Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI) Studies
Abstract
:1. Introduction
2. Overview of fMRI Studies Relevant to Memory in Schizophrenia
2.1. Working Memory Deficits
2.2. Episodic Memory Deficits
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wildgust, H.J.; Hodgson, R.; Beary, M. The paradox of premature mortality in schizophrenia: New research questions. J. Psychopharmacol. 2010, 24, 9–15. [Google Scholar] [CrossRef]
- Kilbourne, A.M.; Morden, N.E.; Austin, K.; Ilgen, M.; McCarthy, J.F.; Dalack, G.; Blow, F.C. Excess heart-disease-related mortality in a national study of patients with mental disorders: Identifying modifiable risk factors. Gen. Hosp. Psychiatr. 2009, 31, 555–563. [Google Scholar]
- Saha, S.; Chant, D.; McGrath, J. A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time? Arch. Gen. Psychiatr. 2007, 64, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Saykin, A.J.; Gur, R.C.; Gur, R.E.; Mozley, P.D.; Mozley, L.H.; Resnick, S.M.; Kester, D.B.; Stafiniak, P. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch. Gen. Psychiatr. 1991, 48, 618–624. [Google Scholar] [CrossRef]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar]
- Lee, J.; Park, S. Working memory impairments in schizophrenia: A meta-analysis. J. Abnorm. Psychol. 2005, 114, 599–611. [Google Scholar] [CrossRef]
- Napal, O.; Ojeda, N.; Elizagarate, E.; Pena, J.; Ezcurra, J.; Gutierrez, M. The course of the schizophrenia and its impact on cognition: A review of literature. Actas Esp. Psiquiatr. 2012, 40, 198–220. [Google Scholar]
- Lesh, T.A.; Niendam, T.A.; Minzenberg, M.J.; Carter, C.S. Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology 2011, 36, 316–338. [Google Scholar] [CrossRef]
- Davidson, M.; Reichenberg, A.; Rabinowitz, J.; Weiser, M.; Kaplan, Z.; Mark, M. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am. J. Psychiatr. 1999, 156, 1328–1335. [Google Scholar]
- Brewer, W.J.; Francey, S.M.; Wood, S.J.; Jackson, H.J.; Pantelis, C.; Phillips, L.J.; Yung, A.R.; Anderson, V.A.; McGorry, P.D. Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am. J. Psychiatr. 2005, 162, 71–78. [Google Scholar]
- Sponheim, S.R.; Jung, R.E.; Seidman, L.J.; Mesholam-Gately, R.I.; Manoach, D.S.; O'Leary, D.S.; Ho, B.C.; Andreasen, N.C.; Lauriello, J.; Schulz, S.C. Cognitive deficits in recent-onset and chronic schizophrenia. J. Psychiatr. Res. 2010, 44, 421–428. [Google Scholar] [CrossRef]
- Cosway, R.; Byrne, M.; Clafferty, R.; Hodges, A.; Grant, E.; Abukmeil, S.S.; Lawrie, S.M.; Miller, P.; Johnstone, E.C. Neuropsychological change in young people at high risk for schizophrenia: Results from the first two neuropsychological assessments of the edinburgh high risk study. Psychol. Med. 2000, 30, 1111–1121. [Google Scholar] [CrossRef]
- Egan, M.F.; Goldberg, T.E.; Gscheidle, T.; Weirich, M.; Rawlings, R.; Hyde, T.M.; Bigelow, L.; Weinberger, D.R. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol. Psychiatr. 2001, 50, 98–107. [Google Scholar] [CrossRef]
- Simon, A.E.; Cattapan-Ludewig, K.; Zmilacher, S.; Arbach, D.; Gruber, K.; Dvorsky, D.N.; Roth, B.; Isler, E.; Zimmer, A.; Umbricht, D. Cognitive functioning in the schizophrenia prodrome. Schizophr. Bull. 2007, 33, 761–771. [Google Scholar]
- Yates, A.J. Psychological deficit. Annu. Rev. Psychol. 1966, 17, 111–144. [Google Scholar]
- Lewis, D.A. Cortical circuit dysfunction and cognitive deficits in schizophrenia—Implications for preemptive interventions. Eur. J. Neurosci. 2012, 35, 1871–1878. [Google Scholar] [CrossRef]
- Green, M.F. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatr. 1996, 153, 321–330. [Google Scholar]
