Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vinyl Acetate Polymer
2.2. Modified Mechanism of Vinyl Acetate Polymer
2.3. Soil Characterization
2.4. Water Property Test
2.4.1. Water-Retaining Property Test
2.4.2. Rainfall Erosion Test
2.5. Mechanical Property Test
2.5.1. Unconfined Compression Test
2.5.2. Direct Shear Test
2.6. Durability Test
2.7. Seed Growth Test
3. Results and Analysis
3.1. Water Property Test
3.1.1. Water-Retaining Property Test
3.1.2. Rainfall Erosion Test
3.2. Mechanical Property Test
3.2.1. Unconfined Compression Test
3.2.2. Direct Shear Test
3.3. Durability Test
3.4. Seed Growth Test
4. Field Test
4.1. Area Overview
4.2. Field Test Scheme
4.3. Field Test Effect Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lim, J.Y.; Chun, Y. The characteristics of asian dust events in northeast asia during the springtime from 1993 to 2004. Glob. Planet. Chang. 2006, 52, 231–247. [Google Scholar] [CrossRef]
- McTainsh, G.H.; Lynch, A.W.; Tews, E.K. Climatic controls upon dust storm occurrence in eastern Australia. J. Arid Environ. 1998, 39, 457–466. [Google Scholar] [CrossRef]
- Tang, C.S.; Wang, D.Y.; Shi, B.; Li, J. Effect of wetting–drying cycles on profile mechanical behavior of soils with different initial conditions. Catena 2016, 139, 105–116. [Google Scholar] [CrossRef]
- Orts, W.J.; Sojka, R.E.; Glenn, G.M. Biopolymer additives to reduce erosion-induced soil losses during irrigation. Ind. Crop Prod. 2000, 11, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Saadeldin, R.; Siddiqua, S. Geotechnical characterization of a clay-cement mix. Bulletin of Engineering. Geol. Environ. 2013, 72, 601–608. [Google Scholar] [CrossRef]
- Saeed, K.A.; Kassim, K.A.; Nur, H.; Yunus, N.Z.M. Strength of lime-cement stabilized tropical lateritic clay contaminated by heavy metals. KSCE J. Civ. Eng. 2015, 19, 887–892. [Google Scholar] [CrossRef]
- Tang, H.; Li, X.; Li, M.; Song, L.; Wu, Z.; Xu, H. Properties and mechanism of cfbc fly ash-cement based stabilizers for lake sludge. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 750–753. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.J.; Tang, A.M.; Tang, C.S.; Benahmed, N. Changes in thermal conductivity, suction and microstructure of a compacted lime-treated silty soil during curing. Eng. Geol. 2016, 202, 114–121. [Google Scholar] [CrossRef]
- Xue, G.; Yilmaz, E.; Song, W.; Cao, S. Compressive Strength Characteristics of Cemented Tailings Backfill with Alkali-Activated Slag. Appl. Sci. 2018, 8, 1537. [Google Scholar] [CrossRef]
- Chen, Z.G.; Tang, C.S.; Zhu, C.; Shi, B.; Liu, Y.M. Compression, swelling and rebound behavior of gmz bentonite/additive mixture under coupled hydro-mechanical condition. Eng. Geol. 2017, 221, 50–60. [Google Scholar] [CrossRef]
- Latifi, N.; Marto, A.; Eisazadeh, A. Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations. Environ. Earth Sci. 2015, 73, 1133–1141. [Google Scholar] [CrossRef]
- Ma, C.; Qin, Z.; Zhuang, Y.; Chen, L.; Chen, B. Influence of sodium silicate and promoters on unconfined compressive strength of portland cement-stabilized clay. Soils Found. 2015, 55, 1222–1232. [Google Scholar] [CrossRef]
- Escolano, F.; Sánchez, J.R.; Pacheco-Torres, R.; Cerro-Prada, E. Strategies on Reuse of Clayey Expansive Soils as Embankment Material in Urban Development Areas: A Case Study in New Urbanized Zones. Appl. Sci. 2018, 8, 764. [Google Scholar] [CrossRef]
- Yang, Y.L.; Reddy, K.R.; Du, Y.J.; Fan, R.-D. Sodium hexametaphosphate (shmp)-amended calcium bentonite for slurry trench cutoff walls: Workability and microstructure characteristics. Can. Geotech. J. 2018, 55, 528–537. [Google Scholar] [CrossRef]
- Shorin, V.A.; Kagan, G.L.; Vel’sovskii, A.Y. A new diagnostic instrument and method for stabilization of heaving soil in the beds of structures. Soil Mech. Found. Eng. 2008, 45, 144–147. [Google Scholar] [CrossRef]
- Blanck, G.; Cuisinier, O.; Masrouri, F. Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta Geotech. 2014, 9, 1111–1122. [Google Scholar] [CrossRef]
- Eujine, G.N.; Chandrakaran, S.; Sankar, N. Accelerated subgrade stabilization using enzymatic lime technique. J. Mater. Civil Eng. 2017, 29. [Google Scholar] [CrossRef]
- Khan, T.A.; Taha, M.R. Effect of three bioenzymes on compaction, consistency limits, and strength characteristics of a sedimentary residual soil. Adv. Mater. Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Onyejekwe, S.; Ghataora, G.S. Soil stabilization using proprietary liquid chemical stabilizers: Sulphonated oil and a polymer. Bull. Eng. Geol. Environ. 2015, 74, 651–665. [Google Scholar] [CrossRef]
