Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells
Abstract
1. Introduction
2. Experimental Procedure
2.1. Materials Synthesis
2.2. Catalyst Characterization
2.3. Catalytic Tests
2.4. Electrochemical Tests of Fuel Cells
3. Results and Discussion
3.1. Characterization of Ru-CZO Powders
3.2. Catalytic Tests of Ru-CZO
3.3. Electrochemical Tests of Fuel Cells
3.4. Post-Test Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuel Cell Handbook, 7th ed.; Lulu Press: Morrisville, NC, USA, 2004.
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chen, W. Mobile Applications: Cars, Trucks, Locomotives, Marine Vehicles, and Aircraft. In Design and Operation of Solid Oxide Fuel Cells; Academic Press: Cambridge, MA, USA, 2020; pp. 333–358. [Google Scholar] [CrossRef]
- E4tech Fuel Cell Industry Review 2021. Available online: https://fuelcellindustryreview.com/ (accessed on 24 November 2023).
- Sasaki, K.; Watanabe, K.; Shiosaki, K.; Susuki, K.; Teraoka, Y. Power Generation Characteristics of SOFCs for Alcohols and Hydrocarbon-Based Fuels. ECS Proc. Vol. 2003, 2003, 1295. [Google Scholar] [CrossRef]
- Cimenti, M.; Hill, J.M. Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes. Energies 2009, 2, 377–410. [Google Scholar] [CrossRef]
- Raza, R.; Ullah, M.K.; Afzal, M.; Rafique, A.; Ali, A.; Arshad, S.; Zhu, B. Low-Temperature Solid Oxide Fuel Cells with Bioalcohol Fuels. In Bioenergy Systems for the Future; Woodhead Publishing: Sawston, UK, 2017; pp. 521–539. [Google Scholar] [CrossRef]
- Volnina, E.A.; Kipnis, M.A.; Khadzhiev, S.N. Catalytic Chemistry of Dimethyl Ether (Review). Pet. Chem. 2017, 57, 353–373. [Google Scholar] [CrossRef]
- Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl Ether: A Review of Technologies and Production Challenges. Chem. Eng. Process. Process Intensif. 2014, 82, 150–172. [Google Scholar] [CrossRef]
- Saravanan, K.; Ham, H.; Tsubaki, N.; Bae, J.W. Recent Progress for Direct Synthesis of Dimethyl Ether from Syngas on the Heterogeneous Bifunctional Hybrid Catalysts. Appl. Catal. B Environ. 2017, 217, 494–522. [Google Scholar] [CrossRef]
- Mota, N.; Ordoñez, E.M.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. Catalysts 2021, 11, 411. [Google Scholar] [CrossRef]
- Mondal, U.; Yadav, G.D. Perspective of Dimethyl Ether as Fuel: Part I. Catalysis. J. CO2 Util. 2019, 32, 299–320. [Google Scholar] [CrossRef]
- Bernadet, L.; Morales, M.; Capdevila, X.G.; Ramos, F.; Monterde, M.C.; Calero, J.A.; Morata, A.; Torrell, M.; Tarancón, A. Reversible Fuel Electrode Supported Solid Oxide Cells Fabricated by Aqueous Multilayered Tape Casting. J. Phys. Energy 2021, 3, 024002. [Google Scholar] [CrossRef]
- Ge, X.-M.; Chan, S.-H.; Liu, Q.-L.; Sun, Q.; Ge, X.-M.; Chan, S.-H.; Liu, Q.-L.; Sun, Q. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Adv. Energy Mater. 2012, 2, 1156–1181. [Google Scholar] [CrossRef]
- Morales, M.; Roa, J.J.; Tartaj, J.; Segarra, M. Performance and Short-Term Stability of Single-Chamber Solid Oxide Fuel Cells Based on La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte. J. Power Sources 2012, 216, 417–424. [Google Scholar] [CrossRef]