- Liddle, P.F. Schizophrenic syndromes, Cognitive performance and neurological dysfunction. Psychol. Med. 1987, 17, 49–57. [Google Scholar] [CrossRef]
- Heaton, R.; Paulsen, J.S.; McAdams, L.A.; Kuck, J.; Zisook, S.; Braff, D.; Harris, J.; Jeste, D.V. Neuropsychological deficits in schizophrenics. Relationship to age, Chronicity, And dementia. Arch. Gen. Psychiatr. 1994, 51, 469–476. [Google Scholar]
- Fioravanti, M.; Carlone, O.; Vitale, B.; Cinti, M.E.; Clare, L. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychol. Rev. 2005, 15, 73–95. [Google Scholar] [CrossRef]
- Fioravanti, M.; Bianchi, V.; Cinti, M.E. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatr. 2012, 12, 64. [Google Scholar] [CrossRef]
- Weiss, A.P.; Heckers, S. Neuroimaging of declarative memory in schizophrenia. Scand. J. Psychol. 2001, 42, 239–250. [Google Scholar]
- Aleman, A.; Hijman, R.; de Haan, E.H.; Kahn, R.S. Memory impairment in schizophrenia: A meta-analysis. Am. J. Psychiatr. 1999, 156, 1358–1366. [Google Scholar]
- Rushe, T.M.; Woodruff, P.W.; Murray, R.M.; Morris, R.G. Episodic memory and learning in patients with chronic schizophrenia. Schizophr. Res. 1999, 35, 85–96. [Google Scholar] [CrossRef]
- Goldberg, T.E.; Weinberger, D.R. Effects of neuroleptic medications on the cognition of patients with schizophrenia: A review of recent studies. J. Clin. Psychiatr. 1996, 57 (Suppl. 9), 62–65. [Google Scholar]
- Hoff, A.L.; Riordan, H.; O'Donnell, D.W.; Morris, L.; DeLisi, L.E. Neuropsychological functioning of first-episode schizophreniform patients. Am. J. Psychiatr. 1992, 149, 898–903. [Google Scholar]
- Landro, N.I. Memory function in schizophrenia. Acta Psychiatr. Scand. 1994, 90, 87–94. [Google Scholar] [CrossRef]
- Callicott, J.H.; Mattay, V.S.; Verchinski, B.A.; Marenco, S.; Egan, M.F.; Weinberger, D.R. Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. Am. J. Psychiatr. 2003, 160, 2209–2215. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Pantelis, C.; Bullmore, E.T. Schizophrenia, Neuroimaging and connectomics. NeuroImage 2012, 62, 2296–2314. [Google Scholar] [CrossRef]
- Friston, K.J.; Frith, C.D. Schizophrenia: A disconnection syndrome? Clin. Neurosci. 1995, 3, 89–97. [Google Scholar]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar]
- Tulving, E.; Schacter, D.L. Priming and human memory systems. Science 1990, 247, 301–306. [Google Scholar]
- Gabrieli, J.D. Cognitive neuroscience of human memory. Annu. Rev. Psychol. 1998, 49, 87–115. [Google Scholar] [CrossRef]
- Tulving, E. How many memory systems are there? Am. Psychol. 1985, 40, 385–398. [Google Scholar] [CrossRef]
- Ranganath, C.; Heller, A.; Cohen, M.X.; Brozinsky, C.J.; Rissman, J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005, 15, 997–1005. [Google Scholar] [CrossRef]
- Saykin, A.J.; Shtasel, D.L.; Gur, R.E.; Kester, D.B.; Mozley, L.H.; Stafiniak, P.; Gur, R.C. Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch. Gen. Psychiatr. 1994, 51, 124–131. [Google Scholar] [CrossRef]
- Goldberg, T.E.; Ragland, J.D.; Torrey, E.F.; Gold, J.M.; Bigelow, L.B.; Weinberger, D.R. Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Arch. Gen. Psychiatr. 1990, 47, 1066–1072. [Google Scholar]
- Ruiz, J.C.; Soler, M.J.; Fuentes, I.; Tomas, P. Intellectual functioning and memory deficits in schizophrenia. Compr. Psychiatr. 2007, 48, 276–282. [Google Scholar]
- McKenna, P.J.; Omstein, T.; Baddeley, A.D. Schizophrenia, 2nd ed.; John Wiley and Sons: West Sussex, UK, 2002. [Google Scholar]
