Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit
Abstract
:1. Introduction
2. Epidemiology
3. Pathophysiology
4. Monitoring
5. Treatment
6. Special Considerations
7. Older Adults, Pediatrics, and Pregnancy
8. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Cost of Status Epilepticus: A Systematic Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1059131114003021 (accessed on 18 December 2018).
- McNett, M.; Moran, C.; Johnson, H. Evidence-Based Review of Clinical Trials in Neurocritical Care. AACN Adv. Crit. Care 2018, 29, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-B. Multimodality Monitoring in the Neurointensive Care Unit: A Special Perspective for Patients with Stroke. J. Stroke 2013, 15, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westover, M.B.; Shafi, M.M.; Bianchi, M.T.; Moura, L.M.V.R.; O’Rourke, D.; Rosenthal, E.S.; Chu, C.J.; Donovan, S.; Hoch, D.B.; Kilbride, R.D.; et al. The probability of seizures during EEG monitoring in critically ill adults. Clin. Neurophysiol. 2015, 126, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.; Mayer, S.A.; Kowalski, R.G.; Emerson, R.G.; Hirsch, L.J. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 2004, 62, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Brophy, G.M.; Bell, R.; Claassen, J.; Alldredge, B.; Bleck, T.P.; Glauser, T.; LaRoche, S.M.; Riviello, J.J.; Shutter, L.; Sperling, M.R.; et al. Guidelines for the Evaluation and Management of Status Epilepticus. Neurocrit. Care 2012, 17, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Shorvon, S.; Ferlisi, M. The treatment of super-refractory status epilepticus: A critical review of available therapies and a clinical treatment protocol. Brain J. Neurol. 2011, 134, 2802–2818. [Google Scholar] [CrossRef] [PubMed]
- Chapter 41. Status Epilepticus | Pharmacotherapy: A Pathophysiologic Approach, 9e | AccessPharmacy | McGraw-Hill Medical. Available online: https://accesspharmacy.mhmedical.com/content.aspx?bookid=689§ionid=45310491#57485199 (accessed on 21 September 2018).
- Dham, B.S.; Hunter, K.; Rincon, F. The Epidemiology of Status Epilepticus in the United States. Neurocrit. Care 2014, 20, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-W.; Koo, Y.S.; Kim, Y.-S.; Kim, D.W.; Kim, K.K.; Lee, S.-Y.; Kim, H.K.; Moon, H.-J.; Lim, J.-A.; Byun, J.-I.; et al. Clinical characterization of unknown/cryptogenic status epilepticus suspected as encephalitis: A multicenter cohort study. J. Neuroimmunol. 2018, 315, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, B.; Wang, R.; Li, C.; Chen, C.; Zhou, D.; Hong, Z. Seizure outcomes in patients with anti-NMDAR encephalitis: A follow-up study. Epilepsia 2017, 58, 2104–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, B.; Robb, R.; Mehta, M.; Vellano, K.; Valderrama, A.L.; Yoon, P.W.; Sasson, C.; Crouch, A.; Perez, A.B.; Merritt, R.; et al. Out-of-hospital cardiac arrest surveillance—Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005–December 31, 2010. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2011, 60, 1–19. [Google Scholar]