- Wang, S.; Ishihara, T.; Takita, Y. Partial Oxidation of Dimethyl Ether over Various Supported Metal Catalysts. Appl. Catal. A Gen. 2002, 228, 167–176. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Xu, N. Partial Oxidation of Dimethyl Ether to H2/Syngas over Supported Pt Catalyst. J. Nat. Gas Chem. 2008, 17, 75–80. [Google Scholar] [CrossRef]
- Yano, M.; Kawai, T.; Okamoto, K.; Nagao, M.; Sano, M.; Tomita, A.; Hibino, T. Single-Chamber SOFCs Using Dimethyl Ether and Ethanol. J. Electrochem. Soc. 2007, 154, B865–B870. [Google Scholar] [CrossRef]
- Murray, E.P.; Harris, S.J.; Jen, H. Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel. J. Electrochem. Soc. 2002, 149, A1127. [Google Scholar] [CrossRef]
- Su, C.; Ran, R.; Wang, W.; Shao, Z. Coke Formation and Performance of an Intermediate-Temperature Solid Oxide Fuel Cell Operating on Dimethyl Ether Fuel. J. Power Sources 2011, 196, 1967–1974. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Progress in Low-Temperature Solid Oxide Fuel Cells with Hydrocarbon Fuels. Chem. Eng. J. 2020, 402, 126235. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Zhu, D.; Jia, X.; Zhang, Y.; Yu, J.; Li, X.; Yang, M. High Performance Low-Temperature Solid Oxide Fuel Cells Based on Nanostructured Ceria-Based Electrolyte. Nanomaterials 2021, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.B.; Beitollahi, H.; Di, B.; Methanol, A.; Askari, M.B.; Beitollahi, H.; Di Bartolomeo, A. Methanol and Ethanol Electrooxidation on ZrO2/NiO/RGO. Nanomaterials 2023, 13, 679. [Google Scholar] [CrossRef] [PubMed]
- Welander, M.M.; Hu, B.; Belko, S.; Lee, K.X.; Dubey, P.K.; Robinson, I.; Singh, P.; Tucker, M.C. Direct Utilization of Gaseous Fuels in Metal Supported Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 1533–1539. [Google Scholar] [CrossRef]
- Anaya-Castro, F.D.J.; Beltrán-Gastélum, M.; Morales Soto, O.; Pérez-Sicairos, S.; Lin, S.W.; Trujillo-Navarrete, B.; Paraguay-Delgado, F.; Salazar-Gastélum, L.J.; Romero-Castañón, T.; Reynoso-Soto, E.; et al. Ultra-Low Pt Loading in Ptco Catalysts for the Hydrogen Oxidation Reaction: What Role Do Co Nanoparticles Play? Nanomaterials 2021, 11, 3156. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yang, J.; Guan, W.; Wang, J.; Singhal, S.C.; Wang, L. Nanoengineering Modification of Ni-YSZ Anode Using in-Situ Solvothermal Process in Solid Oxide Fuel Cells with Internally Reformed Fuel. Electrochim. Acta 2023, 444, 141986. [Google Scholar] [CrossRef]
- Cao, T.; Kwon, O.; Gorte, R.J.; Vohs, J.M. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells. Nanomaterials 2020, 10, 2445. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Espiell, F.; Segarra, M. Improvement of Performance in Low Temperature Solid Oxide Fuel Cells Operated on Ethanol and Air Mixtures Using Cu-ZnO-Al2O3 catalyst Layer. J. Power Sources 2015, 293, 366–372. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, L.; Zhao, B.; Lei, Z.; Ge, B.; Yang, Z.; Jin, X.; Peng, S. Direct Power Generation from Ethanol by Solid Oxide Fuel Cells with an Integrated Catalyst Layer. Fuel 2023, 333, 126340. [Google Scholar] [CrossRef]
