Next Issue
Previous Issue

Table of Contents

Nanomaterials, Volume 8, Issue 3 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Zinc oxide nanoparticles are promising additives in the fabrication of antibacterial food packaging [...] Read more.
View options order results:
result details:
Displaying articles 1-51
Export citation of selected articles as:
Open AccessArticle Synthesis of the Novel Type of Bimodal Ceramic Nanowires from Polymer and Composite Fibrous Mats
Nanomaterials 2018, 8(3), 179; https://doi.org/10.3390/nano8030179
Received: 16 January 2018 / Revised: 2 March 2018 / Accepted: 15 March 2018 / Published: 20 March 2018
PDF Full-text (15384 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this paper was to produce SiO2 and TiO2 nanowires via the electrospinning process from a polyvinylpyrrolidone (PVP)/Tetraethyl orthosilicate (TEOS)/Titanium (IV) butoxide (TNBT)/dimethylformamide (DMF) and ethanol (EtOH) solution. The as-obtained nanofibers were calcined at temperatures ranging from 400 °C
[...] Read more.
The purpose of this paper was to produce SiO2 and TiO2 nanowires via the electrospinning process from a polyvinylpyrrolidone (PVP)/Tetraethyl orthosilicate (TEOS)/Titanium (IV) butoxide (TNBT)/dimethylformamide (DMF) and ethanol (EtOH) solution. The as-obtained nanofibers were calcined at temperatures ranging from 400 °C to 600 °C in order to remove the organic phase. The one-dimensional ceramic nanostructures were studied using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to analyze the influence of the used temperature on the morphology and structures of the obtained ceramic nanomaterials. In order to examine the chemical structure of the nanowires, energy dispersive spectrometry (EDX) and Fourier-Transform Infrared spectroscopy (FTIR) were used. The optical property analysis was performed on the basis of UV-Vis spectra of absorbance as a function of the wavelength. Using the modified Swanepoel method, which the authors proposed and the recorded absorbance spectra allowed to determine the banded refractive index n, real n′ and imaginary k part of the refractive index as a function of the wavelength, complex dielectric permeability ε, and real and imaginary part εr and εi of the dielectric permeability as a function of the radiation energy of the produced ceramic nanowires. Full article
Figures

Graphical abstract

Open AccessArticle Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood–Brain Barrier
Nanomaterials 2018, 8(3), 178; https://doi.org/10.3390/nano8030178
Received: 3 March 2018 / Revised: 16 March 2018 / Accepted: 16 March 2018 / Published: 20 March 2018
PDF Full-text (1719 KB) | HTML Full-text | XML Full-text
Abstract
The transport of dopamine across the blood brain barrier represents a challenge for the management of Parkinson’s disease. The employment of central nervous system targeted ligands functionalized nanocarriers could be a valid tactic to overcome this obstacle and avoid undesirable side effects. In
[...] Read more.
The transport of dopamine across the blood brain barrier represents a challenge for the management of Parkinson’s disease. The employment of central nervous system targeted ligands functionalized nanocarriers could be a valid tactic to overcome this obstacle and avoid undesirable side effects. In this work, transferrin functionalized dopamine-loaded liposomes were made by a modified dehydration–rehydration technique from hydrogenated soy phosphatidylcoline, cholesterol and 1,2-stearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(poly(ethylene glycol)-2000)]. The physical features of the prepared liposomes were established with successive determination of their endothelial permeability across an in vitro model of the blood-brain barrier, constituted by human cerebral microvascular endothelial cells (hCMEC/D3). Functionalized dopamine-loaded liposomes with encapsulation efficiency more than 35% were made with sizes in a range around 180 nm, polydispersity indices of 0.2, and positive zeta potential values (+7.5 mV). Their stability and drug release kinetics were also evaluated. The apparent permeability (Pe) values of encapsulated dopamine in functionalized and unfunctionalized liposomes showed that transferrin functionalized nanocarriers could represent appealing non-toxic candidates for brain delivery, thus improving benefits and decreasing complications to patients subjected to L-dopa chronical treatment. Full article
(This article belongs to the Special Issue Nanocolloids for Nanomedicine and Drug Delivery)
Figures

