Neural Foundations of Ayres Sensory Integration®
Abstract
:1. Introduction
“Intersensory integration can occur within a single neuron, a nucleus or the diencephalon, an entire hemisphere or even between hemispheres. One of the methods by which the CNS [Central Nervous System] integrates sensory information from several different sources is by directing it to a common neuron called a convergent neuron. Whenever there is multiplicity of input all related to a single sensorimotor process, there is probably convergence of input.”[10] (p. 42).
2. A Foundation in Sensory Systems
2.1. Vestibular System: Function and Impact
2.2. Somatosensory Function and Impact
3. Sensation Informing Action: Praxis
4. Modulating Sensory Responses
5. Sensory Integration: Influencing Neuroplasticity
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayres, A.J. Proprioceptive facilitation elicited through the upper extremities. Part I: Background. Am. J. Occup. Ther. 1955, 9, 1–9. [Google Scholar] [PubMed]
- Ayres, A.J. Proprioceptive facilitation elicited through the upper extremities. Part II: Application. Am. J. Occup. Ther. 1955, 9, 57–58. [Google Scholar] [PubMed]
- Ayres, A.J. Proprioceptive facilitation elicited through the upper extremities. Part III: Scientific Application to Occupational Therapy. Am. J. Occup. Ther. 1955, 9, 121–126. [Google Scholar] [PubMed]
- Ayres, A.J. Sensory Integration and Learning Disorders; Western Psychological Services: Los Angeles, CA, USA, 1972. [Google Scholar]
- Ayres, A.J. Sensory Integration and the Child: Understanding Hidden Sensory Challenges; Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Bundy, A.C.; Lane, S.J. Sensory Integration: Theory and Practice, 3rd ed.; F.A. Davis: Philadelphia, PA, USA, in press.
- Parham, L.D.; Roley, S.S.; May-Benson, T.A.; Koomar, J.; Brett-Green, B.; Burke, J.P.; Cohn, E.S.; Mailloux, Z.; Miller, L.J.; Schaaf, R.C. Development of a fidelity measure for research on the effectiveness of the Ayres Sensory Integration® intervention. Am. J. Occup. Ther. 2011, 65, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, R.C.; Mailloux, Z. Clinician’s Guide for Implementing Ayres Sensory Integration: Promoting Participation for Children with Autism; AOTA Press: Bethesda, MD, USA, 2015. [Google Scholar]
- Smith Roley, S.; Mailloux, Z.; Miller-Kuhaneck, H.; Glennon, T. Understanding Ayres’ Sensory Integration. OT Practice 2007, 12, CE1–CE8. [Google Scholar]
- Ayres, A.J. Sensory integrative processes and neuropsychological learning disability. Learn. Disord. 1968, 3, 41–58. [Google Scholar]
- Kilroy, E.; Aziz-Zadeh, L.; Cermak, S. Ayres theories of autism and sensory integration revisited: What contemporary neuroscience has to say. Brain Sci. 2019, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Nielsen, D.M.; Schoen, S.A.; Brett-Green, B.A. Perspectives on sensory processing disorder: A call for translational research. Front. Integr. Neurosci. 2009, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Jamon, M. The development of vestibular system and related functions in mammals: Impact of gravity. Front. Integr. Neurosci. 2014, 8, 11. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Klier, E.M.; Snyder, L.H. A vestibular sensation: Probabilistic approaches to spatial perception. Neuron 2009, 64, 448–461. [Google Scholar] [CrossRef]
- Carriot, J.; Brooks, J.X.; Cullen, K.E. Multimodal Integration of Self-Motion Cues in the Vestibular System: Active versus Passive Translations. J. Neurosci. 2013, 33, 19555–19566. [Google Scholar] [CrossRef] [PubMed]
- Holstein, G.R. The Vestibular System. In The Human Nervous System; Mai, J.K., Paxinos, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1239–1269. [Google Scholar]
- Yates, B.J.; Wilson, T.D. Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; Volume 10. [Google Scholar]