- Vakros, J.; Avgouropoulos, G. Tuning the Physicochemical Properties of Nanostructured Materials through Advanced Preparation Methods. Nanomaterials 2022, 12, 956. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Laguna-Bercero, M.A. Microtubular Solid Oxide Fuel Cells Fabricated by Gel-Casting: The Role of Supporting Microstructure on the Mechanical Properties. RSC Adv. 2017, 7, 17620–17628. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Ran, R.; Zheng, T.; Shao, Z. Further Performance Enhancement of a DME-Fueled Solid Oxide Fuel Cell by Applying Anode Functional Catalyst. Int. J. Hydrogen Energy 2012, 37, 6844–6852. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Xu, H.; Xiong, G. Hydrogen Production Capacity of Membrane Reformer for Methane Steam Reforming near Practical Working Conditions. J. Membr. Sci. 2008, 322, 453–459. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Fujimoto, K.; Asami, K. Hydrogen Production by Partial Oxidation and Reforming of DME. Appl. Catal. A Gen. 2005, 288, 169–174. [Google Scholar] [CrossRef]
- Yu, B.Y.; Lee, K.H.; Kim, K.; Byun, D.J.; Ha, H.P.; Byun, J.Y. Partial Oxidation of Dimethyl Ether Using the Structured Catalyst Rh/Al2O3/Al Prepared through the Anodic Oxidation of Aluminum. J. Nanosci. Nanotechnol. 2011, 11, 6298–6305. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, S.H.; Byun, J.Y. A Microreactor with Metallic Catalyst Support for Hydrogen Production by Partial Oxidation of Dimethyl Ether. Chem. Eng. J. 2015, 280, 468–474. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Akhmetov, N.O.; Belyaev, V.D.; Kulikov, A.V.; Pechenkin, A.A.; Potemkin, D.I.; Konishcheva, M.V.; Rogozhnikov, V.N.; Snytnikov, P.V.; Sobyanin, V.A. Syngas Production via Partial Oxidation of Dimethyl Ether over Rh/Ce0.75Zr0.25O2 Catalyst and Its Application for SOFC Feeding. Int. J. Hydrogen Energy 2020, 45, 26188–26196. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Akhmetov, N.O.; Sobyanin, V.A. Partial Oxidation of Dimethoxymethane to Syngas Over Supported Noble Metal Catalysts. Top. Catal. 2020, 63, 196–202. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Zhan, Z.; Barnett, S.A. An Octane-Fueled Solid Oxide Fuel Cell. Science 2005, 308, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; deGlee, B.; Tang, Y.; Wang, Z.; Zhao, B.; Wei, Y.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J.H.; et al. A Robust Fuel Cell Operated on Nearly Dry Methane at 500 °C Enabled by Synergistic Thermal Catalysis and Electrocatalysis. Nat. Energy 2018, 3, 1042–1050. [Google Scholar] [CrossRef]
- Morales, M.; Laguna-Bercero, M.Á.; Jiménez-Piqué, E. Hydrogen-Rich Gas Production by Steam Reforming and Oxidative Steam Reforming of Methanol over La0.6Sr0.4CoO3−δ: Effects of Preparation, Operation Conditions, and Redox Cycles. ACS Appl. Energy Mater. 2023, 6, 7887–7898. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; He, F.; Xie, J.; Xue, L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 711–718. [Google Scholar] [CrossRef]
- Jin, B.; Wei, Y.; Zhao, Z.; Liu, J.; Jiang, G.; Duan, A. Effects of Au–Ce Strong Interactions on Catalytic Activity of Au/CeO2/3DOM Al2O3 Catalyst for Soot Combustion under Loose Contact Conditions. Chin. J. Catal. 2016, 37, 923–933. [Google Scholar] [CrossRef]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.W.; Herman, I.P. Size-Dependent Properties of Nanoparticles as Studied by Raman Scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef]