- Onyejekwe, S.; Ghataora, G.S. Stabilization of Quarry Fines Using a Polymeric Additive and Portland Cement. J. Mater. Civ. Eng. 2016, 28. [Google Scholar] [CrossRef]
- Rezaeimalek, S.; Nasouri, R.; Huang, J.; Bin-Shafique, S. Curing Method and Mix Design Evaluation of a Styrene-Acrylic Based Liquid Polymer for Sand and Clay Stabilization. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef]
- Gilazghi, S.T.; Huang, J.; Rezaeimalek, S.; Bin-Shafique, S. Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization. Eng. Geol. 2016, 211, 171–178. [Google Scholar] [CrossRef]
- Rivera-Gomez, C.; Galan-Marin, C.; Bradley, F. Analysis of the Influence of the Fiber Type in Polymer Matrix/Fiber Bond Using Natural Organic Polymer Stabilizer. Polymers 2014, 6, 977–994. [Google Scholar] [CrossRef] [Green Version]
- Naeini, S.A.; Naderinia, B.; Izadi, E. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE J. Civ. Eng. 2012, 16, 943–949. [Google Scholar] [CrossRef]
- Zezin, A.B.; Mikheikin, S.V.; Rogacheva, V.B.; Zansokhova, M.F.; Sybachin, A.V.; Yaroslavov, A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion. Adv. Colloid Interface Sci. 2015, 226, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.; Zhang, M.; Zhang, X.; Hulsey, L.; Ravens, T.; Van Veldhuizen, R. Evaluation of geofibers and nontraditional liquid additives on erodible slopes in interior alaska. Geotext. Geomembr. 2015, 43, 412–423. [Google Scholar] [CrossRef]
- Liu, J.; Bai, Y.; Song, Z.; Lu, Y.; Qian, W.; Kanungo, D.P. Evaluation of strength properties of sand modified with organic polymers. Polymers 2018, 10, 287. [Google Scholar] [CrossRef]
- Liu, J.; Song, Z.; Lu, Y.; Wang, Q.; Kong, F.; Bu, F.; Kanungo, D.P.; Sun, S. Improvement effect of water-based organic polymer on the strength properties of fiber glass reinforced sand. Polymers 2018, 10, 836. [Google Scholar] [CrossRef]
- An, N.; Tang, C.S.; Xu, S.K.; Gong, X.P.; Shi, B.; Inyang, H.I. Effects of soil characteristics on moisture evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Liu, C.; Suo, W.B.; Gao, L. Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Appl. Clay Sci. 2011, 52, 69–77. [Google Scholar] [CrossRef]
- Wang, D.Y.; Tang, C.S.; Shi, B.; Li, J. Studying the effect of drying on soil hydro-mechanical properties using micro-penetration method. Environ. Earth Sci. 2016, 75, 1009. [Google Scholar] [CrossRef]
pH | Viscosity (MPa·s) | Relative Density (Gs) | Solid Content (%) | Water Absorption (%) | Gel Rate (%) |
---|---|---|---|---|---|
6–7 | 400–3000 | 1.05–1.07 | 41–45 | 34–38 | 1.48–1.53 |
Specimens Reference | Polymer Concentration (%) | Ep (%) | |
---|---|---|---|
S5 | 0 | 1404.2 | 70.2 |
S6 | 10 | 260.3 | 13.0 |
S7 | 20 | 110.8 | 5.5 |
S8 | 30 | 22.5 | 1.1 |
Specimens Reference | Polymer Concentration (%) | Unconfined Compression Strength/Standard Deviations (kPa) |
---|---|---|
S9 | 0 | 76.3/0.58 |
S10 | 10 | 189.3/1.34 |
S11 | 20 | 198.2/3.88 |
S12 | 30 | 205.4/8.8 |
Specimens Reference | Polymer Concentration (%) | Cohesion/Standard Deviations (kPa) | Internal Friction Angle/Standard Deviations (°) |
---|---|---|---|
S13 | 0 | 56.0/1.36 | 29.5/1.03 |
S14 | 10 | 365.23/5.58 | 29.1/1.16 |
S15 | 20 | 373.17/18.63 | 30.0/0.96 |
S16 | 30 | 384.9/18.59 | 30.1/1.20 |
Specimens Reference | Polymer Concentration (%) | Germinating Time (day) | Status of Vegetation Growth | Development of Surface Cracks 3 | |
---|---|---|---|---|---|
Germination Rate 1 | Growth Situation 2 | ||||
S29 | 0 | 6 | 0.6 | 0.7 | 0.7 |
S30 | 10 | 6 | 0.7 | 0.8 | 0.4 |
S31 | 20 | 6 | 0.8 | 0.9 | 0.1 |
S32 | 30 | 5 | 1 | 1 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Liu, J.; Bai, Y.; Wei, J.; Li, D.; Wang, Q.; Chen, Z.; Kanungo, D.P.; Qian, W. Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil. Appl. Sci. 2019, 9, 208. https://doi.org/10.3390/app9010208
Song Z, Liu J, Bai Y, Wei J, Li D, Wang Q, Chen Z, Kanungo DP, Qian W. Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil. Applied Sciences. 2019; 9(1):208. https://doi.org/10.3390/app9010208
Chicago/Turabian StyleSong, Zezhuo, Jin Liu, Yuxia Bai, Jihong Wei, Ding Li, Qiongya Wang, Zhihao Chen, Debi Prasanna Kanungo, and Wei Qian. 2019. "Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil" Applied Sciences 9, no. 1: 208. https://doi.org/10.3390/app9010208
APA StyleSong, Z., Liu, J., Bai, Y., Wei, J., Li, D., Wang, Q., Chen, Z., Kanungo, D. P., & Qian, W. (2019). Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil. Applied Sciences, 9(1), 208. https://doi.org/10.3390/app9010208