Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Reflectivity
3.2. X-ray Diffraction
3.3. Magnetic Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Williams, G.V.M.; Prakash, T.; Kennedy, J.; Chong, S.V.; Rubanov, S. Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 2018, 460, 229–233. [Google Scholar] [CrossRef]
- Kennedy, J.; Leveneur, J.; Williams, G.V.M.; Mitchell, D.R.G.; Markwitz, A. Corrigendum: Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology 2011, 22, 115602. [Google Scholar] [CrossRef] [PubMed]
- González, J.A.; Andrés, J.P.; López Antón, R.; De Toro, J.A.; Normile, P.S.; Muñiz, P.; Riveiro, J.M.; Nogués, J. Maximizing Exchange Bias in Co/CoO Core/Shell Nanoparticles by Lattice Matching between the Shell and the Embedding Matrix. Chem. Mater. 2017, 29, 5200–5206. [Google Scholar] [CrossRef]
- Tumansky, S. Thin Film Magnetoresistive Sensors; IOP Publishing: Bristol, UK, 2001. [Google Scholar]
- Freitas, P.P.; Ferreira, R.; Cardoso, S.; Cardoso, F. Magnetoresistive sensors. J. Phys. Condens. Matter 2007, 19, 165221. [Google Scholar] [CrossRef]
- Ennen, I.; Kappe, D.; Rempel, T.; Glenske, C.; Hutten, A. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications. Sensors 2016, 16, 904. [Google Scholar] [CrossRef] [PubMed]
- Kurlyandskaya, G.V.; Fernandez, E.; Safronov, A.P.; Svalov, A.V.; Beketov, I.; Beitia, A.B.; Garcia-Arribas, A.; Blyakhman, F.A. Giant magnetoimpedance biosensor for ferrogel detection: Model system to evaluate properties of natural tissue. Appl. Phys. Lett. 2015, 106, 193702. [Google Scholar] [CrossRef]
- Dieny, B. Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mater. 1994, 136, 335–359. [Google Scholar] [CrossRef]
- Kakazei, G.N.; Ilyn, M.; Chubykalo-Fesenko, O.; Gonzalez, J.; Serga, A.A.; Chumak, A.V.; Beck, P.A.; Laegel, B.; Hillebrands, B.; Guslienko, K.Y. Slow magnetization dynamics and energy barriers near vortex state nucleation in circular permalloy dots. Appl. Phys. Lett. 2011, 99, 052512. [Google Scholar] [CrossRef]
- Chung, S.H.; McMichael, R.D.; Pierce, D.T.; Unguris, J. Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis. Phys. Rev. B 2010, 81, 024410. [Google Scholar] [CrossRef]
- Correa, M.A.; Bohn, F.; Chesman, C.; da Silva, R.B.; Viegas, A.D.C.; Sommer, R.L. Tailoring the magnetoimpedance effect of NiFe/Ag multilayer. J. Phys. D Appl. Phys. 2010, 43, 295004. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Garcia-Arribas, A.; Fernandez, E.; Svalov, A.V. Nanostructured Magnetoimpedance Multilayers. IEEE Trans. Magn. 2012, 48, 1375–1380. [Google Scholar] [CrossRef]
- Powell, R.A.; Rossnagel, S. PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Svalov, A.V.; Vas’kovskiy, V.O.; Larrañaga, A.; Kurlyandskaya, G.V. Structure and Magnetic Properties of FeNi/Ti Multilayered Films Grown by Magnetron Sputtering. Solid State Phenom. 2015, 233–234, 591–594. [Google Scholar] [CrossRef]
- Baskaran, A.; Smereka, P. Mechanisms of Stranski-Krastanov growth. J. Appl. Phys. 2012, 111, 044321. [Google Scholar] [CrossRef] [Green Version]
- Soroka, I.L.; Stanciu, V.; Lu, J.; Nordblad, P.; Hjorvarsson, B. Structural and magnetic properties of Al2O3/Ni81Fe19 thin films: From superparamagnetic nanoparticles to ferromagnetic multilayers. J. Phys.-Condens. Matter 2005, 17, 5027–5036. [Google Scholar] [CrossRef]