- Han, J.; Kim, H.J.; Yoon, S.; Lee, H. Shape Effect of Ceria in Cu/Ceria Catalysts for Preferential CO Oxidation. J. Mol. Catal. A Chem. 2011, 335, 82–88. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.W. Cerium Oxidation State in Ceria Nanoparticles Studied with X-Ray Photoelectron Spectroscopy and Absorption near Edge Spectroscopy. Surf. Sci. 2004, 563, 74–82. [Google Scholar] [CrossRef]
- Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R.J. Kinetics and Mechanism of the Low-Temperature Water–Gas Shift Reaction on Au/CeO2 Catalysts in an Idealized Reaction Atmosphere. J. Catal. 2006, 244, 137–152. [Google Scholar] [CrossRef]
- Hua, X.; Zheng, Y.; Yang, Z.; Sun, L.; Su, H.; Murayama, T.; Qi, C. Gold Nanoparticles Supported on Ce–Zr Oxides for Selective Hydrogenation of Acetylene. Top. Catal. 2021, 64, 206–214. [Google Scholar] [CrossRef]
- Li, B.; Croiset, E.; Wen, J.Z. Influence of Surface Properties of Nanostructured Ceria-Based Catalysts on Their Stability Performance. Nanomaterials 2022, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; García-González, S.; Rieux, J.; Jiménez-Piqué, E. Nanosecond Pulsed Laser Surface Modification of Yttria Doped Zirconia for Solid Oxide Fuel Cell Applications: Damage and Microstructural Changes. J. Eur. Ceram. Soc. 2023, 43, 3396–3403. [Google Scholar] [CrossRef]
- Morales, M.; García-González, S.; Plch, M.; Montinaro, D.; Jiménez-Piqué, E. Laser Machining of Nickel Oxide–Yttria Stabilized Zirconia Composite for Surface Modification in Solid Oxide Fuel Cells. Crystals 2023, 13, 1016. [Google Scholar] [CrossRef]
- Nelson, A.E.; Schulz, K.H. Surface Chemistry and Microstructural Analysis of CexZr1−xO2−y Model Catalyst Surfaces. Appl. Surf. Sci. 2003, 210, 206–221. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Investigations into Nanostructured Ceria–Zirconia Catalysts for Soot Combustion. Appl. Catal. B-Environ. 2016, 180, 271–282. [Google Scholar] [CrossRef]
- Vinodkumar, T.; Durgasri, D.N.; Maloth, S.; Reddy, B.M. Tuning the Structural and Catalytic Properties of Ceria by Doping with Zr4+, La3+ and Eu3+ Cations. J. Chem. Sci. 2015, 127, 1145–1153. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Lee, C.L.; Ho, K.F.; Huang, H.H.; Yu, S.W.; Wang, C. Bin Catalytic Performance of Pt-Promoted Cobalt-Based Catalysts for the Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2014, 39, 5653–5662. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhang, J.; Zhan, W. Total Oxidation of Propane over a Ru/CeO2 Catalyst at Low Temperature. Environ. Sci. Technol. 2018, 52, 9531–9541. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Dai, L.; Liu, Y.; Deng, J.; Jing, L.; Zhang, K.; Hou, Z.; Han, Z.; Rastegarpanah, A.; Dai, H. PtRu Nanoparticles Partially Embedded in the 3DOM Ce0.7Zr0.3O2 Skeleton: Active and Stable Catalysts for Toluene Combustion. J. Catal. 2020, 385, 274–288. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.B.; Lin, G.D.; Hong, Q.; Tsai, K.R. Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni MgO Catalyst. Carbon N. Y. 1997, 35, 1495–1501. [Google Scholar] [CrossRef]
- De Jong, K.P.; Geus, J.W. Carbon Nanofibers: Catalytic Synthesis and Applications. Catal. Rev. 2000, 42, 481–510. [Google Scholar] [CrossRef]
