Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on Depression
Abstract
:1. Introduction
2. Selection Criteria
3. A Brief Overview of the Depressed Brain
4. Underlying Mechanisms of CBT in Depression: Neuroimaging Data Results
4.1. MRI Studies
4.1.1. fMRI Studies
Pattern of Regional Activity
Functional Connectivity
4.1.2. MRS Studies
4.2. PET Studies
4.3. SPECT Studies
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Study | Patients Age | Patients Sex | Symptom Severity | Antidepressant Medications | Imaging Technique | Psychotherapy Protocol | Control Group | Outcome |
---|---|---|---|---|---|---|---|---|
PET scan and related imaging techniques | ||||||||
Goldapple et al., 2004 [66] | 41.0 ± 9.0 years | 11F/6M (64.7% F) | Baseline HDRS scores: 20.0 ± 3.0 (Moderate depression) | Drug free (n = 6 drug naïve; n = 1 patient required antidepressant washout 4 weeks prior to inclusion; none was considered treatment refractory) | Fluorine-18-labeled deoxyglucose PET scan at rest | 15–20 individualized sessions (17.7 ± 2.0 sessions over 26 ± 7 weeks) according to Beck et al. [7]: -Behavioral activation -Cognitive monitoring -Patients’ testing of their interpretations and beliefs (behavioral experiments) -Patients’ using of thoughts records | 13 paroxetine-treated patients | Post-CBT increase in glucose metabolism in hippocampus and ACC activity and decrease in glucose metabolism in dorsal, ventral and medial frontal cortex Post-paroxetine increase in PFC activity and decrease in subgenual cingulate and hippocampus activity |
Kennedy et al., 2007 [67] | 30.0 ± 9.8 years | 7F/5M (58.3% F) | Baseline HDRS score: 22.3 ± 4.2 (Moderate depression) | Drug free for at least 2 weeks (4 weeks for fluoxetine) | Fluorine-18-labeled deoxyglucose PET scan at rest | 14.1 ± 3.1 individualized sessions over 16 weeks according to Beck et al. [7]: -Strategies aiming to reduce automatic reactivity to negative thoughts or attitudes and to combat dysphoric mood | 12 venlafaxine-treated patients | Post-CBT and post-venlafaxine decrease in glucose metabolism in the OFC bilaterally and left medial PFC, along with an increase in glucose metabolism in the right occipital-temporal cortex Venlafaxine-specific decrease in posterior subgenual cingulate metabolism CBT-specific increase in subgenual cingulate metabolism in areas that are anterior, dorsal or medial to those modified with venlafaxine |
Amsterdam et al., 2013 [72] | 41.0 ± 12.8 years | 5F/15M (25.0% F) | Baseline HDRS score: 20.3 ± 2.5 (Moderate depression) | Drug free for at least 12 months (n = 10 drug-naïve; n = 10 previously treated with antidepressant medications) | [123I]-ADAM SPECT (SERT radioligand) at rest | 16 sessions (50 min each) according to Beck et al. [7]: -Promoting behavioral activation and counter-acting maladaptive cognitive biases -Identification and evaluation of underlying beliefs and schemas -Cognitive-behavioral skills-training including homework | 10 HCs | Post-CBT increase in Low SERT binding (standardized uptake ratio) in the midbrain, right medial temporal lobe, and left medial temporal lobe |
Tiger et al., 2014 [68] | 47.8 ± 16.6 years | 6F/4M (60% F) | Baseline MADRS score: 26.0 ± 3.9 (Moderate depression) | Drug free for at least 1 month (n = 4 drug-naïve; medication-free period: 5.2 ± 72.9 years) | Serotonin (5-HT1B) receptor selective radioligand [11C]AZ10419369 PET scan at rest | Internet based CBT over 10–12 weeks (11.9 ± 71.4 weeks) according to Andersson et al. [83]: -Introduction-Behavioral activation -Cognitive restructuring -Sleep and physical health -Relapse prevention -Future goals | N/A | Post-CBT decrease in binding potential found in the dorsal brain stem post-CBT suggesting increased serotonin release |
fMRI studies | ||||||||