- Al-Uzri, M.M.; Reveley, M.A.; Owen, L.; Bruce, J.; Frost, S.; Mackintosh, D.; Moran, P.M. Measuring memory impairment in community-based patients with schizophrenia. Case-control study. Br. J. Psychiatry 2006, 189, 132–136. [Google Scholar]
- Kim, D.I.; Manoach, D.S.; Mathalon, D.H.; Turner, J.A.; Mannell, M.; Brown, G.G.; Ford, J.M.; Gollub, R.L.; White, T.; Wible, C.; et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fbirn and mcic study. Human Brain Mapp. 2009, 30, 3795–3811. [Google Scholar] [CrossRef]
- Beddeley, A. Working Memory; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Jeneson, A.; Squire, L.R. Working memory, Long-term memory, And medial temporal lobe function. Learn. Mem. 2012, 19, 15–25. [Google Scholar] [CrossRef]
- Tulving, E. Episodic memory: From mind to brain. Annu. Rev. Psychol. 2002, 53, 1–25. [Google Scholar]
- Tulving, E.; Markowitsch, H.J. Episodic and declarative memory: Role of the hippocampus. Hippocampus 1998, 8, 198–204. [Google Scholar]
- Leavitt, V.M.; Goldberg, T.E. Episodic memory in schizophrenia. Neuropsychol. Rev. 2009, 19, 312–323. [Google Scholar] [CrossRef]
- Heckers, S.; Curran, T.; Goff, D.; Rauch, S.L.; Fischman, A.J.; Alpert, N.M.; Schacter, D.L. Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol. Psychiatr. 2000, 48, 651–657. [Google Scholar] [CrossRef]
- Nyberg, L.; Marklund, P.; Persson, J.; Cabeza, R.; Forkstam, C.; Petersson, K.M.; Ingvar, M. Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 2003, 41, 371–377. [Google Scholar]
- Schacter, D.L.; Wagner, R.L.; Buckner, R.L. Memory Systems of 1999; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Cabeza, R.; Nyberg, L. Imaging cognition ii: An empirical review of 275 pet and fmri studies. J. Cogn. Neurosci. 2000, 12, 1–47. [Google Scholar] [CrossRef]
- Nyberg, L.; Forkstam, C.; Petersson, K.M.; Cabeza, R.; Ingvar, M. Brain imaging of human memory systems: Between-systems similarities and within-system differences. Brain Res. Cogn. Brain Res. 2002, 13, 281–292. [Google Scholar] [CrossRef]
- Duncan, J.; Owen, A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 2000, 23, 475–483. [Google Scholar]
- Owen, S. Devising a checklist to evaluate the non-verbal aspects of teaching skills and delivery. Nurse Educ. Today 1992, 12, 392–395. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Henson, R.N. Frontal lobes and human memory: Insights from functional neuroimaging. Brain: J. Neurol. 2001, 124, 849–881. [Google Scholar]
- Kerns, J.G.; Cohen, J.D.; MacDonald, A.W., 3rd; Johnson, M.K.; Stenger, V.A.; Aizenstein, H.; Carter, C.S. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am. J. Psychiatr. 2005, 162, 1833–1839. [Google Scholar]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar]
- Badre, D.; Wagner, A.D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 2007, 45, 2883–2901. [Google Scholar] [CrossRef]
- Blumenfeld, R.S.; Ranganath, C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J. Neurosci. 2006, 26, 916–925. [Google Scholar] [CrossRef]
- Wagner, A.D.; Maril, A.; Bjork, R.A.; Schacter, D.L. Prefrontal contributions to executive control: Fmri evidence for functional distinctions within lateral prefrontal cortex. NeuroImage 2001, 14, 1337–1347. [Google Scholar] [CrossRef]
- Carter, C.S.; Braver, T.S.; Barch, D.M.; Botvinick, M.M.; Noll, D.; Cohen, J.D. Anterior cingulate cortex, Error detection, And the online monitoring of performance. Science 1998, 280, 747–749. [Google Scholar]
- Braver, T.S.; Barch, D.M.; Kelley, W.M.; Buckner, R.L.; Cohen, N.J.; Miezin, F.M.; Snyder, A.Z.; Ollinger, J.M.; Akbudak, E.; Conturo, T.E.; et al. Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage 2001, 14, 48–59. [Google Scholar] [CrossRef]