- Chen, D.; Christensen, K.O.; Ochoa-Fernández, E.; Yu, Z.; Tøtdal, B.; Latorre, N.; Monzón, A.; Holmen, A. Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition. J. Catal. 2005, 229, 82–96. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Yasuda, I. The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I. Dependence on Temperature, Time, and Impurity Concentration. Solid State Ion. 2000, 132, 261–269. [Google Scholar] [CrossRef]
- Sukeshini, A.M.; Habibzadeh, B.; Becker, B.P.; Stoltz, C.A.; Eichhorn, B.W.; Jackson, G.S. Electrochemical Oxidation of H2, CO, and CO/H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes. J. Electrochem. Soc. 2006, 153, A705. [Google Scholar] [CrossRef]
- Hua, B.; Yan, N.; Li, M.; Sun, Y.F.; Chen, J.; Zhang, Y.Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L. Toward Highly Efficient in Situ Dry Reforming of H2S Contaminated Methane in Solid Oxide Fuel Cells via Incorporating a Coke/Sulfur Resistant Bimetallic Catalyst Layer. J. Mater. Chem. A 2016, 4, 9080–9087. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon N. Y. 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Watanabe, S.; Shinohara, M.; Kodama, H.; Tanaka, T.; Yoshida, M.; Takagi, T. Amorphous Carbon Layer Deposition on Plastic Film by PSII. Thin Solid Film. 2002, 420–421, 253–258. [Google Scholar] [CrossRef]
- Pillai, M.; Lin, Y.; Zhu, H.; Kee, R.J.; Barnett, S.A. Stability and Coking of Direct-Methane Solid Oxide Fuel Cells: Effect of CO2 and Air Additions. J. Power Sources 2010, 195, 271–279. [Google Scholar] [CrossRef]
- Chang, H.; Chen, H.; Shao, Z.; Shi, J.; Bai, J.; Li, S.D. In Situ Fabrication of (Sr,La)FeO4 with CoFe Alloy Nanoparticles as an Independent Catalyst Layer for Direct Methane-Based Solid Oxide Fuel Cells with a Nickel Cermet Anode. J. Mater. Chem. A 2016, 4, 13997–14007. [Google Scholar] [CrossRef]
Sample | Nominal Composition Ru (wt.%) | Ru (wt.%) | Ce (wt.%) | Zr (wt.%) | O (wt.%) |
---|---|---|---|---|---|
CZO | 0 | 0 | 62.3 | 18.3 | 19.4 |
1.0 wt.% Ru-CZO | 1.0 | 1.2 | 61.9 | 18.1 | 18.8 |
1.5 wt.% Ru-CZO | 1.5 | 1.8 | 61.2 | 18.0 | 19.0 |
2.0 wt.% Ru-CZO | 2.0 | 2.3 | 61.5 | 17.6 | 18.7 |
Ru (wt.%) | DME conv. (%) | H2 sel. (%) | CO sel. (%) | CO2 sel. (%) | CH4 sel. (%) |
---|---|---|---|---|---|
1.0 | 100 | 66 | 62 | 17 | 21 |
1.5 | 100 | 78 | 76 | 14 | 12 |
2.0 | 100 | 82 | 80 | 12 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, M.; Rezayat, M.; García-González, S.; Mateo, A.; Jiménez-Piqué, E. Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials 2024, 14, 603. https://doi.org/10.3390/nano14070603
Morales M, Rezayat M, García-González S, Mateo A, Jiménez-Piqué E. Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials. 2024; 14(7):603. https://doi.org/10.3390/nano14070603
Chicago/Turabian StyleMorales, Miguel, Mohammad Rezayat, Sandra García-González, Antonio Mateo, and Emilio Jiménez-Piqué. 2024. "Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells" Nanomaterials 14, no. 7: 603. https://doi.org/10.3390/nano14070603
APA StyleMorales, M., Rezayat, M., García-González, S., Mateo, A., & Jiménez-Piqué, E. (2024). Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials, 14(7), 603. https://doi.org/10.3390/nano14070603