- Korner, A.F.; Thoman, E.B. The relative efficacy of contact and vestibular-proprioceptive stimulation in soothing neonates. Child. Dev. 1972, 43, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Wilson, V.J.; Peterson, B.W. Comprehensive Physiology; Terjung, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Roostaei, T.; Nazeri, A.; Sahraian, M.A.; Minagar, A. The human cerebellum: A review of physiologic neuroanatomy. Neurol. Clin. 2014, 32, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Szentagothai, J. The elementary vestibulo-ocular reflex arc. J. Neurophysiol. 1950, 13, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J. Characteristics of types of sensory integrative dysfunction. Am. J. Occup. Ther. 1971, 25, 329–334. [Google Scholar] [PubMed]
- Ayres, A.J. Improving academic scores through sensory integration. J. Learn. Disabil. 1972, 5, 23–28. [Google Scholar] [CrossRef]
- Ayres, A.J. Cluster analyses of measures of sensory integration. Am. J. Occup. Ther. 1977, 31, 362–366. [Google Scholar] [PubMed]
- Mailloux, Z.; Mulligan, S.; Roley, S.S.; Blanche, E.; Cermak, S.; Coleman, G.G.; Bodison, S.; Lane, C.J. Verification and clarification of patterns of sensory integrative dysfunction. Am. J. Occup. Ther. 2011, 65, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J. Sensorimotor foundations of academic ability. In Perceptual and Learning Disabilities in Children. Vol. 2: Research and Theory; Cruikshank, W.M., Hallahan, D.P., Eds.; Syracuse University Press: Syracuse, NY, USA, 1975. [Google Scholar]
- Fredrickson, J.M.; Figge, U.; Scheid, P.; Kornhuber, H.H. Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp. Brain Res. 1966, 2, 318–327. [Google Scholar] [CrossRef]
- Hitier, M.; Besnard, S.; Smith, P.F. Vestibular pathways involved in cognition. Front. Integr. Neurosci. 2014, 8, 59. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev. 2007, 31, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Kurjak, A.; Tikvica, A.; Stanojevic, M.; Miskovic, B.; Ahmed, B.; Azumendi, G.; Di Renzo, G.C. The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J. Matern. Fetal Neonatal Med. 2008, 21, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Ackerley, R.; Kavounoudias, A. The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 2015, 79, 192–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerley, R.; Hassan, E.; Curran, A.; Wessberg, J.; Olausson, H.; McGlone, F. An fMRI study on cortical responses during active self-touch and passive touch from others. Front. Behav. Neurosci. 2012, 6, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliuzhna, M.; Ferrè, E.R.; Herbelin, B.; Blanke, O.; Haggard, P. Multisensory effects on somatosensation: A trimodal visuo-vestibular-tactile interaction. Sci. Rep. 2016, 6, 26301. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.R.; Sakurai, K.; Beaudot, W.H.A. Tactile flow overrides other cues to self motion. Sci. Rep. 2017, 7, 1059. [Google Scholar] [CrossRef]
- Lackner, J.R.; DiZio, P. Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annu. Rev. Psychol. 2005, 56, 115–147. [Google Scholar] [CrossRef]
- Horak, F.B.; Shupert, C.L.; Dietz, V.; Horstmann, G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp. Brain Res. 1994, 100, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Jeka, J.J.; Lackner, J.R. Fingertip contact influences human postural control. Exp. Brain Res. 1994, 100, 495–502. [Google Scholar] [CrossRef]
- Rogers, M.W.; Wardman, D.L.; Lord, S.R.; Fitzpatrick, R.C. Passive tactile sensory input improves stability during standing. Exp. Brain Res. 2001, 136, 514–522. [Google Scholar] [CrossRef]
- Ferrè, E.R.; Day, B.L.; Bottini, G.; Haggard, P. How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation. Neurosci. Lett. 2013, 550, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D. How do you feel-now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- McGlone, F.; Olausson, H.; Boyle, J.A.; Jones-Gotman, M.; Dancer, C.; Guest, S.; Essick, G. Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. Eur. J. Neurosci. 2012, 35, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Addabbo, M.; Longhi, E.; Bolognini, N.; Senna, I.; Tagliabue, P.; Macchi Cassia, V.; Turati, C. Seeing touches early in life. PLoS ONE 2015, 10, e0134549. [Google Scholar] [CrossRef]