- Cabeza, R.; Dolcos, F.; Graham, R.; Nyberg, L. Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage 2002, 16, 317–330. [Google Scholar] [CrossRef]
- Ranganath, C.; Minzenberg, M.J.; Ragland, J.D. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol. Psychiatr. 2008, 64, 18–25. [Google Scholar] [CrossRef]
- Grasby, P.M.; Frith, C.D.; Friston, K.J.; Bench, C.; Frackowiak, R.S.; Dolan, R.J. Functional mapping of brain areas implicated in auditory—Verbal memory function. Brain 1993, 116 (Pt 1), 1–20. [Google Scholar]
- Glahn, D.C.; Ragland, J.D.; Abramoff, A.; Barrett, J.; Laird, A.R.; Bearden, C.E.; Velligan, D.I. Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapp. 2005, 25, 60–69. [Google Scholar] [CrossRef]
- Van Snellenberg, J.X.; Torres, I.J.; Thornton, A.E. Functional neuroimaging of working memory in schizophrenia: Task performance as a moderating variable. Neuropsychology 2006, 20, 497–510. [Google Scholar]
- Callicott, J.H.; Ramsey, N.F.; Tallent, K.; Bertolino, A.; Knable, M.B.; Coppola, R.; Goldberg, T.; van Gelderen, P.; Mattay, V.S.; Frank, J.A.; et al. Functional magnetic resonance imaging brain mapping in psychiatry: Methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 1998, 18, 186–196. [Google Scholar] [CrossRef]
- Mendrek, A.; Kiehl, K.A.; Smith, A.M.; Irwin, D.; Forster, B.B.; Liddle, P.F. Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychol. Med. 2005, 35, 187–196. [Google Scholar]
- Menon, V.; Anagnoson, R.T.; Mathalon, D.H.; Glover, G.H.; Pfefferbaum, A. Functional neuroanatomy of auditory working memory in schizophrenia: Relation to positive and negative symptoms. NeuroImage 2001, 13, 433–446. [Google Scholar]
- Barch, D.M.; Sheline, Y.I.; Csernansky, J.G.; Snyder, A.Z. Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biol. Psychiatr. 2003, 53, 376–384. [Google Scholar] [CrossRef]
- Barch, D.M.; Csernansky, J.G.; Conturo, T.; Snyder, A.Z. Working and long-term memory deficits in schizophrenia: Is there a common prefrontal mechanism? J. Abnorm. Psychol. 2002, 111, 478–494. [Google Scholar] [CrossRef]
- Perlstein, W.M.; Carter, C.S.; Noll, D.C.; Cohen, J.D. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatr. 2001, 158, 1105–1113. [Google Scholar]
- Walter, H.; Vasic, N.; Hose, A.; Spitzer, M.; Wolf, R.C. Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: Evidence from event-related fmri. NeuroImage 2007, 35, 1551–1561. [Google Scholar]
- Walter, H.; Wunderlich, A.P.; Blankenhorn, M.; Schafer, S.; Tomczak, R.; Spitzer, M.; Gron, G. No hypofrontality, But absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophr. Res. 2003, 61, 175–184. [Google Scholar] [CrossRef]
- Manoach, D.S.; Press, D.Z.; Thangaraj, V.; Searl, M.M.; Goff, D.C.; Halpern, E.; Saper, C.B.; Warach, S. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fmri. Biol. Psychiatr. 1999, 45, 1128–1137. [Google Scholar] [CrossRef]
- Manoach, D.S.; Gollub, R.L.; Benson, E.S.; Searl, M.M.; Goff, D.C.; Halpern, E.; Saper, C.B.; Rauch, S.L. Schizophrenic subjects show aberrant fmri activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol. Psychiatr. 2000, 48, 99–109. [Google Scholar] [CrossRef]
- Callicott, J.H.; Bertolino, A.; Mattay, V.S.; Langheim, F.J.; Duyn, J.; Coppola, R.; Goldberg, T.E.; Weinberger, D.R. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 2000, 10, 1078–1092. [Google Scholar] [CrossRef]
- Weinberger, D.R.; Berman, K.F. Prefrontal function in schizophrenia: Confounds and controversies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1495–1503. [Google Scholar] [CrossRef]