Fu et al., [42] 2008 | 40.0 ± 9.4 years | 13F/3M (81.3% F) | Baseline HDRS score: 20.9 ± 1.9 (Moderate depression) Baseline BDI score: 38.0 ± 11.7 (Severe depression) | Drug free for at least 4 weeks (8 weeks for Fluoxetine) | fMRI during sad facial affect recognition task | 16 sessions over 16 weeks according to Beck et al. [7] | 16 HCs | Post-CBT normalization of the high baseline hippocampus-amygdala activity |
Dichter et al., 2009 [52] | 39.0 ± 10.4 years | 6F/6M (50.0% F) | Baseline HDRS score: 23.8 ± 2.3 (Moderate depression) Baseline BDI score: 27.1 ± 5.1 (Moderate depression) | Drug free at the time of first neuroimaging | fMRI during a decision-making task that dissociates reward choice selection, anticipation, and feedback | 11.4 ± 2.0 weekly sessions of BATD: -Encouraging patients to expose themselves to reinforcing situations and to inhibit the behavioral withdrawal | 15 HCs | Post-BATD improvement in regional activity within the reward circuit including the striatum and prefrontal areas (paracingulate gyrus and OFC) |
Dichter et al., 2010 [51] | 39.0 ± 10.4 years | 6F/6M (50.0% F) | Baseline HDRS score: 23.8 ± 2.3 (Moderate depression) Baseline BDI score: 27.1 ± 5.1 (Moderate depression) | Drug free at the time of first neuroimaging | fMRI during a task requiring cognitive control in both sad and neutral contexts. | 11.4 ± 2.0 weekly sessions (same as Dichter et al., 2009) | 15 HCs | Post-BATD decrease in the prefrontal activity (including the paracingulate gyrus, right OFC, and right frontal pole) during the processing of cognitive control stimuli presented within a sad context |
Ritchey et al., 2011 [43] | 36.1 ± 10.1 years | 8F/3M (72.7% F) | Baseline HRSD score: 26.7 ± 6.7 (Moderate depression) Baseline BDI score: 23.0± 8.7 (Moderate depression) | Drug free for at least 2 months | fMRI during Emotion evaluative task (positive, negative and neutral) | 20.7 ± 7.6 sessions (50 minutes each) over 30.3 ± 12.5 weeks according to Beck et al. [82]: -Identifying and challenging negative automatic thoughts and core beliefs -Conducting behavioral experiments | 7 HCs | Post-CBT change in ventromedial PFC hypoactivity and amygdala hyperresponsiveness in the direction of normalization |
Siegle et al., 2012 [53] | 40 patients; age N/A | Details N/A | BDI scores N/A | Drug free for at least 2 weeks (6 weeks for fluoxetine) | fMRI during sustained emotional information processing task | 16–20 sessions over 12 weeks according to Beck et al. [7]: -Identifying thought/feeling relationships -Learning skills for challenging negative thoughts and adopting more adaptive thoughts -Homework (cognitive and behavioral exercise) | Details N/A | Absence of post-CBT increase in baseline subgenual ACC hypoactivity |
Sankar et al., 2014 [46] | 39.9 ± 9.5 years | 13F/3M (81.3% F) | Baseline HDRS score: 20.9 ± 1.9 (Moderate depression) | Drug free for at least 4 weeks (8 weeks for fluoxetine) | fMRI during attributions to statements from a modified Dysfunctional Attitudes Scale | 16 sessions over 16 weeks according to Beck et al. [7] | 16 HCs | Post-CBT decrease in left hippocampal activity |
Yoshimura et al., 2014 [44] | 37.3 ± 7.2 years | 7F/16M (30.4% F) | Baseline HDRS score: 11.0 ± 4.8 (Mild depression) Baseline BDI score: 21.4 ± 8.5 (Moderate depression) | Treatment with one or more antidepressant drugs for a minimum of 8 weeks prior to inclusion (without remission) and during the study period | fMRI during self-referential task using emotional (positive and negative) trait words | 12 weekly group sessions according to Beck et al. [7]: -Psychoeducation about depression and CBT, -Understanding the relationship between cognition and mood -Self-monitoring of automatic thoughts, behaviors and mood -Identifying and challenging negative self-talk -Challenging and restructuring negative thinking about the self -Looking for new ideas and invoking positive thinking and practicing them in daily life -Evaluating one’s own ideas and thinking during the last week-Setting up an action plan for the next week -Reviewing the outcome of the program -Relapse prevention | 15 HCs | Post-CBT increase in medial PFC and ventral ACC activity when processing positive stimuli Post-CBT decrease in the activity of the same regions when processing negative stimuli |