- Ayres, A.J. Interrelationships among perceptual-motor functions in children. Am. J. Occup. Ther. 1966, 20, 68. [Google Scholar]
- Ayres, A.J. Deficits in sensory integration in educationally handicapped children. J. Learn. Disabil. 1969, 2, 160–168. [Google Scholar] [CrossRef]
- Ayres, A.J. Sensory Integration and Praxis Test. (SIPT) Manual; Western Psychological Services: Torrance, CA, USA, 1989. [Google Scholar]
- Mulligan, S. Patterns of sensory integration dysfunction: A confirmatory factor analysis. Am. J. Occup. Ther. 1998, 52, 819–828. [Google Scholar] [CrossRef]
- Van Jaarsveld, A. Patterns of sensory integration dysfunction in children from South Africa. S. Afr. J. Occup. Ther. 2014, 44, 1–6. [Google Scholar]
- Ayres, A.J. Developmental Dyspraxia and Adult-Onset Apraxia; Sensory Integration International: TorrAnce, CA, USA, 1985. [Google Scholar]
- Ayres, A.J.; Cermak, S. Ayres Dyspraxia Monograph 25th Anniversary Edition; Pediatric Therapy Network: Torrance, CA, USA, 2011. [Google Scholar]
- Ayres, A.J. Ontogenetic principles in the development of arm and hand functions. Am. J. Occup. Ther. 1954, 8, 95–99. [Google Scholar]
- Ayres, A.J. The visual-motor function. Am. J. Occup. Ther. 1958, 12, 130–138. [Google Scholar]
- Ayres, A.J. Development of the body scheme in children. Am. J. Occup. Ther. 1961, 15, 99–102. [Google Scholar] [PubMed]
- Ayres, A.J. Approaches to the Treatment of Patients with Neuromuscular Dysfunction.; Sattely, C., Ed.; Study Course VI of the Third International Congress World Federation of Occupational Therapists held in Philadelphia; Wm, C. Brown Book Co.: Dubuque, IA, USA, 1962. [Google Scholar]
- Roley, S.S.; Mailloux, Z.; Parham, L.D.; Schaaf, R.C.; Lane, C.J.; Cermak, S. Sensory integration and praxis patterns in children with autism. Am. J. Occup. Ther. 2015, 69, 6901220010p1–6901220010p8. [Google Scholar] [CrossRef] [PubMed]
- May-Benson, T.A.; Cermak, S.A. Development of an assessment for ideational praxis. Am. J. Occup. Ther. 2007, 61, 148–153. [Google Scholar] [CrossRef] [PubMed]
- May-Benson, T.A. Examining Ideational Abilities in Children with Dyspraxia. Undergraduate Thesis, Boston University, Boston, MA, USA, 2005. [Google Scholar]
- Kandel, E.R.; Schwartz, J.; Jessel, T. The Organization and Planning of Movement. In Principles of Neural Science; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Vainio, L.; Symes, E.; Ellis, R.; Tucker, M.; Ottoboni, G. On the relations between action planning, object identification, and motor representations of observed actions and objects. Cognition 2008, 108, 444–465. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Spencer, J.; Atkinson, J.; Braddick, O.; Wattam-Bell, J. Form and motion coherence processing in dyspraxia: Evidence of a global spatial processing deficit. Neuroreport 2002, 13, 1399–1402. [Google Scholar] [CrossRef]
- Zapparoli, L.; Seghezzi, S.; Scifo, P.; Zerbi, A.; Banfi, G.; Tettamanti, M.; Paulesu, E. Dissecting the neurofunctional bases of intentional action. Proc. Natl. Acad. Sci. USA 2018, 115, 7440–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashuk, S.R.; Williams, J.; Thorpe, G.; Wilson, P.H.; Egan, G.F. Diminished motor imagery capability in adults with motor impairment: An fMRI mental rotation study. Behav. Brain Res. 2017, 334, 86–96. [Google Scholar] [CrossRef]
- Cox, L.E.; Harris, E.C.; Auld, M.L.; Johnston, L.M. Impact of tactile function on upper limb motor function in children with Developmental Coordination Disorder. Res. Dev. Disabil. 2015, 45–46, 373–383. [Google Scholar] [CrossRef]
- Thompson, A.; Murphy, D.; Dell’Acqua, F.; Ecker, C.; McAlonan, G.; Howells, H.; Baron-Cohen, S.; Lai, M.C.; Lombardo, M.V.; Catani, M.; et al. Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder. Biol. Psychiatry 2017, 81, 211–219. [Google Scholar] [CrossRef]