- Mendrek, A.; Laurens, K.R.; Kiehl, K.A.; Ngan, E.T.; Stip, E.; Liddle, P.F. Changes in distributed neural circuitry function in patients with first-episode schizophrenia. Br. J. Psychiatry 2004, 185, 205–214. [Google Scholar] [CrossRef]
- Callicott, J.H.; Mattay, V.S.; Bertolino, A.; Finn, K.; Coppola, R.; Frank, J.A.; Goldberg, T.E.; Weinberger, D.R. Physiological characteristics of capacity constraints in working memory as revealed by functional mri. Cereb. Cortex 1999, 9, 20–26. [Google Scholar] [CrossRef]
- Manoach, D.S. Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophr. Res. 2003, 60, 285–298. [Google Scholar] [CrossRef]
- Karlsgodt, K.H.; Glahn, D.C.; van Erp, T.G.; Therman, S.; Huttunen, M.; Manninen, M.; Kaprio, J.; Cohen, M.S.; Lonnqvist, J.; Cannon, T.D. The relationship between performance and fmri signal during working memory in patients with schizophrenia, Unaffected co-twins, and control subjects. Schizophr. Res. 2007, 89, 191–197. [Google Scholar] [CrossRef]
- Jansma, J.M.; Ramsey, N.F.; van der Wee, N.J.; Kahn, R.S. Working memory capacity in schizophrenia: A parametric fmri study. Schizophr. Res. 2004, 68, 159–171. [Google Scholar]
- Honey, G.D.; Bullmore, E.T.; Sharma, T. De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophr. Res. 2002, 53, 45–56. [Google Scholar] [CrossRef]
- Avsar, K.B.; Stoeckel, L.E.; Bolding, M.S.; White, D.M.; Tagamets, M.A.; Holcomb, H.H.; Lahti, A.C. Aberrant visual circuitry associated with normal spatial match-to-sample accuracy in schizophrenia. Psychiatr. Res. 2011, 193, 138–143. [Google Scholar] [CrossRef]
- Henseler, I.; Falkai, P.; Gruber, O. A systematic fmri investigation of the brain systems subserving different working memory components in schizophrenia. Eur. J. Neurosci. 2009, 30, 693–702. [Google Scholar] [CrossRef]
- Meda, S.A.; Stevens, M.C.; Folley, B.S.; Calhoun, V.D.; Pearlson, G.D. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: An ica based analysis. PloS One 2009, 4, e7911. [Google Scholar]
- Potkin, S.G.; Turner, J.A.; Brown, G.G.; McCarthy, G.; Greve, D.N.; Glover, G.H.; Manoach, D.S.; Belger, A.; Diaz, M.; Wible, C.G.; et al. Working memory and dlpfc inefficiency in schizophrenia: The fbirn study. Schizophr. Bull. 2009, 35, 19–31. [Google Scholar] [CrossRef]
- Callicott, J.H.; Egan, M.F.; Mattay, V.S.; Bertolino, A.; Bone, A.D.; Verchinksi, B.; Weinberger, D.R. Abnormal fmri response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am. J. Psychiatr. 2003, 160, 709–719. [Google Scholar]
- Tan, H.Y.; Callicott, J.H.; Weinberger, D.R. Dysfunctional and compensatory prefrontal cortical systems, Genes and the pathogenesis of schizophrenia. Cereb. Cortex 2007, 17 (Suppl. 1), i171–i181. [Google Scholar]
- Egan, M.F.; Goldberg, T.E.; Kolachana, B.S.; Callicott, J.H.; Mazzanti, C.M.; Straub, R.E.; Goldman, D.; Weinberger, D.R. Effect of comt val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 6917–6922. [Google Scholar] [CrossRef]
- Ragland, J.D.; Blumenfeld, R.S.; Ramsay, I.S.; Yonelinas, A.; Yoon, J.; Solomon, M.; Carter, C.S.; Ranganath, C. Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. NeuroImage 2012, 59, 1719–1726. [Google Scholar] [CrossRef]
- Meyer-Lindenberg, A.S.; Olsen, R.K.; Kohn, P.D.; Brown, T.; Egan, M.F.; Weinberger, D.R.; Berman, K.F. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch. Gen. Psychiatr. 2005, 62, 379–386. [Google Scholar]
- Meyer-Lindenberg, A.; Poline, J.B.; Kohn, P.D.; Holt, J.L.; Egan, M.F.; Weinberger, D.R.; Berman, K.F. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am. J. Psychiatr. 2001, 158, 1809–1817. [Google Scholar] [CrossRef]