Graphical abstract

Open AccessFeature PaperArticle TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials
Nanomaterials 2018, 8(3), 177; https://doi.org/10.3390/nano8030177
Received: 7 February 2018 / Revised: 8 March 2018 / Accepted: 16 March 2018 / Published: 20 March 2018
PDF Full-text (6387 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The high pollution levels in our cities are producing a significant increase of dust on buildings. An application of photoactive coatings on building materials can produce buildings with self-cleaning surfaces. In this study, we have developed a simple sol-gel route for producing Au-TiO
[...] Read more.
The high pollution levels in our cities are producing a significant increase of dust on buildings. An application of photoactive coatings on building materials can produce buildings with self-cleaning surfaces. In this study, we have developed a simple sol-gel route for producing Au-TiO2/SiO2 photocatalysts with application on buildings. The gold nanoparticles (AuNPs) improved the TiO2 photoactivity under solar radiation because they promoted absorption in the visible range. We varied the content of AuNPs in the sols under study, in order to investigate their effect on self-cleaning properties. The sols obtained were sprayed on a common building stone, producing coatings which adhere firmly to the stone and preserve their aesthetic qualities. We studied the decolourization efficiency of the photocatalysts under study against methylene blue and against soot (a real staining agent for buildings). Finally, we established that the coating with an intermediate Au content presented the best self-cleaning performance, due to the role played by its structure and texture on its photoactivity. Full article
Figures

Graphical abstract

Open AccessFeature PaperArticle Comparison of Branched and Linear Perfluoropolyether Chains Functionalization on Hydrophobic, Morphological and Conductive Properties of Multi-Walled Carbon Nanotubes
Nanomaterials 2018, 8(3), 176; https://doi.org/10.3390/nano8030176
Received: 14 February 2018 / Revised: 15 March 2018 / Accepted: 15 March 2018 / Published: 19 March 2018
PDF Full-text (7522 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The functionalization of multi-walled carbon nanotubes (MW-CNTs) was obtained by generating reactive perfluoropolyether (PFPE) radicals that can covalently bond to MW-CNTs’ surface. Branched and linear PFPE peroxides with equivalent molecular weights of 1275 and 1200 amu, respectively, have been thermally decomposed for the
[...] Read more.
The functionalization of multi-walled carbon nanotubes (MW-CNTs) was obtained by generating reactive perfluoropolyether (PFPE) radicals that can covalently bond to MW-CNTs’ surface. Branched and linear PFPE peroxides with equivalent molecular weights of 1275 and 1200 amu, respectively, have been thermally decomposed for the production of PFPE radicals. The functionalization with PFPE chains has changed the wettability of MW-CNTs, which switched their behavior from hydrophilic to super-hydrophobic. The low surface energy properties of PFPEs have been transferred to MW-CNTs surface and branched units with trifluoromethyl groups, CF3, have conferred higher hydrophobicity than linear units. Porosimetry discriminated the effects of PFPE functionalization on meso-porosity and macro-porosity. It has been observed that reactive sites located in MW-CNTs mesopores have been intensively functionalized by branched PFPE peroxide due to its low average molecular weight. Conductivity measurements at different applied pressures have showed that the covalent linkage of PFPE chains, branched as well as linear, weakly modified the electrical conductivity of MW-CNTs. The decomposed portions of PFPE residues, the PFPE chains bonded on carbon nanotubes, and the PFPE fluids obtained by homo-coupling side-reactions were evaluated by mass balances. PFPE-modified MW-CNTs have been characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), static contact angle (SCA), surface area, and porosity measurements. Full article
(This article belongs to the Special Issue Preparation and Application of Hybrid Nanomaterials)
Figures

Graphical abstract

Open AccessArticle Plasmonic Absorption Enhancement in Elliptical Graphene Arrays
Nanomaterials 2018, 8(3), 175; https://doi.org/10.3390/nano8030175
Received: 2 February 2018 / Revised: 15 March 2018 / Accepted: 15 March 2018 / Published: 19 March 2018
Cited by 3 | PDF Full-text (2551 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, we come up with a wavelength tunable absorber which is made up of periodically elliptical graphene arrays in the far-infrared and terahertz regions. Through simulation, we find that we can increase the length of long axis of the ellipse, raise
[...] Read more.
In this paper, we come up with a wavelength tunable absorber which is made up of periodically elliptical graphene arrays in the far-infrared and terahertz regions. Through simulation, we find that we can increase the length of long axis of the ellipse, raise the incidence angles of TM- and TE-polarization (TM- and TE-polarization indicate the direction of the incident electric field along the direction of the x and the y axis, respectively.) within certain limits, and increase the chemical potential of graphene, so as to enhance the absorption of light in the elliptical graphene arrays. We also compare the absorption spectra of the original structure and the complementary structure, and find that the absorption of the original structure is higher than that of the complementary structure. In the end, we study the changes in the absorption rate of the double layer structure of the elliptical array with the increase in the thickness of SiO2. The elliptical array structure can be applied to tunable spectral detectors, filters and sensors at far-infrared and terahertz wavelengths. Full article
Figures

