Sequencing of the Complete Mitochondrial Genome of the Big Brown Mactra Clam, Mactra grandis (Venerida: Mactridae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Sequencing, Assembly, and Genome Annotation
2.3. Genome Composition and Codon Usage
2.4. Phylogenetic Analysis and Gene Arrangement
2.5. Selective Pressure and Genetic Distance Analysis
3. Results and Discussion
3.1. General Features of Mitogenome
3.2. Protein-Coding Genes
3.3. Ribosomal RNAs and Transfer RNAs
3.4. Phylogeny and Gene Arrangement Analysis
3.5. Genetic Comparison within Genus Mactra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; Li, Y.; Yu, H.; Zhang, L.; Hu, J.; Bao, Z.; Wang, S. MolluscDB: An integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res. 2021, 49, D988–D997. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Kong, L.; Li, Q. Mitogenome evidence for the existence of cryptic species in Coelomactra antiquata. Genes. Genom. 2013, 35, 693–701. [Google Scholar] [CrossRef]
- Cai, S.; Mu, W.; Wang, H.; Chen, J.; Zhang, H. Sequence and phylogenetic analysis of the mitochondrial genome of giant clam, Tridacna crocea (Tridacninae: Tridacna). Mitochondrial DNA Part B 2019, 4, 1032–1033. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Zhong, T.; Heng, X.; Ao, T.; Gu, Z.; Wang, A.; Liu, C.; Yang, Y. The complete mitochondrial genomes of two rock scallops (Bivalvia: Spondylidae) indicate extensive gene rearrangements and adaptive evolution compared with Pecinidae. Int. J. Mol. Sci. 2023, 24, 13844. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, X.; Jiang, F.; Guo, X.; Liu, B. Unusual conservation of mitochondrial gene order in Crassostrea oysters: Evidence for recent speciation in Asia. BMC Evol. Biol. 2010, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Guerra, D.; Bouvet, K.; Breton, S. Mitochondrial gene order evolution in Mollusca: Inference of the ancestral state from the mtDNA of Chaetopleura apiculata (Polyplacophora, Chaetopleuridae). Mol. Phylogenet. Evol. 2018, 120, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, J.; Xu, T.; Qiu, J.; Qian, P. Phylogenetic relationships and adaption in deep-sea mussels: Insights from mitochondrial genomes. Int. J. Mol. Sci. 2021, 22, 1900. [Google Scholar] [CrossRef]
- Yan, S.; Ma, P.; Zuo, C.; Zhu, Y.; Ma, X.; Zhang, Z. Genetic analysis based on mitochondrial nad2 gene reveals a recent population expansion of the invasive mussel, Mytella strigata, in China. Genes 2023, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, F.; Milani, L.; Guerra, D.; Chang, P.L.; Breton, S.; Nuzhdin, S.V.; Passamonti, M. Structure, transcription, and variability of metazoan mitochondrial genome: Perspectives from an unusual mitochondrial inheritance system. Genome Biol. Evol. 2013, 5, 1535–1554. [Google Scholar] [CrossRef]
- Jiao, W.; Fu, X.; Li, J.; Li, L.; Feng, L.; Lv, J.; Zhang, L.; Wang, X.; Li, Y.; Hou, R.; et al. Large-scale development of gene-associated single-nucleotide polymorphism markers for molluscan population genomic, comparative genomic, and genome-wide association studies. DNA Res. 2014, 21, 183–193. [Google Scholar] [CrossRef]
- Bouchet, P.; Bary, S.; Héros, V.; Marani, G. How many species of molluscs are there in the world’s oceans, and who is going to describe them? In Tropical Deep-Sea Benthos 29; Héros, V., Strong, E., Bouchet, P., Eds.; Muséum national d’Histoire naturelle: Paris, Franch, 2016; pp. 9–24. [Google Scholar]