- Nielsen, N.; Sunde, K.; Hovdenes, J.; Riker, R.R.; Rubertsson, S.; Stammet, P.; Nilsson, F.; Friberg, H.; Hypothermia Network. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit. Care Med. 2011, 39, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Crepeau, A.Z.; Rabinstein, A.A.; Fugate, J.E.; Mandrekar, J.; Wijdicks, E.F.; White, R.D.; Britton, J.W. Continuous EEG in therapeutic hypothermia after cardiac arrest: Prognostic and clinical value. Neurology 2013, 80, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Won, S.-Y.; Dubinski, D.; Brawanski, N.; Strzelczyk, A.; Seifert, V.; Freiman, T.M.; Konczalla, J. Significant increase in acute subdural hematoma in octo- and nonagenarians: Surgical treatment, functional outcome, and predictors in this patient cohort. Neurosurg. Focus 2017, 43, E10. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, P.; Naidech, A.; Ornam, J.V.; Borczuk, P. Seizure frequency in patients with isolated subdural hematoma and preserved consciousness. Brain Inj. 2019, 0, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Delanty, N.; Vaughan, C.J.; French, J.A. Medical causes of seizures. The Lancet 1998, 352, 383–390. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. Chapter 10—Inflammation and epilepsy. In Handbook of Clinical Neurology—Epilepsy; Stefan, H., Theodore, W.H., Eds.; Elsevier: Maryland Heights, MO, USA, 2012; Volume 107, pp. 163–175. [Google Scholar]
- Riazi, K.; Galic, M.A.; Kuzmiski, J.B.; Ho, W.; Sharkey, K.A.; Pittman, Q.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. 2008, 105, 17151–17156. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Galic, M.A.; Pittman, Q.J. Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Res. 2010, 89, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Mayhan, W.G. Cellular mechanisms by which tumor necrosis factor-α produces disruption of the blood–brain barrier. Brain Res. 2002, 927, 144–152. [Google Scholar] [CrossRef]
- Welser-Alves, J.V.; Milner, R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem. Int. 2013, 63, 47–53. [Google Scholar] [CrossRef]
- Ha, J.; Choi, J.; Kwon, A.; Kim, K.; Kim, S.-J.; Bae, S.H.; Son, J.S.; Kim, S.-N.; Kwak, B.O.; Lee, R. Interleukin-4 and tumor necrosis factor-alpha levels in children with febrile seizures. Seizure 2018, 58, 156–162. [Google Scholar] [CrossRef]
- Zhao, W.; Xie, W.; Xiao, Q.; Beers, D.R.; Appel, S.H. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem. 2006, 99, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Hart, Y.M.; Andermann, F.; Robitaille, Y.; Laxer, K.D.; Rasmussen, T.; Davis, R. Double pathology in Rasmussen’s syndrome: A window on the etiology? Neurology 1998, 50, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, S.; Villeneuve, N.; Trébuchon, A.; Kaphan, E.; Lepine, A.; McGonigal, A.; Roubertie, A.; Barthez, M.-A.J.; Trommsdorff, V.; Lefranc, J.; et al. Anti–tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: An open pilot study. Epilepsia 2016, 57, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Varelas, P.N.; Mirski, M.A. Seizures in the Adult Intensive Care Unit. J. Neurosurg. Anesthesiol. 2001, 13, 163–175. [Google Scholar] [CrossRef]
- Castilla-Guerra, L.; Fernández-Moreno, M.d.C.; López-Chozas, J.M.; Fernández-Bolaños, R. Electrolytes Disturbances and Seizures. Epilepsia 2006, 47, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Hitchings, A.W. Drugs that lower the seizure threshold. Adverse Drug React. Bull. 2016, 298, 1151–1154. [Google Scholar]
- Buchanan, N. Medications which may lower seizure threshold. Aust. Prescr. 2001, 24, 51–55. [Google Scholar] [CrossRef]
