yan, N. Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks. J. Alzheimers Dis. 2021, 82, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.; John Simos, N.; Zioga, M.; Zaganas, I.; Panagiotakis, S.; Lionis, C.; Vgontzas, A.N. Personalized screening and risk profiles for Mild Cognitive Impairment via a Machine Learning Framework: Implications for general practice. Int. J. Med. Inform. 2023, 170, 104966. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Miller, M.I.; Joshi, P.S.; Lee, J.C.; Xue, C.; Ni, Y.; Wang, Y.; De Anda-Duran, I.; Hwang, P.H.; Cramer, J.A.; et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat. Commun. 2022, 13, 3404. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H. Machine-Learning Algorithms Based on Screening Tests for Mild Cognitive Impairment. Am. J. Alzheimers Dis. Other Demen. 2020, 35, 1533317520927163. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, T.M.; Abe, M.S.; Koculak, M.; Otake-Matsuura, M. Classifying Mild Cognitive Impairment from Behavioral Responses in Emotional Arousal and Valence Evaluation Task–AI Approach for Early Dementia Biomarker in Aging Societies. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5537–5543. [Google Scholar]
- Boettcher, L.N.; Hssayeni, M.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E.; Ghoraani, B. Dual-Task Gait Assessment and Machine Learning for Early-detection of Cognitive Decline. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 3204–3207. [Google Scholar] [PubMed]
- Yim, D.; Yeo, T.Y.; Park, M.H. Mild cognitive impairment, dementia, and cognitive dysfunction screening using machine learning. J. Int. Med. Res. 2020, 48, 300060520936881. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.F.; Landset, S.; Zhou, X.; Ding, T.; Khoshgoftaar, T.M.; Zhao, F.; Du, B.; Chen, X.; Wang, X.; Zhong, L.; et al. Utility of MemTrax and Machine Learning Modeling in Classification of Mild Cognitive Impairment. J. Alzheimers Dis. 2020, 77, 1545–1558. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, M.; Xiang, C.; Lin, S.; Jiang, Z.; Fang, Y. Predicting the long-term cognitive trajectories using machine learning approaches: A Chinese nationwide longitudinal database. Psychiatry Res. 2022, 310, 114434. [Google Scholar] [CrossRef]
- Lin, C.W.; Mao, T.Y.; Huang, C.F. A Novel Game-Based Intelligent Test for Detecting Elderly Cognitive Function Impairment. Comput. Math Methods Med. 2021, 2021, 1698406. [Google Scholar] [CrossRef]
- Clark, D.G.; Kapur, P.; Geldmacher, D.S.; Brockington, J.C.; Harrell, L.; DeRamus, T.P.; Blanton, P.D.; Lokken, K.; Nicholas, A.P.; Marson, D.C. Latent information in fluency lists predicts functional decline in persons at risk for Alzheimer disease. Cortex 2014, 55, 202–218. [Google Scholar] [CrossRef]
- Martínez-Florez, J.F.; Osorio, J.D.; Cediel, J.C.; Rivas, J.C.; Granados-Sánchez, A.M.; López-Peláez, J.; Jaramillo, T.; Cardona, J.F. Short-Term Memory Binding Distinguishing Amnestic Mild Cognitive Impairment from Healthy Aging: A Machine Learning Study. J. Alzheimers Dis. 2021, 81, 729–742. [Google Scholar] [CrossRef]
- Kwak, S.; Oh, D.J.; Jeon, Y.J.; Oh, D.Y.; Park, S.M.; Kim, H.; Lee, J.Y. Utility of Machine Learning Approach with Neuropsychological Tests in Predicting Functional Impairment of Alzheimer’s Disease. J. Alzheimers Dis. 2022, 85, 1357–1372. [Google Scholar] [CrossRef]
- Formica, C.; Bonanno, L.; Giambò, F.M.; Maresca, G.; Latella, D.; Marra, A.; Cucinotta, F.; Bonanno, C.; Lombardo, M.; Tomarchio, O.; et al. Paving the Way for Predicting the Progression of Cognitive Decline: The Potential Role of Machine Learning Algorithms in the Clinical Management of Neurodegenerative Disorders. J. Pers. Med. 2023, 13, 1386. [Google Scholar] [CrossRef]