Yoshimura et al., 2017 [59] | 37.4 ± 7.1 years | 10F/19M (34.5% F) | Baseline HDRS score: 11.5 ± 5.7 (Mild depression) Baseline BDI score: 21.4 ± 8.8 (Moderate depression) | Treatment with one or more antidepressant drugs for a minimum of 8 weeks prior to inclusion (without remission) and during the study period | fMRI during self-referential task using emotional (positive and negative) trait words to assess connectivity between medial PFC and ACC | 12 weekly group sessions (90 min each); same as Yoshimura et al., 2014 | 15 HCs | Post-CBT decrease in functional connectivity between the medial PFC and ACC which are part of the default-mode |
Shou et al., 2017 [57] | 31.9 ± 6.6 years | Predominantly females (details N/A) | Baseline MADRS score: 28.41 ± 6.1 (Moderate depression) | Drug free for at least three weeks (five weeks for fluoxetine) | Resting-state fMRI assessing functional connectivity of the bilateral amygdala with the fronto-parietal network | 12 CBT sessions over 12 weeks according to Beck et al. [7]: -Sessions targeting faulty cognition and emotion regulation | 18 HCs | Post-CBT increase in connectivity between the amygdala and the fronto-parietal network |
Yang et al., 2018 [45] | 34.6 ± 8.3 years | 14F/2M (87.5% F) | Baseline MADRS score: 27.4 ± 6.0 (Moderate depression) | Drug free for at least 3 weeks (5 weeks for fluoxetine) | fMRI during cognitive control task: paying attention to either houses or fearful/neutral faces presented in a target axis while ignoring the stimuli presented in the other axis | CBT sessions over 12 weeks | 19 HCs | Post-CBT increase in regional activity within the cognitive control network, including ventrolateral and dorsolateral PFC |
Rubin-Falcone et al., 2018 [50] | 34.2 ± 10.20 years | 19F/12M (55% F) | Baseline HDRS score: 19.1 ± 4.4 (Moderate depression) Baseline BDI score: 28.0 ± 7.7 (Moderate depression) | Drug free (n = 14 drug naïve; n = 15 previously treated with antidepressant drugs; n = 2 required antidepressant drugs washout 3 weeks prior to inclusion). | fMRI during engagement in a voluntary emotion regulation strategy while recalling negative autobiographical memories | 14 sessions (45 minutes each) over 12 weeks according to Beck et al. [7]: -Cognitive-restructuring -Behavioral activation -Behavioral experiments as a means to examine negative automatic predictions -Identifying and modifying more deeply held patterns of negative thinking about oneself, one’s life, and one’s future | 18 HCs | Post-CBT better outcome associated with a decrease in the activity of subgenual ACC and medial PFC |
MRS studies | ||||||||
Sanacora et al., 2006 [61] | 8 patients; details N/A | Details N/A | Baseline HDRS score: 28.1 ± 8.7 (Moderate depression) | Drug free for at least 2 years (n = 1 patient discontinued alprazolam 3 weeks prior to inclusion) | 1H-MRS to measure occipital GABA concentrations at rest | 12 sessions over 12 weeks according to Beck et al. [7] | 8 patients receiving ECT 11 patients receiving antidepressant medications | Post-CBT trend toward a decrease in occipital GABA concentration Post-ECT and antidepressants increase in occipital GABA concentration |
Li et al., 2016 [64] | 30.0 ± 7.0 years | 11F/5M (68.8% F) | Baseline HDRS median (range): 18 (13–24) (Moderate depression) | Drug free for at least 6 weeks | 1H-MRS to estimate metabolite ratios in insula, ACC, caudate, putamen, and thalamus | MBCT according to Segal et al. [84]: -8 weekly 2.25-h classes -45 min of homework 6 days per week | 10 HCs | Post-MBCT increase in N-acetyl aspartate/total creatine ratio (a marker of neuronal function) in the left ACC |
