The Critical Role of the Boundary Layer Thickness for the Initiation of Aeolian Sediment Transport
Abstract
:1. Introduction
2. Conceptual Framework of Aeolian Sediment Transport Initiation
2.1. Torque Balance Criterion Associated with a Turbulent Fluctuation Event
2.2. Energy Criterion Associated with a Turbulent Fluctuation Event
2.3. Torque Balance Criterion Associated with the Mean Turbulent Flow
2.4. The Intermediate Regime between Mean Flow Entrainment and Fluctuation-Induced Entrainment
2.5. The Time Scale Ratio
2.6. The Maximal Relative Amplitude of Turbulent Velocity Fluctuations
2.7. The Rolling-Saltation Transition
3. Test of Entrainment Framework with Existing and New Experimental Data
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kok, J.F.; Mahowald, N.M.; Fratini, G.; Gillies, J.A.; Ishizuka, M.; Leys, J.F.; Mikami, M.; Park, M.S.; Park, S.U.; Pelt, R.S.V.; et al. An improved dust emission model—Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. 2014, 14, 13023–13041. [Google Scholar] [CrossRef]
- Kok, J.F.; Albani, S.; Mahowald, N.M.; Ward, D.S. An improved dust emission model—Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 2014, 14, 13043–13061. [Google Scholar] [CrossRef]
- Haustein, K.; Washington, R.; King, J.; Wiggs, G.; Thomas, D.S.G.; Eckardt, F.D.; Bryant, R.G.; Menut, L. Testing the performance of state-of-the-art dust emission schemes using DO4Models field data. Geosci. Model Dev. 2015, 8, 341–362. [Google Scholar] [CrossRef]
- Kok, J.F.; Ward, D.S.; Mahowald, N.M.; Evan, A.T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 2018, 9, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourke, M.C.; Lancaster, N.; Fenton, L.K.; Parteli, E.J.R.; Zimbelman, J.R.; Radebaugh, J. Extraterrestrial dunes: An introduction to the special issue on planetary dune systems. Geomorphology 2010, 121, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, R.D. Physics of saltation and sand transport on Titan: A brief review. Icarus 2014, 230, 162–167. [Google Scholar] [CrossRef]
- Rasmussen, K.R.; Valance, A.; Merrison, J. Laboratory studies of Aeolian sediment transport processes on planetary surfaces. Geomorphology 2015, 244, 74–94. [Google Scholar] [CrossRef] [Green Version]
- Bridges, N.T.; Ayoub, F.; Avouac, J.P.; Leprince, S.; Lucas, A.; Mattson, S. Earth-like sand fluxes on Mars. Nature 2012, 485, 339–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoub, F.; Avouac, J.P.; Newman, C.E.; Richardson, M.I.; Lucas, A.; Leprince, S.; Bridges, N. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux. Nat. Commun. 2014, 5, 5096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindhorst, S.; Betzler, C. The climate-archive dune: Sedimentary record of annual wind intensity. Geology 2016, 44, 711–714. [Google Scholar] [CrossRef]
- Williams, J.J.; Butterfield, G.R.; Clark, D.G. Aerodynamic entrainment threshold: Effects of boundary layer flow conditions. Sedimentology 1994, 41, 309–328. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: New York, NY, USA, 1941. [Google Scholar]
- De Vet, S.J.; Merrison, J.P.; Mittelmeijer-Hazeleger, M.C.; van Loon, E.E.; Cammeraat, L.H. Effects of rolling on wind-induced detachment thresholds of volcanic glass on Mars. Planet. Space Sci. 2014, 103, 205–218. [Google Scholar] [CrossRef]
- Iversen, J.; Greeley, R.; Marshall, J.R.; Pollack, J.B. Aeolian saltation threshold: The effect of density ratio. Sedimentology 1987, 34, 699–706. [Google Scholar] [CrossRef]
- Burr, D.M.; Bridges, N.T.; Marshall, J.R.; Smith, J.K.; White, B.R.; Emery, J.P. Higher-than-predicted saltation threshold wind speeds on Titan. Nature 2015, 517, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, L.; Bruno, L.; Pellerey, F.; Preziosi, L. Windblown sand saltation: A statistical approach to fluid threshold shear velocity. Aeolian Res. 2016, 23, 79–91. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Claudin, P.; Andreotti, B.; Radebaugh, J.; Tokanod, T. A 3 km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data. Icarus 2010, 205, 719–721. [Google Scholar] [CrossRef]