- Wolf, R.C.; Vasic, N.; Sambataro, F.; Hose, A.; Frasch, K.; Schmid, M.; Walter, H. Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2009, 33, 1464–1473. [Google Scholar] [CrossRef]
- Minzenberg, M.J.; Laird, A.R.; Thelen, S.; Carter, C.S.; Glahn, D.C. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatr. 2009, 66, 811–822. [Google Scholar]
- Servan-Schreiber, D.; Printz, H.; Cohen, J.D. A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science 1990, 249, 892–895. [Google Scholar]
- Goldberg, T.E.; Egan, M.F.; Gscheidle, T.; Coppola, R.; Weickert, T.; Kolachana, B.S.; Goldman, D.; Weinberger, D.R. Executive subprocesses in working memory: Relationship to catechol-o-methyltransferase val158met genotype and schizophrenia. Arch. Gen. Psychiatr. 2003, 60, 889–896. [Google Scholar] [CrossRef]
- Meyer-Lindenberg, A.; Nichols, T.; Callicott, J.H.; Ding, J.; Kolachana, B.; Buckholtz, J.; Mattay, V.S.; Egan, M.; Weinberger, D.R. Impact of complex genetic variation in comt on human brain function. Mol. Psychiatr. 2006, 11, 867–877. [Google Scholar] [CrossRef]
- Meyer-Lindenberg, A.; Kohn, P.D.; Kolachana, B.; Kippenhan, S.; McInerney-Leo, A.; Nussbaum, R.; Weinberger, D.R.; Berman, K.F. Midbrain dopamine and prefrontal function in humans: Interaction and modulation by comt genotype. Nat. Neurosci. 2005, 8, 594–596. [Google Scholar]
- Weinberger, D.R.; Egan, M.F.; Bertolino, A.; Callicott, J.H.; Mattay, V.S.; Lipska, B.K.; Berman, K.F.; Goldberg, T.E. Prefrontal neurons and the genetics of schizophrenia. Biol. Psychiatr. 2001, 50, 825–844. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Mawlawi, O.; Lombardo, I.; Gil, R.; Martinez, D.; Huang, Y.; Hwang, D.R.; Keilp, J.; Kochan, L.; Van Heertum, R.; et al. Prefrontal dopamine d1 receptors and working memory in schizophrenia. J. Neurosci. 2002, 22, 3708–3719. [Google Scholar]
- Wolf, R.C.; Vasic, N.; Hose, A.; Spitzer, M.; Walter, H. Changes over time in frontotemporal activation during a working memory task in patients with schizophrenia. Schizophr. Res. 2007, 91, 141–150. [Google Scholar]
- Schlagenhauf, F.; Wustenberg, T.; Schmack, K.; Dinges, M.; Wrase, J.; Koslowski, M.; Kienast, T.; Bauer, M.; Gallinat, J.; Juckel, G.; et al. Switching schizophrenia patients from typical neuroleptics to olanzapine: Effects on bold response during attention and working memory. Eur. neuropsychopharmacol. 2008, 18, 589–599. [Google Scholar] [CrossRef]
- Schlagenhauf, F.; Dinges, M.; Beck, A.; Wustenberg, T.; Friedel, E.; Dembler, T.; Sarkar, R.; Wrase, J.; Gallinat, J.; Juckel, G.; et al. Switching schizophrenia patients from typical neuroleptics to aripiprazole: Effects on working memory dependent functional activation. Schizophr. Res. 2010, 118, 189–200. [Google Scholar] [CrossRef]
- Van Veelen, N.M.; Vink, M.; Ramsey, N.F.; van Buuren, M.; Hoogendam, J.M.; Kahn, R.S. Prefrontal lobe dysfunction predicts treatment response in medication-naive first-episode schizophrenia. Schizophr. Res. 2011, 129, 156–162. [Google Scholar]
- Van Veelen, N.M.; Vink, M.; Ramsey, N.F.; Kahn, R.S. Left dorsolateral prefrontal cortex dysfunction in medication-naive schizophrenia. Schizophr. Res. 2010, 123, 22–29. [Google Scholar] [CrossRef]
- Meisenzahl, E.M.; Scheuerecker, J.; Zipse, M.; Ufer, S.; Wiesmann, M.; Frodl, T.; Koutsouleris, N.; Zetzsche, T.; Schmitt, G.; Riedel, M.; et al. Effects of treatment with the atypical neuroleptic quetiapine on working memory function: A functional mri follow-up investigation. Eur. Arch. Psychiatr. Clin. Neurosci. 2006, 256, 522–531. [Google Scholar]
