Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of QCM Humidity Sensors
2.2. Devices
3. Results and Discussion
3.1. Structural and Morphological Features
3.2. Sensitivity
3.3. Humidity Hysteresis and Stability
3.4. Response/Recovery Times
3.5. Repeatability and Quality Factor
3.6. Humidity-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef]
- Wang, N.; Tong, J.; Wang, J.; Wang, Q.; Chen, S.; Sheng, B. Polyimide-sputtered and polymerized films with ultrahigh moisture sensitivity for respiratory monitoring and contactless sensing. ACS Appl. Mater. Interfaces 2022, 14, 11842–11853. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Guo, S.; Wu, F.; Yu, P.; Liu, H.; Li, Y.; Mao, L. Carbon atom hybridization matters: Ultrafast humidity response of graphdiyne oxides. Angew. Chem. Int. Ed. 2018, 57, 3922–3926. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yuan, Z.; Duan, Z.; Jiang, Y.; Li, X.; Li, Z.; Tai, H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens. Actuators B Chem. 2019, 289, 182–185. [Google Scholar] [CrossRef]
- Park, K.-J.; Gong, M.-S. A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sens. Actuators B Chem. 2017, 246, 53–60. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B Chem. 2011, 159, 1–7. [Google Scholar] [CrossRef]
- He, P.; Brent, J.; Ding, H.; Yang, J.; Lewis, D.; O’Brien, P.; Derby, B. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 2018, 10, 5599–5606. [Google Scholar] [CrossRef]
- Song, S.-H.; Yang, H.-H.; Han, C.-H.; Ko, S.-D.; Lee, S.-H.; Yoon, J.-B. Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance. Appl. Phys. Lett. 2012, 100, 101603. [Google Scholar] [CrossRef]
- Ben Aziza, Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, K.-l.; Yao, Y.; Huang, X.-h.; Zhang, Z. Nanodiamond/cellulose nanocrystals composite-based acoustic humidity sensor. Sens. Actuators B Chem. 2022, 373, 132748. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Yao, Y.; Mao, K. Analysis of the Effect of Electrode Materials on the Sensitivity of Quartz Crystal Microbalance. Nanomaterials 2022, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Song, X.; Wang, Z.; Chen, H. Ultra-highly sensitive humidity sensing by polydopamine/graphene oxide nanostructure on quartz crystal microbalance. Appl. Surf. Sci. 2021, 538, 147816. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.; Fu, C.; Tao, R.; Li, H.; Luo, J. Ultra-fast and sensitive Hydrophobic QCM humidity sensor by sulfur modified Ti3C2Tx MXene. IEEE Sens. J. 2022, 23, 3462–3468. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, F.; Qi, P.; Gao, B.; Zhang, T. Study on a humidity sensor of quartz crystal microbalance modified with multi-pore polydopamine. IEEE Electron. Device Lett. 2022, 43, 611–614. [Google Scholar] [CrossRef]
- Li, Z.; Teng, M.; Yang, R.; Lin, F.; Fu, Y.; Lin, W.; Zheng, J.; Zhong, X.; Chen, X.; Yang, B. Sb-doped WO3 based QCM humidity sensor with self-recovery ability for real-time monitoring of respiration and wound. Sens. Actuators B Chem. 2022, 361, 131691. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Ma, W.; Ling, W. Quartz Crystal Microbalance Humidity Sensors Based on Nanodiamond Sensing Films. IEEE Trans. Nanotechnol. 2014, 13, 386–393. [Google Scholar] [CrossRef]
- Guo, C.; Xin, Y.; Liu, Y.; Na, B.; Meng, W.; Zhang, X.; Cheng, X.; Huo, L.; Wang, T.; Xu, Y. Noncontact sensing for water area scanning identification based on Ho2O3/GO humidity sensor. Sens. Actuators B Chem. 2023, 385, 133683. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Ding, X.; Yu, X.; Zhao, X.; Chen, X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens. Actuators B Chem. 2020, 317, 128168. [Google Scholar] [CrossRef]