- Petrosyan, A.; Galperin, B.; Larsen, S.E.; Lewis, S.R.; Määttänen, A.; Read, P.L.; Renno, N.; Rogberg, L.P.H.T.; Savijärvi, H.; Siili, T.; et al. The Martian Atmospheric Boundary Layer. Rev. Geophys. 2011, 49, RG3005. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Lebonnois, S.; Schubert, G.; Forgeta, F.; Spiga, A. Planetary Boundary Layer and Slope Winds on Venus. Icarus 2018. [Google Scholar] [CrossRef]
- De Silva, S.L.; Spagnuolo, M.G.; Bridges, N.T.; Zimbelman, J.R. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. GSA Bull. 2013, 125, 1912–1929. [Google Scholar] [CrossRef]
- Sullivan, R.; Kok, J.F. Aeolian saltation on Mars at low wind speeds. J. Geophys. Res. Planets 2017, 122, 2111–2143. [Google Scholar] [CrossRef]
- Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; et al. Planet-wide sand motion on Mars. Geology 2012, 40, 31–34. [Google Scholar] [CrossRef]
- Silvestro, S.; Vaz, D.A.; Ewing, R.C.; Rossi, A.P.; Fenton, L.K.; Michaels, T.I.; Flahaut, J.; Geissler, P.E. Pervasive Aeolian activity along rover Curiosity’s traverse in Gale Crater, Mars. Geology 2013, 41, 483–486. [Google Scholar] [CrossRef]
- Chojnacki, M.; Johnson, J.R.; Moersch, J.E.; Fenton, L.K.; Michaels, T.I.; Bell, J.F., III. Persistent Aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 2015, 251, 275–290. [Google Scholar] [CrossRef]
- Baker, M.M.; Newman, C.E.; Lapotre, M.G.A.; Sullivan, R.; Bridges, N.T.; Lewis, K.W. Coarse Sediment Transport in the Modern Martian Environment. J. Geophys. Res. Planets 2018, 123. [Google Scholar] [CrossRef]
- Greeley, R.; Iversen, J.D. Wind as a Geological Process on Earth, Mars, Venus, and Titan; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Shao, Y.; Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 2000, 105, 22437–22443. [Google Scholar] [CrossRef] [Green Version]
- Merrison, J.P.; Gunnlaugsson, H.P.; Nørnberg, P.; Jensen, A.E.; Rasmussen, K. Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations. Icarus 2007, 191, 568–580. [Google Scholar] [CrossRef]
- Merrison, J.P. Sand transport, erosion and granular electrification. Aeolian Res. 2012, 4, 1–16. [Google Scholar] [CrossRef]
- Diplas, P.; Dancey, C.L.; Celik, A.O.; Valyrakis, M.; Greer, K.; Akar, T. The Role of Impulse on the Initiation of Particle Movement Under Turbulent Flow Conditions. Science 2008, 322, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Valyrakis, M.; Diplas, P.; Dancey, C.L.; Greer, K.; Celik, A.O. Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res. 2010, 115, F02006. [Google Scholar] [CrossRef]
- Valyrakis, M.; Diplas, P.; Dancey, C.L. Entrainment of coarse particles in turbulent flows: An energy approach. J. Geophys. Res. 2013, 118, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Raupach, M.R.; Richards, K.S. Modeling entrainment of sedimentary particles by wind and water: A generalized approach. J. Geophys. Res. 2005, 110, D24114. [Google Scholar] [CrossRef]
- Dey, S.; Ali, S.Z. Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow. Phys. Fluids 2018, 30, 061301. [Google Scholar] [CrossRef]
- Claudin, P.; Andreotti, B. A scaling law for Aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 2006, 252, 30–44. [Google Scholar] [CrossRef]
- Kok, J.F. An improved parametrization of wind blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 2010, 37, L12202. [Google Scholar] [CrossRef]
- Pähtz, T.; Kok, J.F.; Herrmann, H.J. The apparent roughness of a sand surface blown by wind from an analytical model of saltation. New J. Phys. 2012, 14, 043035. [Google Scholar] [CrossRef] [Green Version]