- Tesoro, E.P.; Brophy, G.M. Pharmacological Management of Seizures and Status Epilepticus in Critically Ill Patients. J. Pharm. Pract. 2010, 23, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.J. Continuous EEG monitoring in the intensive care unit: An overview. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2004, 21, 332–340. [Google Scholar] [CrossRef]
- Drislane, F.W.; Lopez, M.R.; Blum, A.S.; Schomer, D.L. Detection and Treatment of Refractory Status Epilepticus in the Intensive Care Unit. J. Clin. Neurophysiol. 2008, 25, 181–186. [Google Scholar] [CrossRef]
- Kubota, Y.; Nakamoto, H.; Egawa, S.; Kawamata, T. Continuous EEG monitoring in ICU. J. Intensive Care 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Boly, M.; Maganti, R. Monitoring epilepsy in the intensive care unit: Current state of facts and potential interest of high density EEG. Brain Inj. 2014, 28, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Vespa, P.M.; Nenov, V.; Nuwer, M.R. Continuous EEG monitoring in the intensive care unit: Early findings and clinical efficacy. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1999, 16, 1–13. [Google Scholar] [CrossRef]
- Pandian, J.D.; Cascino, G.D.; So, E.L.; Manno, E.; Fulgham, J.R. Digital video-electroencephalographic monitoring in the neurological-neurosurgical intensive care unit: Clinical features and outcome. Arch. Neurol. 2004, 61, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.E.; Padamadan, H.; Newell, S.A. Interictal quantitative EEG in epilepsy. Seizure 1998, 7, 39–42. [Google Scholar] [CrossRef] [Green Version]
- van Putten, M.J.A.M.; Tavy, D.L.J. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke 2004, 35, 2489–2492. [Google Scholar] [CrossRef] [PubMed]
- Coates, S.; Clarke, A.; Davison, G.; Patterson, V. Tele-EEG in the UK: A report of over 1,000 patients. J. Telemed. Telecare 2012, 18, 243–246. [Google Scholar] [CrossRef]
- Hobbs, K.; Krishnamohan, P.; Legault, C.; Goodman, S.; Parvizi, J.; Gururangan, K.; Mlynash, M. Rapid Bedside Evaluation of Seizures in the ICU by Listening to the Sound of Brainwaves: A Prospective Observational Clinical Trial of Ceribell’s Brain Stethoscope Function. Neurocrit. Care 2018, 29, 302–312. [Google Scholar] [CrossRef]
- Waziri, A.; Claassen, J.; Stuart, R.M.; Arif, H.; Schmidt, J.M.; Mayer, S.A.; Badjatia, N.; Kull, L.L.; Connolly, E.S.; Emerson, R.G.; et al. Intracortical electroencephalography in acute brain injury. Ann. Neurol. 2009, 66, 366–377. [Google Scholar] [CrossRef]
- Yamazaki, M.; Terrill, M.; Fujimoto, A.; Yamamoto, T.; Tucker, D.M. Integrating dense array EEG in the presurgical evaluation of temporal lobe epilepsy. ISRN Neurol. 2012, 2012, 924081. [Google Scholar] [CrossRef]
- Yamazaki, M.; Tucker, D.M.; Fujimoto, A.; Yamazoe, T.; Okanishi, T.; Yokota, T.; Enoki, H.; Yamamoto, T. Comparison of dense array EEG with simultaneous intracranial EEG for interictal spike detection and localization. Epilepsy Res. 2012, 98, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.J.; Hutchinson, D.B.; Barr, R.H.; Burgess, F.; Kirkpatrick, P.J.; Pickard, J.D. A new cranial access device for cerebral monitoring. Br. J. Neurosurg. 2000, 14, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Peitz, G.; Ares, W.; Hafeez, S.; Grandhi, R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg. Focus 2017, 43, E6. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.C.; Wagner, A.K.; Fabio, A.; Pugh, M.J.; Walker, W.C.; Szaflarski, J.P.; Zafonte, R.D.; Brown, A.W.; Hammond, F.M.; Bushnik, T.; et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: A Traumatic Brain Injury Model Systems Study. Epilepsia 2016, 57, 1968–1977. [Google Scholar] [CrossRef] [Green Version]