- Hu, M.; Shu, X.; Yu, G.; Wu, X.; Välimäki, M.; Feng, H. A Risk Prediction Model Based on Machine Learning for Cognitive Impairment Among Chinese Community-Dwelling Elderly People with Normal Cognition: Development and Validation Study. J. Med. Internet Res. 2021, 23, e20298. [Google Scholar] [CrossRef]
- Waschkies, K.F.; Soch, J.; Darna, M.; Richter, A.; Altenstein, S.; Beyle, A.; Brosseron, F.; Buchholz, F.; Butryn, M.; Dobisch, L.; et al. Machine learning-based classification of Alzheimer’s disease and its at-risk states using personality traits, anxiety, and depression. Int. J. Geriatr. Psychiatry 2023, 38, e6007. [Google Scholar] [CrossRef]
- Mallo, S.C.; Valladares-Rodriguez, S.; Facal, D.; Lojo-Seoane, C.; Fernández-Iglesias, M.J.; Pereiro, A.X. Neuropsychiatric symptoms as predictors of conversion from MCI to dementia: A machine learning approach. Int. Psychogeriatr. 2020, 32, 381–392. [Google Scholar] [CrossRef]
- Khanna, S.; Domingo-Fernández, D.; Iyappan, A.; Emon, M.A.; Hofmann-Apitius, M.; Fröhlich, H. Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer’s Disease and Reconstruction of Relevant Biological Mechanisms. Sci. Rep. 2018, 8, 11173. [Google Scholar] [CrossRef]
- Moradi, E.; Hallikainen, I.; Hänninen, T.; Tohka, J. Rey’s Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer’s disease. Neuroimage Clin. 2016, 13, 415–427. [Google Scholar] [CrossRef]
- Massetti, N.; Russo, M.; Franciotti, R.; Nardini, D.; Mandolini, G.M.; Granzotto, A.; Bomba, M.; Delli Pizzi, S.; Mosca, A.; Scherer, R.; et al. A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum. J. Alzheimers Dis. 2022, 85, 1639–1655. [Google Scholar] [CrossRef] [PubMed]
- Fristed, E.; Skirrow, C.; Meszaros, M.; Lenain, R.; Meepegama, U.; Papp, K.V.; Ropacki, M.; Weston, J. Leveraging speech and artificial intelligence to screen for early Alzheimer’s disease and amyloid beta positivity. Brain Commun. 2022, 4, fcac231. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Liu, N.; Liu, C.; Mao, C.; Dong, L.; Li, J.; Huang, X.; Lei, D.; Chu, S.; et al. Random Forest Model in the Diagnosis of Dementia Patients with Normal Mini-Mental State Examination Scores. J. Pers. Med. 2022, 12, 37. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, F.; Delgado-Alvarez, A.; Delgado-Alonso, C.; Díaz-Álvarez, J.; Pytel, V.; Valles-Salgado, M.; Gil, M.J.; Hernández-Lorenzo, L.; Matías-Guiu, J.; Ayala, J.L.; et al. Diagnosis of Alzheimer’s disease and behavioural variant frontotemporal dementia with machine learning-aided neuropsychological assessment using feature engineering and genetic algorithms. Int. J. Geriatr. Psychiatry 2021, 37, 2737–2756. [Google Scholar]
- Peng, B.; Yao, X.; Risacher, S.L.; Saykin, A.J.; Shen, L.; Ning, X. Cognitive biomarker prioritization in Alzheimer’s Disease using brain morphometric data. BMC Med. Inform. Decis. Mak. 2020, 20, 319. [Google Scholar] [CrossRef]
- Battista, P.; Salvatore, C.; Castiglioni, I. Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study. Behav. Neurol. 2017, 2017, 1850909. [Google Scholar] [CrossRef]
- Fayemiwo, M.A.; Olowookere, T.A.; Olaniyan, O.O.; Ojewumi, T.O.; Oyetade, I.S.; Freeman, S.; Jackson, P. Immediate word recall in cognitive assessment can predict dementia using machine learning techniques. Alzheimers Res. Ther. 2023, 15, 111. [Google Scholar] [CrossRef]
- König, A.; Linz, N.; Tröger, J.; Wolters, M.; Alexandersson, J.; Robert, P. Fully Automatic Speech-Based Analysis of the Semantic Verbal Fluency Task. Dement. Geriatr. Cogn. Disord. 2018, 45, 198–209. [Google Scholar] [CrossRef]