- Ayres, A.J. Tactile functions: Their relation to hyperactive and perceptual motor behavior. Am. J. Occup. Ther. 1964, 18, 6–11. [Google Scholar]
- Ayres, A.J. Patterns of perceptual-motor dysfunction in children: A factor analytic study. Percept. Mot. Skills 1965, 20, 335–368. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J.; Tickle, L.S. Hyper-responsivity to touch and vestibular stimuli as a predictor of positive response to sensory integration procedures by autistic children. Am. J. Occup. Ther. 1980, 34, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J.; Mailloux, Z. Influence of sensory integration procedures on language development. Am. J. Occup. Ther. 1981, 35, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Reisman, J.E.; McIntosh, D.; Simon, J. An ecological model of sensory modulation. In Understanding the Nature of Sensory Integration with Diverse Populations; Smith-Roley, S., Blanche, E., Schaaf, R.C., Eds.; Harcourt: Los Angeles, CA, USA, 2001; pp. 57–82. [Google Scholar]
- Chang, M.C.; Parham, L.D.; Blanche, E.I.; Schell, A.; Chou, C.P.; Dawson, M.; Clark, F. Autonomic and behavioral responses of children with autism to auditory stimuli. Am. J. Occup. Ther. 2012, 66, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Schoen, S.A.; Miller, L.J.; Brett-Green, B.A.; Nielsen, D.M. Physiological and behavioral differences in sensory processing: A comparison of children with autism spectrum disorder and sensory modulation disorder. Front. Integr. Neurosci. 2009, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.J.; Reynolds, S.; Thacker, L. Sensory Over-Responsivity and ADHD: Differentiating Using Electrodermal Responses, Cortisol, and Anxiety. Front. Integr. Neurosci. 2010, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.; Lane, S.J.; Gennings, C. The moderating role of sensory Overresponsivity in HPA activity: A pilot study with children diagnosed with ADHD. J. Atten. Disord. 2010, 13, 468–478. [Google Scholar] [CrossRef]
- Lane, S.J.; Reynolds, S.; Dumenci, L. Sensory overresponsivity and anxiety in typically developing children and children with Autism and Attention Deficit Hyperactivity Disorder: Cause or coexistence? Am. J. Occup. Ther. 2012, 66, 595–603. [Google Scholar] [CrossRef]
- Schaaf, R.C.; Benevides, T.; Blanche, E.I.; Brett-Green, B.A.; Burke, J.P.; Cohn, E.S.; Koomar, J.; Lane, S.J.; Miller, L.J.; May-Benson, T.A.; et al. Parasympathetic functions in children with sensory processing disorder. Front. Integr. Neurosci. 2010, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Kisley, M.A.; Noecker, T.L.; Guinther, P.M. Comparison of sensory gating to mismatch negativity and self-reported perceptual phenomena in healthy adults. Psychophysiology 2004, 41, 604–612. [Google Scholar] [CrossRef]
- Davies, P.L.; Gavin, W.J. Validating the Diagnosis of Sensory Processing Disorders Using EEG Technology. Am. J. Occup. Ther. 2007, 61, 176–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, B.E.; Stanford, T.R.; Rowland, B.A. Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 2014, 15, 520–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brett-Green, B.A.; Miller, L.J.; Schoen, S.A.; Nielsen, D.M. An exploratory event-related potential study of multisensory integration in sensory over-responsive children. Brain Res. 2010, 1321, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Brett-Green, B.A.; Miller, L.J.; Gavin, W.J.; Davies, P.L. Multisensory integration in children: A preliminary ERP study. Brain Res. 2008, 1242, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Foxe, J.J.; Morocz, I.A.; Murray, M.M.; Higgins, B.A.; Javitt, D.C.; Schroeder, C.E. Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res. Cogn. Brain Res. 2000, 10, 77–83. [Google Scholar] [CrossRef]
- Touge, T.; Gonzalez, D.; Wu, J.; Deguchi, K.; Tsukaguchi, M.; Shimamura, M.; Ikeda, K.; Kuriyama, S. The interaction between somatosensory and auditory cognitive processing assessed with event-related potentials. J. Clin. Neurophysiol. 2008, 25, 90–97. [Google Scholar] [CrossRef]