References
- Clark, D.A.; Beck, A.T. Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends Cogn. Sci. 2010, 14, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Wang, P.S. Epidemiology of depression. In Handbook of Depression, 2nd ed.; Gotlib, I.H., Hammen, C.L., Eds.; Guilford Press: New York, NY, USA, 2009; pp. 5–22. [Google Scholar]
- Beck, A.T. Depression: Causes and Treatment; University of Pennsylvania Press: Philadelphia, PA, USA, 1967. [Google Scholar]
- Beck, A.T. Cognitive models of depression. J. Cogn. Psychother. 1987, 1, 5–37. [Google Scholar]
- Beck, A.T. The evolution of the cognitive model of depression and its neurobiological correlates. Am. J. Psychiatry 2008, 165, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Rush, A.J.; Shaw, B.F.; Emery, G. Cognitive Therapy of Depression; Guilford Press: New York, NY, USA, 1979. [Google Scholar]
- Hofmann, S.G.; Asnaani, A.; Vonk, I.J.; Sawyer, A.T.; Fang, A. The Efficacy of Cognitive Behavioral Therapy: A Review of Meta-analyses. Cogn. Ther. Res. 2012, 36, 427–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollon, S.D.; DeRubeis, R.J.; Fawcett, J.; Amsterdam, J.D.; Shelton, R.C.; Zajecka, J.; Young, P.R.; Gallop, R. Effect of cognitive therapy with antidepressant medications vs. antidepressants alone on the rate of recovery in major depressive disorder: A randomized clinical trial. JAMA Psychiatry 2014, 71, 1157–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMain, S.; Newman, M.G.; Segal, Z.V.; DeRubeis, R.J. Cognitive behavioral therapy: Current status and future research directions. Psychother. Res. 2015, 25, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Weitz, E.S.; Hollon, S.D.; Twisk, J.; van Straten, A.; Huibers, M.J.; David, D.; DeRubeis, R.J.; Dimidjian, S.; Dunlop, B.W.; Cristea, I.A.; et al. Baseline depression severity as moderator of depression outcomes between cognitive behavioral therapy vs. pharmacotherapy: An individual patient data meta-analysis. JAMA Psychiatry 2015, 72, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group PRISMA. Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Wyland, C.L.; Kelley, W.M.; Macrae, C.N.; Gordon, H.L.; Heatherton, T.F. Neural correlates of thought suppression. Neuropsychologia 2003, 41, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.P.; Heatherton, T.F.; Kelley, W.M.; Wyland, C.L.; Wegner, D.M.; Neil Macrae, C. Separating sustained from transient aspects of cognitive control during thought suppression. Psychol. Sci. 2007, 18, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.; Owen, A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 2000, 23, 475–483. [Google Scholar] [CrossRef]
- Calbeza, R.; Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 2000, 12, 1–47. [Google Scholar] [CrossRef]
- Li, B.J.; Friston, K.; Mody, M.; Wang, H.N.; Lu, H.B.; Hu, D.W. A brain network model for depression: From symptom understanding to disease intervention. CNS Neurosci. Ther. 2018. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.M.; Jackson, D.C.; Davidson, R.J.; Aguirre, G.K.; Kimberg, D.Y.; Thompson-Schill, S.L. Modulation of amygdalar activity by the conscious regulation of negative emotion. J. Cogn. Neurosci. 2002, 14, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Fales, C.L.; Barch, D.M.; Rundle, M.M.; Mintun, M.A.; Snyder, A.Z.; Cohen, J.D.; Mathews, J.; Sheline, Y.I. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol. Psychiatry 2008, 63, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Ressler, K.J.; Mayberg, H.S. Targeting abnormal neural circuits in mood and anxiety disorders: From the laboratory to the clinic. Nat. Neurosci. 