- Zhang, X.; Beyer, A. Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale 2021, 13, 1443–1484. [Google Scholar] [CrossRef]
- Ahmadpoor, F.; Sharma, P. A perspective on the statistical mechanics of 2D materials. Extrem. Mech. Lett. 2017, 14, 38–43. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Z.; Li, C.; Li, M.; Fu, C.; Tao, R.; Zha, X.-h.; Li, H.; Luo, J. High-sensitive ppb-level ammonia QCM sensor based on sulfur doped Ti3C2Tx MXene. Sens. Actuators A Phys. 2023, 350, 114138. [Google Scholar] [CrossRef]
- An, H.; Habib, T.; Shah, S.; Gao, H.; Patel, A.; Echols, I.; Zhao, X.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2019, 2, 948–955. [Google Scholar] [CrossRef]
- Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 4, eaat0491. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, A.; Wang, C.; Liu, F.; He, J.; Li, S.; Wang, J.; You, R.; Yan, X.; Sun, P. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019, 4, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Shpigel, N.; Levi, M.D.; Sigalov, S.; Mathis, T.S.; Gogotsi, Y.; Aurbach, D. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 2018, 140, 8910–8917. [Google Scholar] [CrossRef]
- Li, R.; Fan, Y.; Ma, Z.; Zhang, D.; Liu, Y.; Xu, J. Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping. Microchim. Acta 2021, 188, 81. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Mokrushin, A.S.; Simonenko, T.L.; Gorobtsov, P.Y.; Nagornov, I.A.; Korotcenkov, G.; Sysoev, V.V.; Kuznetsov, N.T. Application of titanium carbide MXenes in chemiresistive gas sensors. Nanomaterials 2023, 13, 850. [Google Scholar] [CrossRef]
- Li, Q.; Xu, X.; Guo, J.; Hill, J.P.; Xu, H.; Xiang, L.; Li, C.; Yamauchi, Y.; Mai, Y. Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew. Chem. 2021, 133, 26732–26738. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Thomas, A.M.; Vidyasagar, D.; Rao, V.N.; Yoon, S.-G.; Kim, Y.-H.; Kim, S.-G.; Kim, M.-D. ZnO@ Ti3C2Tx MXene Hybrid Composite-Based Schottky-Barrier-Coated SAW Sensor for Effective Detection of Sub-ppb-Level NH3 at Room Temperature under UV Illumination. ACS Mater. Lett. 2023, 5, 2739–2746. [Google Scholar] [CrossRef]
- Austin, P.; Brine, C.; Castle, J.; Zikakis, J. Chitin: New facets of research. Science 1981, 212, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.M.; Salahuddin, N.A.; Minisy, I.M.; Amer, W.A. Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sens. Actuators B Chem. 2014, 202, 144–153. [Google Scholar] [CrossRef]
- Havare, A.K.; Okur, S.; Şanlı-Mohamed, G. Humidity sensing properties of chitosan by using quartz crystal microbalance method. Sens. Lett. 2012, 10, 906–910. [Google Scholar] [CrossRef]
- Joseph, B.; Mavelil Sam, R.; Balakrishnan, P.; J. Maria, H.; Gopi, S.; Volova, T.; CM Fernandes, S.; Thomas, S. Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: Recent advances. Polymers 2020, 12, 1664. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, D.; Huang, X.-H.; Yao, Y.; Mao, K.-L. Impedance analysis of chitin nanofibers integrated bulk acoustic wave humidity sensor with asymmetric electrode configuration. Nanomaterials 2022, 12, 3035. [Google Scholar] [CrossRef]