- Coan, E.V.; Valentich-Scott, P. Bivalve Seashells of Tropical West America: Marine Bivalve Mollusks from Baja California to Northern Peru; Santa Barbara Museum of Natural History: Santa Barbara, CA, USA, 2012; Volume 2. [Google Scholar]
- John, M.H.; Kevin, L. Subclass heterodonta. In Mollusca: The Southern Synthesis. Fauna of Australia; Beesley, P.L., Ross, G.J.B., Wells, A., Eds.; CSIRO Publishing: Melbourne, Australia, 1998; pp. 301–396. [Google Scholar]
- Huber, M. Compendium of Bivalves: A Full-color Guide to 3′300 of the World’s Marine Bivalves; ConchBooks: Hackenheim, Germany, 2010. [Google Scholar]
- Ma, P.; Liu, Y.; Wang, J.; Chen, Y.; Zhang, Z.; Zhang, T.; Wang, H. Comparative analysis of the mitochondrial genomes of the family Mactridae (Mollusca: Venerida) and their phylogenetic implications. Int. J. Biol. Macromol. 2023, 249, 126081. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.W. The Mactridae (Mollusca: Bivalvia) of East Coast Park, Singapore. Nat. Singap. 2009, 2, 283–296. [Google Scholar]
- Reeve, L.A. Monograph of the genus Mactra. In Conchologia Iconica, or, Illustrations of the Shells of Molluscous Animals; L. Reeve & Co.: London, UK, 1854; Volume 8, pp. 1–21. [Google Scholar]
- Zhang, X.; Qi, Z.; Li, J.; Ma, X.; Wang, Z.; Huang, X.; Zhuang, Q. Bivalves in South China Sea; Science Press: Beijing, China, 1960. [Google Scholar]
- Ghiselli, F.; Gomes-dos-Santos, A.; Adema, C.M.; Lopes-Lima, M.; Sharbrough, J.; Boore, J.L. Molluscan mitochondrial genomes break the rules. Philos. Trans. R. Soc. London Ser. B. 2021, 376, 20200159. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.P.; Mukesh, J. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yu, W.; Yang, J.; Song, Y.; de Pamphilis, C.W.; Yi, T.; Li, D. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendof, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Li, W.X.; Jakovlić, I.; Zou, H.; Zhang, J.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Bernt, M.; Merkle, D.; Ramsch, K.; Fritzsch, G.; Perseke, M.; Bernhard, D.; Schlegel, M.; Stadler, P.F.; Middendorf, M. CREx: Inferring genomic rearrangements based on common intervals. Bioinformatics 2007, 23, 2957–2958. [Google Scholar] [CrossRef]
- Ranwez, V.; Douzery, E.J.P.; Cambon, C.; Chantret, N.; Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol. 2018, 35, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer Mata, A.; Sánchez DelBarrio, J.C.; Guirao Rico, S.; Librado, P.; Ramos Onsins, S.E.; Sánchez Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katsares, V.; Tsiora, A.; Galinou-Mitsoudi, S.; Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 2008, 63, 412–417. [Google Scholar] [CrossRef]
- Plazzi, F.; Passamonti, M. Towards a molecular phylogeny of Mollusks: Bivalves’ early evolution as revealed by mitochondrial genes. Mol. Phyl. Evol. 2010, 57, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA 1962, 48, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Meng, X.; Chu, K.; Zhao, N.; Tian, M.; Liang, M.; Hao, J. Comparative mitogenomic analysis reveals cryptic species: A case study in Mactridae (Mollusca: Bivalvia). Comp. Biochem. Physiol. Part D Genom. Proteom. 2014, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, J.H.; Carter, J.G. The Anatinellidae and Kymatoxinae: A reassessment of their affinities within the superfamily Mactroidea (Mollusca, Bivalvia). Am. Malacol. Bull. 2015, 33, 204–211. [Google Scholar] [CrossRef]