2007, 10, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V. Do psychotherapies produce neurobiological effects? Acta Neuropsychiatr. 2006, 18, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.; van Reekum, C.M.; Urry, H.L.; Kalin, N.H.; Davidson, R.J. Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 2007, 27, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Barch, D.M.; Donnelly, J.M.; Ollinger, J.M.; Snyder, A.Z.; Mintun, M.A. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study. Biol. Psychiatry 2001, 50, 651–658. [Google Scholar] [CrossRef]
- Beevers, C.G.; Clasen, P.; Stice, E.; Schnyer, D. Depression symptoms and cognitive control of emotion cues: A functional magnetic resonance imaging study. Neuroscience 2010, 167, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D.; Drevets, W.C.; Dantzer, R.; Teague, T.K.; Bodurka, J.; Savitz, J. Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression. Brain Behav. Immun. 2016, 56, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotlib, I.H.; Joormann, J. Cognition and depression: Current status and future directions. Annu. Rev. Clin. Psychol. 2010, 6, 285–312. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulated cortex to behavior. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.M.; Macrae, C.N.; Heatherton, T.F.; Wyland, C.L.; Kelley, W.M. Neuroanatomical evidence for distinct cognitive and affective components of self. J. Cogn. Neurosci. 2006, 18, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Engström, M.; Knowland, D.; Lim, B.K. The default mode network as a biomarker for monitoring the therapeutic effects of meditation. Front Psychol. 2015, 9, 776. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Flores, B.H.; Menon, V.; Glover, G.H.; Solvason, H.B.; Kenna, H.; Reiss, A.L.; Schatzberg, A.F. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 2007, 62, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.G.; Peltier, S.; Nee, D.E.; Kross, E.; Deldin, P.J.; Jonides, J. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 2011, 6, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, L.; Friston, K.J.; Shen, H.; Wang, L.; Zeng, L.L.; Hu, D. A treatment-resistant default mode subnetwork in major depression. Biol. Psychiatry 2013, 74, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Connolly, C.G.; Henje Blom, E.; LeWinn, K.Z.; Strigo, I.A.; Paulus, M.P.; Frank, G.; Max, J.E.; Wu, J.; Chan, M.; et al. Emotion-dependent functional connectivity of the default mode network in adolescent depression. Biol. Psychiatry 2015, 78, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Wu, Q.; Kuang, W.; Huang, X.; He, Y.; Gong, Q. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol. Psychiatry 2011, 70, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Belleau, E.L.; Taubitz, L.E.; Larson, C.L. Imbalance of default mode and regulatory networks during externally focused processing in depression. Soc. Cogn. Affect. Neurosci. 2015, 10, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Lemogne, C.; le Bastard, G.; Mayberg, H.; Volle, E.; Bergouignan, L.; Lehéricy, S.; Allilaire, J.F.; Fossati, P. In search of the depressive self: Extended medial prefrontal network during selfreferential processing in major depression. Soc. Cogn. Affect. Neurosci. 2009, 4, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Zamoscik, V.; Huffziger, S.; Ebner-Priemer, U.; Kuehner, C.; Kirsch, P. Increased involvement of the parahippocampal gyri in a sad mood predicts future depressive symptoms. Soc. Cogn. Affect. Neurosci. 2014, 9, 2034–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, N.L.; Liddle, P.F.; Nixon, E.; Worwood, G.; Liotti, M.; Palaniyappan, L. Biological vulnerability to depression: Linked structural and functional brain network findings. Br. J. Psychiatry 2014, 204, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Farmer, M.; Fogelman, P.; Gotlib, I.H. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience. Biol. Psychiatry 2015, 78, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowland, D.; Lim, B.K. Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond. Pharmacol. Biochem. Behav. 2018. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.H.; Williams, S.C.; Cleare, A.J.; Scott, J.; Mitterschiffthaler, M.T.; Walsh, N.D.; Donaldson, C.; Suckling, J.; Andrew, C.; Steiner, H.; et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol. Psychiatry 2008, 64, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, M.; Dolcos, F.; Eddington, K.M.; Strauman, T.J.; Cabeza, R. Neural correlates of emotional processing in depression: Changes with cognitive behavioral therapy and predictors of treatment response. J. Psychiatr. Res. 2011, 45, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, S.; Okamoto, Y.; Onoda, K.; Matsunaga, M.; Okada, G.; Kunisato, Y.; Yoshino, A.; Ueda, K.; Suzuki, S. Cognitive behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing. Soc. Cogn. Affect. Neurosci. 2014, 9, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Oathes, D.J.; Linn, K.A.; Bruce, S.E.; Satterthwaite, T.D.; Cook, P.A.; Satchell, E.K.; Shou, H.; Sheline, Y.I. Cognitive Behavioral Therapy Is Associated With Enhanced Cognitive Control Network Activity in Major Depression and Posttraumatic Stress Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sankar, A.; Scott, J.; Paszkiewicz, A.; Giampietro, V.P.; Steiner, H.; Fu, C.H. Neural effects of cognitive-behavioural therapy on dysfunctional attitudes in depression. Psychol. Med. 2015, 45, 1425–33. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Sills, L.; Simmons, A.N.; Lovero, K.L.; Rochlin, A.A.; Paulus, M.P.; Stein, M.B. Functioning of neural systems supporting emotion regulation in anxiety-prone individuals. Neuroimage 2011, 54, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevets, W.C.; Savitz, J.; Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008, 13, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Delaveau, P.; Jabourian, M.; Lemogne, C.; Guionnet, S.; Bergouignan, L.; Fossati, P. Brain effects of antidepressants in major depression: A meta-analysis of emotional processing studies. J. Affect. Disord. 2011, 130, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Rubin-Falcone, H.; Weber, J.; Kishon, R.; Ochsner, K.; Delaparte, L.; Doré, B.; Zanderigo, F.; Oquendo, M.A.; Mann, J.J.; Miller, J.M. Longitudinal effects of cognitive behavioral therapy for depression on the neural correlates of emotion regulation. Psychiatry Res Neuroimaging 2018, 271, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Dichter, G.S.; Felder, J.N.; Smoski, M.J. The effects of Brief Behavioral Activation Therapy for Depression on cognitive control in affective contexts: An fMRI investigation. J. Affect. Disord. 2010, 126, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dichter, G.S.; Felder, J.N.; Petty, C.; Bizzell, J.; Ernst, M.; Smoski, M.J. The effects of psychotherapy on neural responses to rewards in major depression. Biol. Psychiatry 2009, 66, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Siegle, G.J.; Thompson, W.K.; Collier, A.; Berman, S.R.; Feldmiller, J.; Thase, M.E.; Friedman, E.S. Toward clinically useful neuroimaging in depression treatment prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch. Gen. Psychiatry 2012, 69, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 2003, 65, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Cooney, R.E.; Joormann, J.; Atlas, L.Y.; Eugene, F.; Gotlib, I.H. Remembering the good times: Neural correlates of affect regulation. Neuroreport 2007, 18, 1771–1774. [Google Scholar] [CrossRef] [PubMed]