- Berzi, D.; Valance, A.; Jenkins, J.T. The threshold for continuing saltation on Earth and other Solar System bodies. J. Geophys. Res. Earth Surf. 2017, 122, 1374–1388. [Google Scholar] [CrossRef]
- Pähtz, T.; Durán, O. The Cessation Threshold of Nonsuspended Sediment Transport Across Aeolian and Fluvial Environments. J. Geophys. Res. Earth Surf. 2018, 123. [Google Scholar] [CrossRef]
- Greeley, R.; Marshall, J.R. Transport of venusian rolling ‘stones’ by wind? Nature 1985, 313, 771–773. [Google Scholar] [CrossRef]
- Ziskind, G.; Fichman, M.; Gutfinger, C. Resuspension of particulates from surfaces to turbulent flows-Review and analysis. J. Aerosol Sci. 1995, 26, 613–644. [Google Scholar] [CrossRef]
- Reeks, M.W.; Hall, D. Kinetic models for particle resuspension in turbulent flows: Theory and measurement. Aerosol Sci. 2001, 32, 1–31. [Google Scholar] [CrossRef]
- Varshney, K.; Poddar, K. Experiments on integral length scale control in atmospheric boundary layer wind tunnel. Theor. Appl. Climatol. 2011, 106, 127–137. [Google Scholar] [CrossRef]
- Alhamdi, S.F.H.; Bailey, S.C.C. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence. Phys. Fluids 2017, 29, 115103. [Google Scholar] [CrossRef]
- Durán, O.; Claudin, P.; Andreotti, B. On Aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 2011, 3, 243–270. [Google Scholar] [CrossRef]
- Smits, A.J.; McKeon, B.J.; Marusic, I. High–Reynolds Number Wall Turbulence. Annu. Rev. Fluid Mech. 2011, 43, 353–375. [Google Scholar] [CrossRef]
- Marusic, I.; Kunkel, G.J. Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 2003, 15, 2461. [Google Scholar] [CrossRef]
- Chepil, W.S. Dynamics of wind erosion: II. Initiation of soil movement. Soil Sci. 1945, 60, 397–411. [Google Scholar] [CrossRef]
- Martin, R.L.; Kok, J.F. Distinct Thresholds for the Initiation and Cessation of Aeolian Saltation From Field Measurements. J. Geophys. Res. Earth Surf. 2018, 123. [Google Scholar] [CrossRef]
- Almeida, M.P.; Parteli, E.J.R.; Andrade, J.S.; Herrmann, H.J. Giant saltation on Mars. Proc. Natl. Acad. Sci. USA 2008, 105, 6222–6226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, J.F. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms. Phys. Rev. Lett. 2010, 104, 074502. [Google Scholar] [CrossRef] [PubMed]
- Iversen, J.D.; Pollack, J.B.; Greeley, R.; White, B.R. Saltation threshold on Mars—Effect of interparticle force, surface-roughness, and low atmospheric density. Icarus 1976, 29, 381–393. [Google Scholar] [CrossRef]
- Iversen, J.D.; White, B.R. Saltation threshold on Earth, Mars and Venus. Sedimentology 1982, 29, 111. [Google Scholar] [CrossRef]
- Greeley, R.; Iversen, J.; Leach, R.; Marshall, J.; White, B.; Williams, S. Windblown sand on Venus—Preliminary results of laboratory simulations. Icarus 1984, 57, 112–124. [Google Scholar] [CrossRef]
- Fenton, J.D.; Abbott, J.E. Initial movement of grains on a stream bed: The effect of relative protrusion. Proc. R. Soc. Lond. A 1977, 352, 523–537. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pähtz, T.; Valyrakis, M.; Zhao, X.-H.; Li, Z.-S. The Critical Role of the Boundary Layer Thickness for the Initiation of Aeolian Sediment Transport. Geosciences 2018, 8, 314. https://doi.org/10.3390/geosciences8090314
Pähtz T, Valyrakis M, Zhao X-H, Li Z-S. The Critical Role of the Boundary Layer Thickness for the Initiation of Aeolian Sediment Transport. Geosciences. 2018; 8(9):314. https://doi.org/10.3390/geosciences8090314
Chicago/Turabian StylePähtz, Thomas, Manousos Valyrakis, Xiao-Hu Zhao, and Zhen-Shan Li. 2018. "The Critical Role of the Boundary Layer Thickness for the Initiation of Aeolian Sediment Transport" Geosciences 8, no. 9: 314. https://doi.org/10.3390/geosciences8090314
APA StylePähtz, T., Valyrakis, M., Zhao, X.-H., & Li, Z.-S. (2018). The Critical Role of the Boundary Layer Thickness for the Initiation of Aeolian Sediment Transport. Geosciences, 8(9), 314. https://doi.org/10.3390/geosciences8090314