- Binaco, R.; Calzaretto, N.; Epifano, J.; McGuire, S.; Umer, M.; Emrani, S.; Wasserman, V.; Libon, D.J.; Polikar, R. Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2020, 26, 690–700. [Google Scholar] [CrossRef]
- Jiménez-Mesa, C.; Arco, J.E.; Valentí-Soler, M.; Frades-Payo, B.; Zea-Sevilla, M.A.; Ortiz, A.; Ávila-Villanueva, M.; Castillo-Barnes, D.; Ramírez, J.; Del Ser-Quijano, T.; et al. Using Explainable Artificial Intelligence in the Clock Drawing Test to Reveal the Cognitive Impairment Pattern. Int. J. Neural Syst. 2023, 33, 2350015. [Google Scholar] [CrossRef]
- Hemrungrojn, S.; Tangwongchai, S.; Charoenboon, T.; Panasawat, M.; Supasitthumrong, T.; Chaipresertsud, P.; Maleevach, P.; Likitjaroen, Y.; Phanthumchinda, K.; Maes, M. Use of the Montreal Cognitive Assessment Thai Version to Discriminate Amnestic Mild Cognitive Impairment from Alzheimer’s Disease and Healthy Controls: Machine Learning Results. Dement. Geriatr. Cogn. Disord. 2021, 50, 183–194. [Google Scholar] [CrossRef]
- Kalafatis, C.; Modarres, M.H.; Apostolou, P.; Marefat, H.; Khanbagi, M.; Karimi, H.; Vahabi, Z.; Aarsland, D.; Khaligh-Razavi, S.M. Validity and Cultural Generalisability of a 5-Minute AI-Based, Computerised Cognitive Assessment in Mild Cognitive Impairment and Alzheimer’s Dementia. Front. Psychiatry 2021, 12, 706695. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Chen, C.C.; Wu, E.H.; Chung, C.R.; Huang, C.Y.; Tsai, P.Y.; Yeh, S.C. A Machine-Learning-Based Assessment Method for Early-Stage Neurocognitive Impairment by an Immersive Virtual Supermarket. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, J.; Choi, H.; Loeser, M.; Ryu, H.; Seo, K. Digital Marker for Early Screening of Mild Cognitive Impairment Through Hand and Eye Movement Analysis in Virtual Reality Using Machine Learning: First Validation Study. J. Med. Internet Res. 2023, 25, e48093. [Google Scholar] [CrossRef]
- Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M.; Parsey, C. Automated assessment of cognitive health using smart home technologies. Technol. Health Care 2013, 21, 323–343. [Google Scholar] [CrossRef]
- Valladares-Rodriguez, S.; Pérez-Rodriguez, R.; Fernandez-Iglesias, J.M.; Anido-Rifón, L.E.; Facal, D.; Rivas-Costa, C. Learning to Detect Cognitive Impairment through Digital Games and Machine Learning Techniques. Methods Inf. Med. 2018, 57, 197–207. [Google Scholar] [CrossRef]
- Valladares-Rodríguez, S.; Fernández-Iglesias, M.J.; Anido-Rifón, L.E.; Pacheco-Lorenzo, M. Evaluation of the Predictive Ability and User Acceptance of Panoramix 2.0, an AI-Based E-Health Tool for the Detection of Cognitive Impairment. Electronics 2022, 11, 3424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veneziani, I.; Marra, A.; Formica, C.; Grimaldi, A.; Marino, S.; Quartarone, A.; Maresca, G. Applications of Artificial Intelligence in the Neuropsychological Assessment of Dementia: A Systematic Review. J. Pers. Med. 2024, 14, 113. https://doi.org/10.3390/jpm14010113
Veneziani I, Marra A, Formica C, Grimaldi A, Marino S, Quartarone A, Maresca G. Applications of Artificial Intelligence in the Neuropsychological Assessment of Dementia: A Systematic Review. Journal of Personalized Medicine. 2024; 14(1):113. https://doi.org/10.3390/jpm14010113
Chicago/Turabian StyleVeneziani, Isabella, Angela Marra, Caterina Formica, Alessandro Grimaldi, Silvia Marino, Angelo Quartarone, and Giuseppa Maresca. 2024. "Applications of Artificial Intelligence in the Neuropsychological Assessment of Dementia: A Systematic Review" Journal of Personalized Medicine 14, no. 1: 113. https://doi.org/10.3390/jpm14010113