- Werner, N.S.; Meindl, T.; Materne, J.; Engel, R.R.; Huber, D.; Riedel, M.; Reiser, M.; Hennig-Fast, K. Functional MRI study of memory-related brain regions in patients with depressive disorder. J. Affect. Disord. 2009, 119, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Shou, H.; Yang, Z.; Satterthwaite, T.D.; Cook, P.A.; Bruce, S.E.; Shinohara, R.T.; Rosenberg, B.; Shelineb, Y.I. Cognitive behavioral therapy increases amygdala connectivity with the cognitive control network in both MDD and PTSD. Neuroimage Clin. 2017, 14, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Cook, P.A.; Bruce, S.E.; Conway, C.; Mikkelsen, E.; Satchell, E.; Vandekar, S.N.; Durbin, T.; Shinohara, R.T.; Sheline, Y.I. Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivity. Mol. Psychiatry 2016, 21, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, S.; Okamoto, Y.; Matsunaga, M.; Onoda, K.; Okada, G.; Kunisato, Y.; Yoshino, A.; Ueda, K.; Suzuki, S.I.; Yamawaki, S. Cognitive behavioral therapy changes functional connectivity between medial prefrontal and anterior cingulate cortices. J. Affect. Disord. 2017, 208, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Barch, D.M.; Price, J.L.; Rundle, M.M.; Vaishnavi, S.N.; Snyder, A.Z.; Mintun, M.A.; Wang, S.; Coalson, R.S.; Raichle, M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. USA 2009, 106, 1942–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanacora, G.; Fenton, L.R.; Fasula, M.K.; Rothman, D.L.; Levin, Y.; Krystal, J.H.; Mason, G.F. Cortical gamma-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biol. Psychiatry 2006, 59, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Mason, G.F.; Rothman, D.L.; Hyder, F.; Ciarcia, J.J.; Ostroff, R.B.; Berman, R.M.; Krystal, J.H. Increased cortical GABA concentrations in depressed patients receiving ECT. Am. J. Psychiatry 2003, 160, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Mason, G.F.; Rothman, D.L.; Krystal, J.H. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am. J. Psychiatry 2002, 159, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jakary, A.; Gillung, E.; Eisendrath, S.; Nelson, S.J.; Mukherjee, P.; Luks, T. Evaluating metabolites in patients with major depressive disorder who received mindfulness-based cognitive therapy and healthy controls using short echo MRSI at 7 Tesla. Magn. Reson. Mater. Phys. Biol. Med. 2016, 29, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.P.; Dai, H.Y.; Dai, Z.Z.; Xu, C.T.; Wu, R.H. Anterior cingulate cortex and cerebellar hemisphere neurometabolite changes in depression treatment: A 1H magnetic resonance spectroscopy study. Psychiatry Clin. Neurosci. 2014, 68, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Goldapple, K.; Segal, Z.; Garson, C.; Lau, M.; Bieling, P.; Kennedy, S.; Mayberg, H. Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 2004, 61, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.H.; Konarski, J.Z.; Segal, Z.V.; Lau, M.A.; Bieling, P.J.; McIntyre, R.S.; Mayberg, H.S. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am. J. Psychiatry 2007, 164, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Tiger, M.; Rück, C.; Forsberg, A.; Varrone, A.; Lindefors, N.; Halldin, C.; Farde, L.; Lundberg, J. Reduced 5-HT(1B) receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Res. 2014, 223, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Hornung, J.P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 2003, 26, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Neumaier, J.F.; Root, D.C.; Hamblin, M.W. Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. Neuropsychopharmacology 1996, 15, 515–522. [Google Scholar] [CrossRef]