- Honey, G.D.; Bullmore, E.T.; Soni, W.; Varatheesan, M.; Williams, S.C.; Sharma, T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc. Natl. Acad. Sci. USA 1999, 96, 13432–13437. [Google Scholar]
- Lahti, A.C.; Holcomb, H.H.; Weiler, M.A.; Medoff, D.R.; Frey, K.N.; Hardin, M.; Tamminga, C.A. Clozapine but not haloperidol re-establishes normal task-activated rcbf patterns in schizophrenia within the anterior cingulate cortex. Neuropsychopharmacology 2004, 29, 171–178. [Google Scholar] [CrossRef]
- Weiss, A.P.; Schacter, D.L.; Goff, D.C.; Rauch, S.L.; Alpert, N.M.; Fischman, A.J.; Heckers, S. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol. Psychiatr. 2003, 53, 48–55. [Google Scholar]
- Ragland, J.D.; Gur, R.C.; Valdez, J.; Turetsky, B.I.; Elliott, M.; Kohler, C.; Siegel, S.; Kanes, S.; Gur, R.E. Event-related fmri of frontotemporal activity during word encoding and recognition in schizophrenia. Am. J. Psychiatr. 2004, 161, 1004–1015. [Google Scholar] [CrossRef]
- Ragland, J.D.; Gur, R.C.; Raz, J.; Schroeder, L.; Kohler, C.G.; Smith, R.J.; Alavi, A.; Gur, R.E. Effect of schizophrenia on frontotemporal activity during word encoding and recognition: A pet cerebral blood flow study. Am. J. Psychiatr. 2001, 158, 1114–1125. [Google Scholar] [CrossRef]
- Ragland, J.D.; Gur, R.C.; Valdez, J.N.; Loughead, J.; Elliott, M.; Kohler, C.; Kanes, S.; Siegel, S.J.; Moelter, S.T.; Gur, R.E. Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition. Am. J. Psychiatr. 2005, 162, 1840–1848. [Google Scholar] [CrossRef]
- Hutcheson, N.L.; Reid, M.A.; White, D.M.; Kraguljac, N.V.; Avsar, K.B.; Bolding, M.S.; Knowlton, R.C.; den Hollander, J.A.; Lahti, A.C. Multimodal analysis of the hippocampus in schizophrenia using proton magnetic resonance spectroscopy and functional magnetic resonance imaging. Schizophr. Res. 2012, 140, 136–142. [Google Scholar]
- Hofer, A.; Weiss, E.M.; Golaszewski, S.M.; Siedentopf, C.M.; Brinkhoff, C.; Kremser, C.; Felber, S.; Fleischhacker, W.W. An fmri study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am. J. Psychiatr. 2003, 160, 911–918. [Google Scholar] [CrossRef]
- Hofer, A.; Weiss, E.M.; Golaszewski, S.M.; Siedentopf, C.M.; Brinkhoff, C.; Kremser, C.; Felber, S.; Fleischhacker, W.W. Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: A functional mri study. Am. J. Psychiatr. 2003, 160, 1802–1808. [Google Scholar] [CrossRef]
- Zierhut, K.; Bogerts, B.; Schott, B.; Fenker, D.; Walter, M.; Albrecht, D.; Steiner, J.; Schutze, H.; Northoff, G.; Duzel, E.; et al. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. Psychiatr. Res. 2010, 183, 187–194. [Google Scholar]
- Lisman, J.E.; Grace, A.A. The hippocampal-vta loop: Controlling the entry of information into long-term memory. Neuron 2005, 46, 703–713. [Google Scholar]
- Lisman, J.E.; Coyle, J.T.; Green, R.W.; Javitt, D.C.; Benes, F.M.; Heckers, S.; Grace, A.A. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008, 31, 234–242. [Google Scholar] [CrossRef]
- Lisman, J. Excitation, inhibition, local oscillations, or large-scale loops: What causes the symptoms of schizophrenia? Curr. Opin. Neurobiol. 2012, 22, 537–544. [Google Scholar]
- Legault, M.; Rompre, P.P.; Wise, R.A. Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J. Neurosci. 2000, 20, 1635–1642. [Google Scholar]
- Lisman, J.; Grace, A.A.; Duzel, E. A neohebbian framework for episodic memory; role of dopamine-dependent late ltp. Trends Neurosci. 2011, 34, 536–547. [Google Scholar]