- Dowton, M.; Castro, L.R.; Austin, A.D. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: The examination of genome ‘morphology’. Invertebr. Syst. 2002, 16, 345–356. [Google Scholar] [CrossRef]
- Ghiselli, F.; Milani, L. Linking the mitochondrial genotype to phenotype: A complex Endeavour. Philos. Trans. R. Soc. Lond. B 2020, 375, 20190169. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, P.; Zhang, Z.; Li, C.; Chen, Y.; Wang, Y.; Wang, H. The new phylogenetic relationships in Veneridae (Bivalvia: Venerida). Zool. J. Linn. Soc. 2022, 196, 346–365. [Google Scholar] [CrossRef]
- Ni, L.; Li, Q.; Kong, L.; Huang, S.; Li, L. DNA barcoding and phylogeny in the family Mactridae (Bivalvia: Heterodonta): Evidence for cryptic species. Biochem. Syst. Ecol. 2012, 44, 164–172. [Google Scholar] [CrossRef]
- Kong, L.; Li, Q.; Qiu, Z. Genetic and morphological differentiation in the clam Coelomactra antiquata (Bivalvia: Veneroida) along the coast of China. J. Exp. Mar. Biol. Ecol. 2007, 343, 110–117. [Google Scholar] [CrossRef]
- Meng, X.; Gao, R.; Shen, X.; Zheng, W.; Zhao, N.; Cheng, H.; Tian, M. DNA barcodes of clam Coelomactra antiquata (Bivalvia: Veneroida) in China based on COI gene. Fish. Sci. 2011, 30, 626–630. [Google Scholar] [CrossRef]
Feature | Position | Length (bp) | Codon | Anticodon | Intergenic Region | GC Skew | AT Skew | Strand | ||
---|---|---|---|---|---|---|---|---|---|---|
From | To | Start | Stop | |||||||
cox1 | 1 | 1596 | 1596 | GTG | TAA | 8 | 0.2096 | −0.3097 | + | |
trnV | 1605 | 1671 | 67 | TAC | 21 | 0.1304 | −0.0455 | + | ||
trnW | 1693 | 1758 | 66 | TCA | 3 | 0.3043 | −0.0233 | + | ||
nad6 | 1762 | 2238 | 477 | ATG | TAA | 2 | 0.2593 | −0.3778 | + | |
trnQ | 2241 | 2308 | 68 | TTG | 2 | 0.3548 | −0.2432 | + | ||
trnP | 2311 | 2373 | 63 | TGG | 0 | 0.4737 | −0.0455 | + | ||
12S | 2374 | 3268 | 895 | 0 | 0.2366 | −0.0138 | + | |||
trnY | 3269 | 3332 | 64 | GTA | 0 | 0.2308 | −0.1579 | + | ||
trnS1 | 3333 | 3397 | 65 | TCT | 0 | 0.3600 | −0.2500 | + | ||
cox3 | 3398 | 4288 | 891 | ATG | TAA | 133 | 0.3046 | −0.3145 | + | |
cytb | 4422 | 5582 | 1161 | ATG | TAA | 0 | 0.2070 | −0.2474 | + | |
16S | 5583 | 6775 | 1193 | 0 | 0.2727 | 0.0050 | + | |||
atp8 | 6776 | 6889 | 114 | ATG | TAA | 3 | 0.5484 | −0.2771 | + | |
nad4 | 6893 | 8248 | 1356 | GTG | TAA | 8 | 0.2660 | −0.2974 | + | |
trnH | 8257 | 8320 | 64 | GTG | 80 | 0.3846 | −0.0417 | + | ||
OH | 8401 | 8816 | 416 | 1079 | 0.3797 | −0.1528 | + | |||
trnR | 9896 | 9962 | 67 | TCG | 25 | 0.2857 | −0.1282 | + | ||
trnL2 | 9988 | 10,054 | 67 | TAA | 73 | 0.4194 | −0.1111 | + | ||
trnE | 10,128 | 10,187 | 60 | TTC | 4 | 0.0526 | −0.1600 | + | ||
trnS2 | 10,192 | 10,252 | 61 | TGA | 0 | 0.4167 | −0.2973 | + | ||
atp6 | 10,253 | 10,999 | 747 | ATG | TAG | 50 | 0.2615 | −0.2977 | + | |
nad3 | 11,050 | 11,361 | 312 | GTG | TAG | 30 | 0.2593 | −0.3529 | + | |
trnT | 11,392 | 11,458 | 67 | TGT | 41 | 0.3333 | 0.0000 | + | ||
nad1 | 11,500 | 12,429 | 930 | ATA | TAA | 20 | 0.3275 | −0.3573 | + | |
trnG | 12,450 | 12,516 | 67 | TCC | 1 | 0.3333 | −0.0698 | + | ||