- Kodankandath, T.V.; Farooq, S.; Wazni, W.; Cox, J.-A.; Southwood, C.; Rozansky, G.; Johnson, V.; Lynch, J.R. Seizure Prophylaxis in the Immediate Post-Hemorrhagic Period in Patients with Aneurysmal Subarachnoid Hemorrhage. J. Vasc. Interv. Neurol. 2017, 9, 1–4. [Google Scholar]
- Yerram, S.; Katyal, N.; Premkumar, K.; Nattanmai, P.; Newey, C.R. Seizure prophylaxis in the neuroscience intensive care unit. J. Intensive Care 2018, 6. [Google Scholar] [CrossRef]
- Connolly, E.S.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury. Neurosurgery 2017, 80, 6–15. [Google Scholar]
- Temkin, N.R.; Dikmen, S.S.; Anderson, G.D.; Wilensky, A.J.; Holmes, M.D.; Cohen, W.; Newell, D.W.; Nelson, P.; Awan, A.; Winn, H.R. Valproate therapy for prevention of posttraumatic seizures: A randomized trial. J. Neurosurg. 1999, 91, 593–600. [Google Scholar] [CrossRef]
- Temkin, N.R.; Dikmen, S.S.; Wilensky, A.J.; Keihm, J.; Chabal, S.; Winn, H.R. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 1990, 323, 497–502. [Google Scholar] [CrossRef]
- Temkin, N.R. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: Meta-analysis of controlled trials. Epilepsia 2001, 42, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Diringer, M.N.; Bleck, T.P.; Claude Hemphill, J.; Menon, D.; Shutter, L.; Vespa, P.; Bruder, N.; Connolly, E.S.; Citerio, G.; Gress, D.; et al. Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit. Care 2011, 15, 211–240. [Google Scholar] [CrossRef] [PubMed]
- Alldredge, B.K.; Gelb, A.M.; Isaacs, S.M.; Corry, M.D.; Allen, F.; Ulrich, S.; Gottwald, M.D.; O’Neil, N.; Neuhaus, J.M.; Segal, M.R.; et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N. Engl. J. Med. 2001, 345, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Silbergleit, R.; Durkalski, V.; Lowenstein, D.; Conwit, R.; Pancioli, A.; Palesch, Y.; Barsan, W.; NETT Investigators. Intramuscular versus intravenous therapy for prehospital status epilepticus. N. Engl. J. Med. 2012, 366, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, M.; Scheepers, B.; Clarke, M.; Comish, S.; Ibitoye, M. Is intranasal midazolam an effective rescue medication in adolescents and adults with severe epilepsy? Seizure 2000, 9, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, M.; Kalra, V.; Gulati, S. Intranasal midazolam vs rectal diazepam in acute childhood seizures. Pediatr. Neurol. 2006, 34, 355–359. [Google Scholar] [CrossRef]
- Buck, M.L.; Wiggins, B.S.; Sesler, J.M. Intraosseous Drug Administration in Children and Adults During Cardiopulmonary Resuscitation. Ann. Pharmacother. 2007, 41, 1679–1686. [Google Scholar] [CrossRef]
- Goodkin, H.P.; Sun, C.; Yeh, J.-L.; Mangan, P.S.; Kapur, J. GABAA Receptor Internalization during Seizures. Epilepsia 2007, 48, 109–113. [Google Scholar] [CrossRef]
- Glauser, T.; Shinnar, S.; Gloss, D.; Alldredge, B.; Arya, R.; Bainbridge, J.; Bare, M.; Bleck, T.; Dodson, W.E.; Garrity, L.; et al. Evidence-Based Guideline: Treatment of Convulsive Status Epilepticus in Children and Adults: Report of the Guideline Committee of the American Epilepsy Society. Epilepsy Curr. 2016, 16, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Kalss, G.; Rohracher, A.; Leitinger, M.; Pilz, G.; Novak, H.F.; Neuray, C.; Kreidenhuber, R.; Höfler, J.; Kuchukhidze, G.; Trinka, E. Intravenous brivaracetam in status epilepticus: A retrospective single-center study. Epilepsia 2018, 59 Suppl 2, 228–233. [Google Scholar] [CrossRef]