- Zhuang, Y.; Vroubel, M.; Rejaei, B.; Burghartz, J.N.; Attenborough, K. Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application. J. Appl. Phys. 2005, 97, 10N305. [Google Scholar] [CrossRef]
- Barati, E.; Cinal, M. Gilbert damping in binary magnetic multilayers. Phys. Rev. B 2017, 95, 134440. [Google Scholar] [CrossRef] [Green Version]
- Tanner, B.K. X-ray Scattering from Spintronic Structures. In Handbook of Spintronics; Van Dijken, S., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–29. ISBN 978-94-007-7604-3. [Google Scholar]
- Denardin, J.C.; Brandl, A.L.; Knobel, M.; Panissod, P.; Pakhomov, A.B.; Liu, H.; Zhang, X.X. Thermoremanence and zero-field-cooled/field-cooled magnetization study of Co-x(SiO2)(1-x) granular films. Phys. Rev. B 2002, 65, 064422. [Google Scholar] [CrossRef]
- Björck, M.; Brewer, M.S.; Arnalds, U.B.; östman, E.; Ahlberg, M.; Kapaklis, V.; Papaioannou, E.T.; Andersson, G.; Hjörvarsson, B.; Hase, T.P.A. Reflectivity Studies of Magnetic Heterostructures. J. Surf. Interfaces Mater. 2014, 2, 24–32. [Google Scholar] [CrossRef]
- Kitada, M. Magnetic properties of permalloy/permalloy-oxide multilayer thin films. J. Mater. Sci. 1991, 26, 4150–4154. [Google Scholar] [CrossRef]
- Rodmacq, B.; Hillairet, J.; Laugier, J.; Chamberod, A. Structural and transport properties of Fe/Ti multilayers. J. Phys.-Condens. Matter 1990, 2, 95–108. [Google Scholar] [CrossRef]
- Hollanders, M.A.; Thijsse, B.J.; Mittemeijer, E.J. Amorphization along interfaces and grain boundaries in polycrystalline multilayers—An X-ray diffraction study of Ni/Ti multilayers. Phys. Rev. B 1990, 42, 5481–5494. [Google Scholar] [CrossRef]
- Zotov, N.; Ludwig, A. Atomic mechanisms of interdiffusion in metallic multilayers. Mater. Sci. Eng. C 2007, 27, 1470–1474. [Google Scholar] [CrossRef]
- Wang, W.H.; Bai, H.Y.; Zhang, M.; Zhao, J.H.; Zhang, X.Y.; Wang, W.K. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction. Phys. Rev. B 1999, 59, 10811–10822. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE Press: New York, NY, USA; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
SAMPLE | Modulation (Λ) | Py Layers | Ti Layers | Alloy | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nom. | Fitted | δΛ | Nom. | Fitted | δPy | Nom. | Fitted | δTi | Fitted | |
Py8 | 38 | 40.3 | 2.3 | 8 | 0.1 | −7.9 | 30 | 14.5 | −15.5 | 12.8 |
Py15 | 45 | 49.5 | 4.5 | 15 | 10.6 | −4.4 | 30 | 19.0 | −11.0 | 10.0 |
Py24 | 54 | 54.1 | 0.1 | 24 | 15.0 | −9.0 | 30 | 12.7 | −17.3 | 13.2 |
Py30 | 60 | 57.8 | −2.2 | 30 | 24.6 | −5.4 | 30 | 13.7 | −16.3 | 9.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antón, R.L.; González, J.A.; Andrés, J.P.; Svalov, A.V.; Kurlyandskaya, G.V. Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers. Nanomaterials 2018, 8, 780. https://doi.org/10.3390/nano8100780
Antón RL, González JA, Andrés JP, Svalov AV, Kurlyandskaya GV. Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers. Nanomaterials. 2018; 8(10):780. https://doi.org/10.3390/nano8100780
Chicago/Turabian StyleAntón, Ricardo López, Juan A. González, Juan P. Andrés, Andrei V. Svalov, and Galina V. Kurlyandskaya. 2018. "Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers" Nanomaterials 8, no. 10: 780. https://doi.org/10.3390/nano8100780
APA StyleAntón, R. L., González, J. A., Andrés, J. P., Svalov, A. V., & Kurlyandskaya, G. V. (2018). Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers. Nanomaterials, 8(10), 780. https://doi.org/10.3390/nano8100780