nad2 | 12,518 | 13,543 | 1026 | ATG | TAA | 20 | 0.3277 | −0.4137 | + | |
trnK | 13,564 | 13,627 | 64 | TTT | 13 | 0.2800 | −0.2308 | + | ||
trnD | 13,641 | 13,704 | 64 | GTC | 9 | 0.5000 | −0.2500 | + | ||
trnI | 13,714 | 13,780 | 67 | GAT | 1 | 0.2727 | −0.1176 | + | ||
nad5 | 13,782 | 15,566 | 1785 | ATG | TAG | 35 | 0.3422 | −0.3406 | + | |
cox2 | 15,602 | 16,540 | 939 | ATG | TAG | 22 | 0.4586 | −0.2028 | + | |
nad4l | 16,563 | 16,851 | 289 | ATG | T-- | 0 | 0.4667 | −0.4171 | + | |
trnN | 16,852 | 16,919 | 68 | GTT | 6 | 0.3333 | −0.0638 | + | ||
trnL1 | 16,926 | 16,992 | 67 | TAG | 10 | 0.4545 | 0.0667 | + | ||
trnC | 17,003 | 17,072 | 70 | GCA | 3 | 0.2500 | −0.0435 | + | ||
trnM | 17,076 | 17,141 | 66 | CAT | 1 | 0.1852 | −0.0256 | + | ||
trnF | 17,143 | 17,206 | 64 | GAA | 2 | 0.4783 | −0.0244 | + | ||
trnA | 17,209 | 17,272 | 64 | TGC | 17 | 0.2727 | −0.1429 | + |
Subset | Best Model | Sites | Partition Names |
---|---|---|---|
1 | GTR+I+G | 1815 | atp8_mafft, atp6_mafft, nad6_mafft |
2 | GTR+G | 2205 | cox1_mafft |
3 | GTR+I+G | 1941 | cox2_mafft |
4 | GTR+I+G | 3660 | nad3_mafft, nad4_mafft, cox3_mafft, nad4l_mafft |
5 | GTR+I+G | 1479 | cytb_mafft |
6 | GTR+G | 1071 | nad1_mafft |
7 | GTR+I+G | 1206 | nad2_mafft |
8 | GTR+I+G | 1944 | nad5_mafft |
9 | GTR+I+G | 1293 | 12S_mafft |
10 | GTR+I+G | 1710 | 16S_mafft |
Genes | Clade A | Clade B | ||||||
---|---|---|---|---|---|---|---|---|
bp | Ka | Ks | Ka/Ks | bp | Ka | Ks | Ka/Ks | |
atp6 | 741 | 0.04997 | 0.57542 | 0.08684 | 741 | 0.13856 | 0.68861 | 0.20122 |
atp8 | 111 | 0.07500 | 0.30536 | 0.24561 | 108 | 0.08219 | 0.56934 | 0.14436 |
cox1 | 1569 | 0.01515 | 0.50683 | 0.02989 | 1572 | 0.04666 | 0.66421 | 0.07025 |
cox2 | 975 | 0.11010 | 0.55347 | 0.19893 | 906 | 0.21560 | 0.78303 | 0.27534 |
cox3 | 888 | 0.04510 | 0.51489 | 0.08759 | 888 | 0.11612 | 0.66011 | 0.17591 |
cytb | 1278 | 0.05887 | 0.53214 | 0.11063 | 1149 | 0.09115 | 0.68110 | 0.13383 |
nad1 | 888 | 0.03690 | 0.48333 | 0.07635 | 882 | 0.13136 | 0.65703 | 0.19993 |
nad2 | 1017 | 0.11320 | 0.50772 | 0.22296 | 1017 | 0.24745 | 0.68908 | 0.35910 |
nad3 | 354 | 0.08061 | 0.61969 | 0.13008 | 300 | 0.15839 | 0.73479 | 0.21556 |
nad4 | 1211 | 0.06225 | 0.58931 | 0.10563 | 1188 | 0.17878 | 0.70473 | 0.25369 |
nad4l | 288 | 0.07549 | 0.48394 | 0.15599 | 288 | 0.15498 | 0.73284 | 0.21148 |
nad5 | 1782 | 0.11982 | 0.57578 | 0.20810 | 1749 | 0.23136 | 0.68076 | 0.33986 |
nad6 | 471 | 0.09472 | 0.52443 | 0.18062 | 456 | 0.19788 | 0.70279 | 0.28156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Liu, Z.; Li, Z.; Sun, X.; Zhou, L.; Wu, X.; Wu, B. Sequencing of the Complete Mitochondrial Genome of the Big Brown Mactra Clam, Mactra grandis (Venerida: Mactridae). Animals 2024, 14, 1376. https://doi.org/10.3390/ani14091376
Ma P, Liu Z, Li Z, Sun X, Zhou L, Wu X, Wu B. Sequencing of the Complete Mitochondrial Genome of the Big Brown Mactra Clam, Mactra grandis (Venerida: Mactridae). Animals. 2024; 14(9):1376. https://doi.org/10.3390/ani14091376
Chicago/Turabian StyleMa, Peizhen, Zhihong Liu, Zhuanzhuan Li, Xiujun Sun, Liqing Zhou, Xiangyu Wu, and Biao Wu. 2024. "Sequencing of the Complete Mitochondrial Genome of the Big Brown Mactra Clam, Mactra grandis (Venerida: Mactridae)" Animals 14, no. 9: 1376. https://doi.org/10.3390/ani14091376