- Murray, M.M.; Molholm, S.; Michel, C.M.; Heslenfeld, D.J.; Ritter, W.; Javitt, D.C.; Schroeder, C.E.; Foxe, J.J. Grabbing your ear: Rapid auditory–somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb. Cortex 2005, 15, 963–974. [Google Scholar] [CrossRef]
- Owen, J.P.; Marco, E.J.; Desai, S.; Fourie, E.; Harris, J.; Hill, S.S.; Arnett, A.B.; Mukherjee, P. Abnormal white matter microstructure in children with sensory processing disorders. Neuroimage Clin. 2013, 2, 844–853. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Gratiot, M.; Owen, J.P.; Brandes-Aitken, A.; Desai, S.S.; Hill, S.S.; Arnett, A.B.; Harris, J.; Marco, E.J.; Mukherjee, P. White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder. Front. Neuroanat. 2015, 9, 169. [Google Scholar] [CrossRef]
- Tamm, L.; Narad, M.E.; Antonini, T.N.; O’Brien, K.M.; Hawk, L.W.; Epstein, J.N. Reaction time variability in ADHD: A review. Neurotherapeutics 2012, 9, 500–508. [Google Scholar] [CrossRef]
- Liston, C.; Malter Cohen, M.; Teslovich, T.; Levenson, D.; Casey, B. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: Pathway to disease or pathological end point? J. Biol. Psychiatry 2011, 69, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Green, S.A.; Hernandez, L.; Bookheimer, S.Y.; Dapretto, M. Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity. J. Am. Acad. Child. Adolesc. Psychiatry 2016, 55, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Hitoglou, M.; Ververi, A.; Antoniadis, A.; Zafeiriou, D.I. Childhood autism and auditory system abnormalities. Pediatr. Neurol. 2010, 42, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Kientz, M.A.; Dunn, W. A comparison of the performance of children with and without autism on the Sensory Profile. Am. J. Occup. Ther. 1997, 51, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Ziviani, J.; Rodger, S. Sensory processing and classroom emotional, behavioral, and educational outcomes in children with autism spectrum disorder. Am. J. Occup. Ther. 2008, 62, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Liss, M.; Saulnier, C.; Fein, D.; Kinsbourne, M. Sensory and attention abnormalities in autistic spectrum disorders. Autism 2006, 10, 155–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, S.; Millette, A.; Devine, D.P. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev. Neurosci. 2012, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley: New York, NY, USA; 1949. [Google Scholar]
- Diamond, M.C.; Lindner, B.; Raymond, A. Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats. J. Comp. Neurol. 1967, 131, 357–364. [Google Scholar] [CrossRef]
- Markham, J.A.; Greenough, W.T. Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biol. 2004, 1, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.G.; Dennis, A.; Bandettini, P.A.; Johansen-Berg, H. The effects of aerobic activity on brain structure. Front. Psychol. 2012, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.; Lane, S.J.; Richards, L. Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders. J. Neurodev. Disord. 2010, 2, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaaf, R.C.; Benevides, T.; Mailloux, Z.; Faller, P.; Hunt, J.; van Hooydonk, E.; Freeman, R.; Leiby, B.; Sendecki, J.; Kelly, D. An intervention for sensory difficulties in children with autism: A randomized trial. J. Autism Dev. Disord. 2014, 44, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Haley, S.M.; Coster, W.J.; Ludlow, L.H.; Haltiwanger, J.T.; Andrellos, P.A. Pediatric Evaluation of Disability Inventory (PEDI): Development, Standardization and Administration Manual; Trustees of Boston University: Boston, MA, USA, 1992. [Google Scholar]