- Santamarina, E.; Carbonell, B.P.; Sala, J.; Gutiérrez-Viedma, Á.; Miró, J.; Asensio, M.; Abraira, L.; Falip, M.; Ojeda, J.; López-González, F.J.; et al. Use of intravenous brivaracetam in status epilepticus: A multicenter registry. Epilepsia 2019, 0. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, A.; Steinig, I.; Willems, L.M.; Reif, P.S.; Senft, C.; Voss, M.; Gaida, B.; von Podewils, F.; Rosenow, F. Treatment of refractory and super-refractory status epilepticus with brivaracetam: A cohort study from two German university hospitals. Epilepsy Behav. EB 2017, 70, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Farrokh, S.; Bon, J.; Erdman, M.; Tesoro, E. Use of Newer Anticonvulsants for the Treatment of Status Epilepticus. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 297–316. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Zöllner, J.P.; Willems, L.M.; Jost, J.; Paule, E.; Schubert-Bast, S.; Rosenow, F.; Bauer, S. Lacosamide in status epilepticus: Systematic review of current evidence. Epilepsia 2017, 58, 933–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treiman, D.M.; Meyers, P.D.; Walton, N.Y.; Collins, J.F.; Colling, C.; Rowan, A.J.; Handforth, A.; Faught, E.; Calabrese, V.P.; Uthman, B.M.; et al. A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N. Engl. J. Med. 1998, 339, 792–798. [Google Scholar] [CrossRef]
- Farrokh, S.; Tahsili-Fahadan, P.; Ritzl, E.K.; Lewin, J.J.; Mirski, M.A. Antiepileptic drugs in critically ill patients. Crit. Care 2018, 22, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lexicomp. Available online: https://online.lexi.com/lco/action/home (accessed on 5 September 2018).
- Garnett, W.R. Clinical Pharmacology of Topiramate: A Review. Epilepsia 2000, 41, 61–65. [Google Scholar] [CrossRef]
- Wu, Y.W.; Shek, D.W.; Garcia, P.A.; Zhao, S.; Johnston, S.C. Incidence and mortality of generalized convulsive status epilepticus in California. Neurology 2002, 58, 1070–1076. [Google Scholar] [CrossRef]
- Guidelines for Standard Order Sets. Available online: https://www.ismp.org/guidelines/standard-order-sets (accessed on 3 October 2018).
- Mahmoud, S.H. Antiepileptic Drug Removal by Continuous Renal Replacement Therapy: A Review of the Literature. Clin. Drug Investig. 2017, 37, 7–23. [Google Scholar] [CrossRef]
- Schetz, M.; Ferdinande, P.; Van den Berghe, G.; Verwaest, C.; Lauwers, P. Pharmacokinetics of continuous renal replacement therapy. Intensive Care Med. 1995, 21, 612–620. [Google Scholar] [CrossRef]
- Lewis, J.H.; Stine, J.G. Review article: Prescribing medications in patients with cirrhosis—A practical guide. Aliment. Pharmacol. Ther. 2013, 37, 1132–1156. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Abdul-Aziz, M.-H.; Roberts, J.A.; Shekar, K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10, S629–S641. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Roberts, J.A.; Mcdonald, C.I.; Ghassabian, S.; Anstey, C.; Wallis, S.C.; Mullany, D.V.; Fung, Y.L.; Fraser, J.F. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: Results from an ex vivo study. Crit. Care Lond. Engl. 2015, 19, 164. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.; Price, A.L. The Effect of Cytochrome P450 Metabolism on Drug Response, Interactions, and Adverse Effects. Am. Fam. Physician 2007, 76, 391–396. [Google Scholar]