- Afnas, V.; Unnikrishnan, G.; Budhe, S.; Manaf, O.; Ameen, J. PVA/gelatin/chitin ternary blend as a humidity sensing material. J. Mater. Sci. Mater. Electron. 2022, 33, 2031–2043. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Wang, S.-T.; Chang, K.-L.B.; Tsai, M.-L. Enhancing saltiness perception using chitin nanomaterials. Polymers 2019, 11, 719. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites. Nanomaterials 2023, 13, 1337. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Rehman, M.M.; Khan, S.A.; Saqib, M.; Kim, W.Y. Characterization and performance evaluation of fully biocompatible gelatin-based humidity sensor for health and environmental monitoring. Front. Mater. 2023, 10, 1233136. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, M.; Luo, X.; Tai, H.; Jiang, Y.; Yang, M.; Xie, G.; Su, Y. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens. Actuators B Chem. 2022, 370, 132441. [Google Scholar] [CrossRef]
- Rehman, H.M.M.U.; Prasanna, A.P.S.; Rehman, M.M.; Khan, M.; Kim, S.-J.; Kim, W.Y. Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 2023, 36, e00596. [Google Scholar] [CrossRef]
- Guan, X.; Yu, Y.; Hou, Z.; Wu, K.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. A flexible humidity sensor based on self-supported polymer film. Sens. Actuators B Chem. 2022, 358, 131438. [Google Scholar] [CrossRef]
- Rahman, S.A.; Khan, S.A.; Iqbal, S.; Rehman, M.M.; Kim, W.Y. Eco-Friendly, High-Performance Humidity Sensor Using Purple Sweet-Potato Peel for Multipurpose Applications. Chemosensors 2023, 11, 457. [Google Scholar] [CrossRef]
- Rahman, S.A.; Khan, S.A.; Rehman, M.M.; Kim, W.-Y. Highly sensitive and stable humidity sensor based on the bi-layered PVA/graphene flower composite film. Nanomaterials 2022, 12, 1026. [Google Scholar] [CrossRef]
- Vig, J.R.; Walls, F.L. A review of sensor sensitivity and stability. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No. 00CH37052), Kansas City, MO, USA, 9 June 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 30–33. [Google Scholar]
- Goyal, A.; Tadigadapa, S.; Gupta, A.; Eklund, P.C. Use of single-walled carbon nanotubes to increase the quality factor of an AT-cut micromachined quartz resonator. Appl. Phys. Lett. 2005, 87, 204102. [Google Scholar] [CrossRef]
- Rodriguez-Pardo, L.; Fariña, J.; Gabrielli, C.; Perrot, H.; Brendel, R. Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sens. Actuators B Chem. 2004, 103, 318–324. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Li, H.; Ding, X. A high-stability QCM humidity sensor coated with nanodiamond/multiwalled carbon nanotubes nanocomposite. IEEE Trans. Nanotechnol. 2018, 17, 506–512. [Google Scholar] [CrossRef]
- Tang, L.; Chen, W.; Chen, B.; Lv, R.; Zheng, X.; Rong, C.; Lu, B.; Huang, B. Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals. Sens. Actuators B Chem. 2021, 327, 128944. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Yu, X.; Chen, X.; Ding, X. A quartz crystal microbalance (QCM) humidity sensor based on a pencil-drawn method with high quality factor. IEEE Trans. Electron Devices 2021, 68, 5149–5154. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, X.; Chen, Q.; Zhang, Z.; Ling, W. High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite. Nanomaterials 2020, 10, 2210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, D.; Li, P.; Zhou, X.; Zong, X.; Dong, G. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2018, 255, 1869–1877. [Google Scholar] [CrossRef]