- May-Benson, T.A.; Roley, S.S.; Mailloux, Z.; Parham, L.D.; Koomar, J.; Schaaf, R.C.; Jaarsveld, A.V.; Cohn, E. Interrater reliability and discriminative validity of the structural elements of the Ayres Sensory Integration Fidelity Measure. Am. J. Occup. Ther. 2014, 68, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.A.; Koenig, K.; Kinnealey, M.; Sheppard, M.; Henderson, L. Effectiveness of sensory integration interventions in children with autism spectrum disorders: A pilot study. Am. J. Occup. Ther. 2011, 65, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Schoen, S.A.; Lane, S.J.; Mailloux, Z.; May-Benson, T.; Parham, L.D.; Smith Roley, S.; Schaaf, R.C. A systematic review of Ayres Sensory Integration intervention for children with autism. Autism Res. 2019, 12, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, R.C.; Dumont, R.L.; Arbesman, M.; May-Benson, T.A. Efficacy of occupational therapy using ayres sensory integration®: A systematic review. Am. J. Occup. Ther. 2018, 72. [Google Scholar] [CrossRef] [PubMed]
- Russo, N.; Foxe, J.J.; Brandwein, A.B.; Altschuler, T.; Gomes, H.; Molholm, S. Multisensory processing in children with autism: High-density electrical mapping of auditory-somatosensory integration. Autism Res. 2010, 3, 253–267. [Google Scholar] [CrossRef]
- Parham, L.D. Sensory Integration: Theory and Practice; Bundy, A.C., Lane, S.J., Murray, E.A., Eds.; F.A. Davis: Philadelphia, PA, USA, 2002; pp. 413–434. [Google Scholar]
- McCoy, D.C.; Peet, E.D.; Ezzati, M.; Danaei, G.; Black, M.M.; Sudfeld, C.R.; Fawzi, W.; Fink, G. Early Childhood Developmental Status in Low- and Middle-Income Countries: National, Regional, and Global Prevalence Estimates Using Predictive Modeling. PLoS Med. 2016, 13, 1–18. [Google Scholar] [CrossRef]
- Jarrett, O.S.; Maxwell, D.M.; Dickerson, C.; Hoge, P.; Davies, G.; Yetley, A. Impact of recess on classroom behavior: Group effects and individual differences. J. Educ. Res. 1998, 92, 121–126. [Google Scholar] [CrossRef]
- Levine, J.A. Sick of sitting. Diabetologia 2015, 58, 1751–1758. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Strathearn, L.; Liu, B.; Yang, B.; Bao, W. Twenty-Year Trends in Diagnosed Attention-Deficit/Hyperactivity Disorder Among US Children and Adolescents, 1997-2016. JAMA Netw. Open 2018, 1, e181471. [Google Scholar] [CrossRef] [PubMed]
- Isaac, V.; Olmedo, D.; Aboitiz, F.; Delano, P.H. Altered cervical vestibular-evoked myogenic potential in children with attention deficit and hyperactivity disorder. Front. Neurol. 2017, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson Rosenberg, C.; White, T.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Koester, A.C.; Mailloux, Z.; Coleman, G.G.; Mori, A.B.; Paul, S.M.; Blanche, E.; Muhs, J.A.; Lim, D.; Cermak, S.A. Sensory integration functions of children with cochlear implants. Am. J. Occup. Ther. 2014, 68, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Lönnberg, P.; Niutanen, U.; Parham, L.D.; Wolford, E.; Andersson, S.; Metsäranta, M.; Lano, A. Sensory-motor performance in seven-year-old children born extremely preterm. Early Hum. Dev. 2018, 120, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, A.W.; Moore, E.M.; Roberts, E.J.; Hachtel, K.W.; Brown, M.S. Sensory processing disorder in children ages birth–3 years born prematurely: A systematic review. Am. J. Occup. Ther. 2015, 69, 6901220030. [Google Scholar] [CrossRef] [PubMed]
- Wickremasinghe, A.C.; Rogers, E.E.; Johnson, B.C.; Shen, A.; Barkovich, A.J.; Marco, E.J. Children born prematurely have atypical Sensory Profiles. J. Perinatol. 2013, 33, 631–635. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lane, S.J.; Mailloux, Z.; Schoen, S.; Bundy, A.; May-Benson, T.A.; Parham, L.D.; Smith Roley, S.; Schaaf, R.C. Neural Foundations of Ayres Sensory Integration®. Brain Sci. 2019, 9, 153. https://doi.org/10.3390/brainsci9070153
Lane SJ, Mailloux Z, Schoen S, Bundy A, May-Benson TA, Parham LD, Smith Roley S, Schaaf RC. Neural Foundations of Ayres Sensory Integration®. Brain Sciences. 2019; 9(7):153. https://doi.org/10.3390/brainsci9070153
Chicago/Turabian StyleLane, Shelly J., Zoe Mailloux, Sarah Schoen, Anita Bundy, Teresa A. May-Benson, L. Diane Parham, Susanne Smith Roley, and Roseann C. Schaaf. 2019. "Neural Foundations of Ayres Sensory Integration®" Brain Sciences 9, no. 7: 153. https://doi.org/10.3390/brainsci9070153