- McElnay, J.C.; D’Arcy, P.F. Protein binding displacement interactions and their clinical importance. Drugs 1983, 25, 495–513. [Google Scholar] [CrossRef]
- Schleibinger, M.; Steinbach, C.L.; Töpper, C.; Kratzer, A.; Liebchen, U.; Kees, F.; Salzberger, B.; Kees, M.G. Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br. J. Clin. Pharmacol. 2015, 80, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Lindow, J.; Wijdicks, E.F. Phenytoin toxicity associated with hypoalbuminemia in critically ill patients. Chest 1994, 105, 602–604. [Google Scholar] [CrossRef]
- Wen, Z.-P.; Fan, S.-S.; Du, C.; Yin, T.; Zhou, B.-T.; Peng, Z.-F.; Xie, Y.-Y.; Zhang, W.; Chen, Y.; Xiao, J.; et al. Drug-drug interaction between valproic acid and meropenem: A retrospective analysis of electronic medical records from neurosurgery inpatients. J. Clin. Pharm. Ther. 2017, 42, 221–227. [Google Scholar] [CrossRef]
- Suzuki, E.; Yamamura, N.; Ogura, Y.; Nakai, D.; Kubota, K.; Kobayashi, N.; Miura, S.; Okazaki, O. Identification of Valproic Acid Glucuronide Hydrolase as a Key Enzyme for the Interaction of Valproic Acid with Carbapenem Antibiotics. Drug Metab. Dispos. 2010, 38, 1538–1544. [Google Scholar] [CrossRef]
- Bede, P.; Lawlor, D.; Solanki, D.; Delanty, N. Carbapenems and valproate: A consumptive relationship. Epilepsia Open 2016, 2, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, L.C.; O’Brien, C.E. Changes in Pharmacokinetics and Pharmacodynamics in the Elderly Patient. J. Pharm. Pract. 2007, 20, 4–12. [Google Scholar] [CrossRef]
- Batchelor, H.K.; Marriott, J.F. Paediatric pharmacokinetics: Key considerations. Br. J. Clin. Pharmacol. 2015, 79, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Loebstein, R.; Lalkin, A.; Koren, G. Pharmacokinetic Changes During Pregnancy and Their Clinical Relevance. Clin. Pharmacokinet. 1997, 33, 328–343. [Google Scholar] [CrossRef] [PubMed]
Condition | |
---|---|
Pre-existing epilepsy | Traumatic brain injury |
Central nervous system infection | Ischemic stroke |
Brain tumor | Hypoxic ischemic encephalopathy |
Neurosurgical procedure | Altered mental status |
Intracerebral hemorrhage | Drug toxicity/withdrawal |
Subarachnoid hemorrhage | Toxic metabolic encephalopathy |
Subdural hemorrhage | Congenital |
Medication Class | Select Medications |
---|---|
Antimicrobials | Carbapenems (imipenem, meropenem), cephalosporins (cefepime), fluoroquinolones (levofloxacin), macrolides (erythromycin), penicillins, isoniazid, linezolid, metronidazole, amphotericin, fluconazole, mefloquine, chloroquine, pyrimethamine, acyclovir, ganciclovir, foscarnet |
Analgesics | Alfentanyl, codeine, fentanyl, meperidine, morphine, NSAIDs, pentazocine, tramadol |
Antihistamines | Cyproheptadine, promethazine |
Antiasthmatics | Albuterol, aminophylline, theophylline, terbutaline |
Antineoplastics | Alkylating agents (busulfan, carmustine, chlorambucil), Platinum analogs (cisplatin), cytarabine, methotrexate, vinblastine, vincristine |
Anesthetics | Bupivacaine, etomidate, lidocaine, mepivacaine, methohexital, procaine, tetracaine |
Antipsychotics | Clozapine, haloperidol, lithium, olanzapine, risperidone, phenothiazines, pimozide, thiothixene |
Antidepressants | Bupropion, TCAs, SSRIs, MAOIs, doxepin, trazodone, venlafaxine |