- Chen, Q.; Feng, N.-b.; Huang, X.-h.; Yao, Y.; Jin, Y.-r.; Pan, W.; Liu, D. Humidity-sensing properties of a BiOCl-coated quartz crystal microbalance. ACS Omega 2020, 5, 18818–18825. [Google Scholar] [CrossRef] [PubMed]
- Okur, S.; Üzar, N.; Tekgüzel, N.; Erol, A.; Arıkan, M.Ç. Synthesis and humidity sensing analysis of ZnS nanowires. Phys. E Low-Dimens. Syst. Nanostructures 2012, 44, 1103–1107. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.-H.; Yao, Y.; Luo, K.-B.; Pan, H.-Z.; Wang, Q. Ringed electrode configuration enhances the sensitivity of QCM humidity sensor based on lignin through fringing field effect. IEEE Sens. J. 2021, 21, 22450–22458. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Wang, D.; Wu, Z. Polypyrrole-modified tin disulfide nanoflower-based quartz crystal microbalance sensor for humidity sensing. IEEE Sens. J. 2019, 19, 9166–9171. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Guo, H.; Wu, Z. Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl. Surf. Sci. 2011, 257, 7778–7782. [Google Scholar] [CrossRef]
- Yuan, Z.; Tai, H.; Ye, Z.; Liu, C.; Xie, G.; Du, X.; Jiang, Y. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sens. Actuators B Chem. 2016, 234, 145–154. [Google Scholar] [CrossRef]
- Raposo, M.; Pontes, R.; Mattoso, L.; Oliveira, O. Kinetics of adsorption of poly (o-methoxyaniline) self-assembled films. Macromolecules 1997, 30, 6095–6101. [Google Scholar] [CrossRef]
- Sakly, N.; Said, A.H.; Ouada, H.B. Humidity-sensing properties of ZnO QDs coated QCM: Optimization, modeling and kinetic investigations. Mater. Sci. Semicond. Process. 2014, 27, 130–139. [Google Scholar] [CrossRef]
Sensing Principle | Materials | Sensing Range (%RH) | Hysteresis (%RH) | Res./Rec. Time (s) | Ref. |
---|---|---|---|---|---|
Resistance | Gelatin thin fi | 15–86 | / | 4/6.3 | [43] |
Impedance | Ni-Co-P | 0–97.5 | 3 | 95/27 | [44] |
Resistance | CERP | 0–100 | / | 5/16 | [45] |
Impedance | Self-supported polymer | 11–95 | 8.5 | 12.5/>100 s | [46] |
Capacitance | Purple sweet potato peel | 0–85 | 5 | 1/2 | [47] |
Impedance | PVA/GF | 40–90 | / | 2/3.2 | [48] |
Frequency shifts | NCM-C | 11.3–97.3 | 2.12 | 4.4/4.1 | This work |
Materials | Sensing Range (%RH) | Sensitivity (Hz/%RH) | Hysteresis (%RH) | Res./Rec. Time (s) | Q | Ref. |
---|---|---|---|---|---|---|
ND/MWCNT | 11.3–97.3 | 23.50 | 2 | 3/2.5 | 23 k | [52] |
S-Ti3C2 | 11.3–97.3 | 12.8 | 1.16 | 6/2 | / | [30] |
NCNCs | 11.3–84.3 | 25.6 | 5.9 | 18/10 | / | [53] |
Graphite | 11.3–97.3 | 2.38 | / | 8/5 | 43 k | [54] |
PDA@CNC/GO30 | 11.3–97.3 | 54.66 | 4.3 | 37/5 | / | [55] |
PANI/GO | 0–97.3 | 20.20 | / | 13/2 | 6 k | [56] |
BiOCl | 11.3–97.3 | 7.3 | 2 | 5.2/4.5 | / | [57] |
ZnS | 22–97 | 10 | / | 42/259 | / | [58] |
Lignin | 11.3–97.3 | 61 | 6.2 | 28/5 | 1.5 k | [59] |
PPy/SnS2 | 11.3–97.3 | 29.0 | / | 21/4 | 12 k | [60] |
GO | 6.4–93.5 | 22.1 | / | 45/24 | / | [61] |
GO/PEI | 11.3–97.3 | 27.25 | 0.54 | 53/18 | / | [62] |
NCM-C | 11.3–97.3 | 20.54 | 2.12 | 4.4/4.1 | 37 k | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, X.; Chen, Q.; Yao, Y.; Pan, W. Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing. Nanomaterials 2023, 13, 3135. https://doi.org/10.3390/nano13243135
Li Y, Huang X, Chen Q, Yao Y, Pan W. Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing. Nanomaterials. 2023; 13(24):3135. https://doi.org/10.3390/nano13243135
Chicago/Turabian StyleLi, Yanqi, Xianhe Huang, Qiao Chen, Yao Yao, and Wei Pan. 2023. "Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing" Nanomaterials 13, no. 24: 3135. https://doi.org/10.3390/nano13243135