- Achim, A.M.; Lepage, M. Episodic memory-related activation in schizophrenia: Meta-analysis. Br. J. Psychiatry 2005, 187, 500–509. [Google Scholar]
- Ragland, J.D.; Laird, A.R.; Ranganath, C.; Blumenfeld, R.S.; Gonzales, S.M.; Glahn, D.C. Prefrontal activation deficits during episodic memory in schizophrenia. Am. J. Psychiatr. 2009, 166, 863–874. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Gelao, B.; Caforio, G.; Romano, R.; Andriola, I.; D'Ambrosio, E.; Papazacharias, A.; Elifani, F.; Bianco, L.L.; Taurisano, P.; et al. Evidence that hippocampal-parahippocampal dysfunction is related to genetic risk for schizophrenia. Psychol. Med. 2012, 1–11. [Google Scholar]
- Stolz, E.; Pancholi, K.M.; Goradia, D.D.; Paul, S.; Keshavan, M.S.; Nimgaonkar, V.L.; Prasad, K.M. Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects. NeuroImage 2012, 63, 1154–1161. [Google Scholar]
- Krug, A.; Krach, S.; Jansen, A.; Nieratschker, V.; Witt, S.H.; Shah, N.J.; Nothen, M.M.; Rietschel, M.; Kircher, T. The effect of neurogranin on neural correlates of episodic memory encoding and retrieval. Schizophr. Bull. 2013, 39, 141–150. [Google Scholar] [CrossRef]
- Krug, A.; Markov, V.; Krach, S.; Jansen, A.; Zerres, K.; Eggermann, T.; Stocker, T.; Shah, N.J.; Nothen, M.M.; Treutlein, J.; et al. The effect of neuregulin 1 on neural correlates of episodic memory encoding and retrieval. NeuroImage 2010, 53, 985–991. [Google Scholar] [CrossRef]
- Thimm, M.; Krug, A.; Markov, V.; Krach, S.; Jansen, A.; Zerres, K.; Eggermann, T.; Stocker, T.; Shah, N.J.; Nothen, M.M.; et al. The impact of dystrobrevin-binding protein 1 (dtnbp1) on neural correlates of episodic memory encoding and retrieval. Human Brain Mapp. 2010, 31, 203–209. [Google Scholar]
- Di Giorgio, A.; Caforio, G.; Blasi, G.; Taurisano, P.; Fazio, L.; Romano, R.; Ursini, G.; Gelao, B.; Bianco, L.L.; Papazacharias, A.; et al. Catechol-o-methyltransferase val(158)met association with parahippocampal physiology during memory encoding in schizophrenia. Psychol. Med. 2011, 41, 1721–1731. [Google Scholar]
- Stone, M.; Gabrieli, J.D.; Stebbins, G.T.; Sullivan, E.V. Working and strategic memory deficits in schizophrenia. Neuropsychology 1998, 12, 278–288. [Google Scholar] [CrossRef]
- Palmer, B.W.; Savla, G.N.; Fellows, I.E.; Twamley, E.W.; Jeste, D.V.; Lacro, J.P. Do people with schizophrenia have differential impairment in episodic memory and/or working memory relative to other cognitive abilities? Schizophr. Res. 2010, 116, 259–265. [Google Scholar] [CrossRef]
- Van Snellenberg, J.X. Working memory and long-term memory deficits in schizophrenia: Is there a common substrate? Psychiatr. Res. 2009, 174, 89–96. [Google Scholar]
- Barch, D.M.; Ceaser, A. Cognition in schizophrenia: Core psychological and neural mechanisms. Trends Cogn. Sci. 2012, 16, 27–34. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kraguljac, N.V.; Srivastava, A.; Lahti, A.C. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI) Studies. Behav. Sci. 2013, 3, 330-347. https://doi.org/10.3390/bs3030330
Kraguljac NV, Srivastava A, Lahti AC. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI) Studies. Behavioral Sciences. 2013; 3(3):330-347. https://doi.org/10.3390/bs3030330
Chicago/Turabian StyleKraguljac, Nina V., Annusha Srivastava, and Adrienne C. Lahti. 2013. "Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI) Studies" Behavioral Sciences 3, no. 3: 330-347. https://doi.org/10.3390/bs3030330
APA StyleKraguljac, N. V., Srivastava, A., & Lahti, A. C. (2013). Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI) Studies. Behavioral Sciences, 3(3), 330-347. https://doi.org/10.3390/bs3030330