Antiarrhythmics | Digoxin, flecainide |
Alpha/beta agonists/antagonists | Ephedrine, esmolol, propranolol |
Immunosuppressants | Cyclosporine, hydrocortisone, INF-α, methylprednisolone, Muromonab-CD3, sulfasalazine, tacrolimus |
Stimulants | Dextroamphetamine, methylphenidate |
Other | Atropine, baclofen, bromocriptine, desmopressin, flumazenil, levodopa, metrizamide, cyclosporine, oxytocin, sumatriptan |
Anticonvulsant Drug and Mechanism | Initial Dosing * | Protein Binding | Half-Life | Metabolism | Elimination | Adverse Effects |
---|---|---|---|---|---|---|
Brivaracetam SV2A modulation | 100–200 mg over at least 2 min | ≤20% | ~9 h | Hydrolysis and hepatic via CYP2C19 | >95% renally, <10% as unchanged drug | Psychiatric disturbances, nystagmus |
Diazepam GABA potentiation | 0.15 mg/kg (Max: 10 mg) undiluted up to 5 mg/min | 98% | Parent drug: 60–72 h Metabolite: 152–174 h | Hepatic via CYP3A4 and 2C19; active metabolites | Renally as glucuronide conjugates | Respiratory depression, hypotension (more common with rapid administration) |
Fosphenytoin/ Phenytoin Na+ channel blockade | 20 mg/kg PE at 150 mg/kg/min PE 20 mg/kg at 50 mg/min | 90%–95% | 7–42 h | Fos: Prodrug, rapidly hydrolyzed to phenytoin. Hepatic via CYP2C9, 2C19, 3A4 | <5% renally as phenytoin metabolites | Hypotension, phlebitis, cardiac arrhythmias. Consider slower administration in elderly |
Lacosamide Enhances slow inactivation of voltage-gated Na+ channels | 200–400 mg over 15–30 min | <15% | 13 h | Hepatic via CYP3A4, 2C9, and 2C19; inactive metabolite | ~40% renally as unchanged drug | PR interval prolongation, hypotension |
Levetiracetam SV2A modulation, AMPA inhibition | 3000 mg or 60 mg/kg (Max: 4500 mg) at 2–5 mg/kg/min | <10% | 6–8 h | Nonhepatic hydrolysis | ~66% renally as unchanged drug | Agitation, irritability, psychotic symptoms |
Lorazepam GABA potentiation | 0.1 mg/kg (Max: 4 mg per dose, may repeat once) up to 2 mg/min | ~91% | 12–18 h | Hepatic; rapidly conjugated to inactive metabolite | ~88% renally as inactive metabolites | Respiratory depression, hypotension (more common with rapid administration) |
Midazolam GABA potentiation | 0.2 mg/kg IM (Max: 10 mg) | ~97% | 3 h | Extensively hepatic CYP3A4; 60% to 70% to active metabolite | ~90% renally as metabolites | Respiratory depression, hypotension |
Pentobarbital GABA potentiation, AMPA inhibition | 5–15 mg/kg up to 50 mg/min; followed by a continuous infusion 1–5 mg/kg/h | 45%–70% | 15–50 h | Hepatic via hydroxylation and glucuronidation | <1% renally as unchanged drug | Respiratory depression (patient must be intubated), hypotension, constipation |
Phenobarbital GABA potentiation, AMPA inhibition | 15–20 mg/kg at 50–100 mg/min | 50%–60% | 53–118 h | Hepatic via CYP2C9 and to a lesser extent 2C19 and 2E1, and by N-glucosidation | 25–50% renally as unchanged drug | Respiratory depression, hypotension, contains propylene glycol |
Propofol GABA potentiation, NMDAR blockade | 1–2 mg/kg followed by infusion 20–80 mcg/kg/min | 97%–99% | 40 min; prolonged with extended infusions | Hepatic to water-soluble sulfate and glucuronide conjugates | ~90% renally as metabolites | Respiratory depression (patient must be intubated), hypotension, PRIS |
Topiramate Blocks neuronal voltage-dependent Na+ channels, enhances GABAA activity, antagonizes AMPA/kainate receptors, weakly inhibits carbonic anhydrase | 200–400 mg NG/PO (not available IV) | 15%–41% | 19–23 h | ~20% hepatically via hydroxylation, hydrolysis, and glucuronidation. | ~70% renally as unchanged drug | Memory impairment, ↓ serum bicarbonate |