- Tork, I. Anatomy of the serotonergic system. Ann. N. Y. Acad. Sci. 1990, 600, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, J.D.; Newberg, A.B.; Newman, C.F.; Shults, J.; Wintering, N.; Soeller, I. Change over time in brain serotonin transporter binding in major depression: Effects of therapy measured with [(123) I]-ADAM SPECT. J. Neuroimaging 2013, 23, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Newberg, A.B.; Plössl, K.; Mozley, P.D.; Stubbs, J.B.; Wintering, N.; Udeshi, M.; Alavi, A.; Kauppinen, T.; Kung, H.F. Biodistribution and imaging with (123)I-ADA M: A serotonin transporter imaging agent. J. Nucl. Med. 2004, 45, 834–841. [Google Scholar] [PubMed]
- Malison, R.T.; Price, L.H.; Berman, R.; van Dyck, C.H.; Pelton, G.H.; Carpenter, L.; Sanacora, G.; Owens, M.J.; Nemeroff, C.B.; Rajeevan, N.; et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol. Psychiatry 1998, 44, 1090–1098. [Google Scholar] [CrossRef]
- Parsey, R.V.; Hastings, R.S.; Oquendo, M.A.; Huang, Y.Y.; Simpson, N.; Arcement, J.; Huang, Y.; Ogden, R.T.; Van Heertum, R.L.; Arango, V.; et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am. J. Psychiatry 2006, 163, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, M.; Tolmunen, T.; Saarinen, P.I.; Tiihonen, J.; Kuikka, J.; Ahola, P.; Vanninen, R.; Lehtonen, J. Reduced midbrain serotonin transporter availability in drug-naïve patients with depression measured by SERT-specific [(123)I] nor-beta-CIT SPECT imaging. Psychiatr. Res. 2007, 154, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, M.; Lehto, S.M.; Tolmunen, T.; Saarinen, P.I.; Valkonen-Korhonen, M.; Vanninen, R.; Ahola, P.; Tiihonen, J.; Kuikka, J.; Pesonen, U.; et al. Serotonin-transporter-linked promoter region polymorphism and serotonin transporter binding in drug-naïve patients with major depression. Psychiatr. Clin. Neurosci. 2010, 64, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhé, H.G.; Booij, J.; Reitsma, J.B.; Schene, A.H. Serotonin transporter binding with [123I]beta-CIT SPECT in major depressive disorder versus controls: Effect of season and gender. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Maust, D.; Cristancho, M.; Gray, L.; Rushing, S.; Tjoa, C.; Thase, M.E. Psychiatric rating scales. Handb. Clin. Neurol. 2012, 106, 227–237. [Google Scholar] [PubMed]
- Edelstein, B.A.; Drozdick, L.W.; Ciliberti, C.M. Assessment of depression and bereavement in older adults. In Handbook of Assessment in Clinical Gerontology; Lichtenberg, P.A., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2010; pp. 3–43. [Google Scholar]
- Beck, J. Cognitive Therapy: Basics and Beyond; Guilford Press: New York, NY, USA, 1995. [Google Scholar]
- Andersson, G.; Bergstrom, J.; Hollandare, F.; Carlbring, P.; Kaldo, V.; Ekselius, L. Internet-based self-help for depression: Randomised controlled trial. Br. J. Psychiatry 2005, 187, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Segal, Z.; Williams, J.M.; Teasdale, J.D. Mindfulness-Based Cognitive Therapy for Depression: A New Approach to Preventing Relapse; Guilford Press: New York, NY, USA, 2002. [Google Scholar]
- Dougherty, D.D.; Rauch, S.L.; Rosenbaum, J.F. Essentials of Neuroimaging for Clinical Practice; American Psychiatric Association: Washington, DC, USA, 2004. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalah, M.A.; Ayache, S.S. Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on Depression. Brain Sci. 2018, 8, 150. https://doi.org/10.3390/brainsci8080150
Chalah MA, Ayache SS. Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on Depression. Brain Sciences. 2018; 8(8):150. https://doi.org/10.3390/brainsci8080150
Chicago/Turabian StyleChalah, Moussa A., and Samar S. Ayache. 2018. "Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on Depression" Brain Sciences 8, no. 8: 150. https://doi.org/10.3390/brainsci8080150
APA StyleChalah, M. A., & Ayache, S. S. (2018). Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on Depression. Brain Sciences, 8(8), 150. https://doi.org/10.3390/brainsci8080150