Valproic Acid GABA potentiation, glutamate (NMDAR) inhibition, Na+ and Ca2+ channel blockade | 20–40 mg/kg at 3–6 mg/kg/min | 80%–90% | 9–19 h | Hepatic via glucuronide conjugation and mitochondrial beta-oxidation | 50–80% renally | Hepatotoxicity, pancreatitis, thrombocytopenia, hyperammonemia |
Anticonvulsant Drug | Renal Impairment | Hepatic Impairment |
---|---|---|
Brivaracetam | Mild to severe impairment: No dosage adjustment ESRD with HD: Not recommended (not studied) | Mild to severe impairment (Child Pugh classes A, B, and C): Initial: 25 mg twice daily, up to a max of 75 mg twice daily |
Fosphenytoin/Phenytoin | No empiric dosage adjustment necessary Total serum concentration is difficult to interpret in renal failure; free concentration highly preferred | May require dosing ↓. Close monitoring of serum drug concentrations recommended |
Lacosamide | CrCl ≥ 30 mL/min: No dosage adjustment necessary. Consider dose ↓ in patients taking concomitant strong CYP3A4 or CYP2C9 inhibitors CrCl < 30 mL/min: ↓ to 75% of the max dose. Further dose ↓ may be necessary with concomitant use of strong CYP3A4 or CYP2C9 inhibitors ESRD requiring HD: ↓ to 75% of the max dose. Further dose ↓ may be necessary with concomitant use of strong CYP3A4 or CYP2C9 inhibitors. Post-HD, consider supplemental dose of up to 50% | Mild to moderate hepatic impairment: ↓ dose to 75% of max dose. Further dose ↓ may be necessary in patients taking concomitant strong CYP3A4 and/or CYP2C9 inhibitors Severe hepatic impairment: Use not recommended |
Levetiracetam | CrCl > 80 mL/min/1.73 m2: 500–1500 mg every 12 h CrCl 50–80 mL/min/1.73 m2: 500–1000 mg every 12 h CrCl 30–50 mL/min/1.73 m2: 250–750 mg every 12 h CrCl < 30 mL/min/1.73 m2: 250–500 mg every 12 h ESRD with HD: 500–1000 mg every 24 h; supplemental dose of 250–500 mg post-HD | No dosage adjustment necessary |
Pentobarbital/ Phenobarbital | Dose ↓ recommended due to propylene glycol and potential for neurotoxicity (no specific guidance) | Dose ↓ recommended (no specific guidance) |
Propofol | No dosage adjustment necessary | No dosage adjustment necessary |
Topiramate | CrCl < 70 mL/min/1.73 m2: ↓ to 50% of normal dose and titrate slowly HD: 50–100 mg every 12 h; supplemental dose (50 to 100 mg) post-HD | No dosage adjustment necessary |
Valproic Acid | No dosage adjustment necessary | Avoid |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strein, M.; Holton-Burke, J.P.; Smith, L.R.; Brophy, G.M. Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit. J. Clin. Med. 2019, 8, 1177. https://doi.org/10.3390/jcm8081177
Strein M, Holton-Burke JP, Smith LR, Brophy GM. Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit. Journal of Clinical Medicine. 2019; 8(8):1177. https://doi.org/10.3390/jcm8081177
Chicago/Turabian StyleStrein, Micheal, John P. Holton-Burke, LaTangela R. Smith, and Gretchen M. Brophy. 2019. "Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit" Journal of Clinical Medicine 8, no. 8: 1177. https://doi.org/10.3390/jcm8081177
APA StyleStrein, M., Holton-Burke, J. P., Smith, L. R., & Brophy, G. M. (2019). Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit. Journal of Clinical Medicine, 8(8), 1177. https://doi.org/10.3390/jcm8081177