Graphical abstract

Open AccessArticle Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity
Nanomaterials 2018, 8(3), 174; https://doi.org/10.3390/nano8030174
Received: 1 March 2018 / Revised: 14 March 2018 / Accepted: 15 March 2018 / Published: 19 March 2018
Cited by 1 | PDF Full-text (4653 KB) | HTML Full-text | XML Full-text
Abstract
(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are
[...] Read more.
(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Graphical abstract

Open AccessArticle The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization
Nanomaterials 2018, 8(3), 173; https://doi.org/10.3390/nano8030173
Received: 9 March 2018 / Revised: 14 March 2018 / Accepted: 14 March 2018 / Published: 19 March 2018
Cited by 1 | PDF Full-text (3214 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0
[...] Read more.
We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. Full article
Figures

Figure 1

Open AccessArticle Investigation on the Stability of Derivative Melam from Melamine Pyrolysis under High Pressure
Nanomaterials 2018, 8(3), 172; https://doi.org/10.3390/nano8030172
Received: 1 March 2018 / Revised: 16 March 2018 / Accepted: 16 March 2018 / Published: 18 March 2018
PDF Full-text (1386 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Although various kinds of carbon nitride precursors have been proposed, s-triazine-based structures are hardly reported because of their unfavorable energy, higher than that of heptazine-based ones. In this study, we investigate the thermal stability of s-triazine-based melam processed at a high pressure of
[...] Read more.
Although various kinds of carbon nitride precursors have been proposed, s-triazine-based structures are hardly reported because of their unfavorable energy, higher than that of heptazine-based ones. In this study, we investigate the thermal stability of s-triazine-based melam processed at a high pressure of 5 GPa and a temperature of 400–700 °C and complete the analyses of the composition and structure of the treated samples through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and elemental analyses (EA). Results show that melam can stably exist up to 600 °C at 5 GPa. XRD and FTIR analyses reveal that residual melamine can be pyrolyzed into melam as temperature increases from 400 °C to 600 °C at a high pressure, suggesting that melam may be purified through high-pressure pyrolysis. Further melam polymerization at a higher pressure is a promising strategy for the preparation of s-triazine-based carbon nitride precursors used for bulk carbon nitride synthesis. Full article
(This article belongs to the Special Issue Graphitic Carbon Nitride Nanostructures: Catalysis and Beyond)
Figures

Figure 1

Open AccessFeature PaperReview Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques
Nanomaterials 2018, 8(3), 171; https://doi.org/10.3390/nano8030171
Received: 24 February 2018 / Revised: 13 March 2018 / Accepted: 13 March 2018 / Published: 16 March 2018
PDF Full-text (4734 KB) | HTML Full-text | XML Full-text
Abstract
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing,
[...] Read more.
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. Full article
(This article belongs to the Special Issue Nanoporous Gold and Other Related Materials)
Figures

Figure 1

Open AccessArticle Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy
Nanomaterials 2018, 8(3), 170; https://doi.org/10.3390/nano8030170
Received: 23 January 2018 / Revised: 7 March 2018 / Accepted: 10 March 2018 / Published: 16 March 2018
Cited by 2 | PDF Full-text (10059 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization
[...] Read more.
Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine. Full article
Figures

Graphical abstract

Open AccessArticle Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection
Nanomaterials 2018, 8(3), 169; https://doi.org/10.3390/nano8030169
Received: 15 February 2018 / Revised: 12 March 2018 / Accepted: 14 March 2018 / Published: 16 March 2018
PDF Full-text (1580 KB) | HTML Full-text | XML Full-text
Abstract
Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are
[...] Read more.
Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS) matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water. Full article
(This article belongs to the Special Issue Design and Development of Nanostructured Thin Films)
Figures

Graphical abstract

Open AccessArticle Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes
Nanomaterials 2018, 8(3), 168; https://doi.org/10.3390/nano8030168
Received: 23 February 2018 / Revised: 2 March 2018 / Accepted: 14 March 2018 / Published: 16 March 2018
PDF Full-text (7291 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state
[...] Read more.
Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. Full article
(This article belongs to the Special Issue Supramolecular Nano-architectures)
Figures

Graphical abstract

Open AccessArticle A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin
Nanomaterials 2018, 8(3), 167; https://doi.org/10.3390/nano8030167
Received: 21 February 2018 / Revised: 12 March 2018 / Accepted: 13 March 2018 / Published: 15 March 2018
Cited by 2 | PDF Full-text (19004 KB) | HTML Full-text | XML Full-text
Abstract
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain
[...] Read more.
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirable multifunctionalities, such as coloaded high payloads, targeted delivery, hemodynamic stability, and also to ensure low drug leakage before reaching the tumor site, but simultaneously the corelease of drugs in the same cancer cell. Herein, we developed a facile modular coassembly approach to construct an all-in-one multifunctional multidrug delivery system for the synergistic codelivery of doxorubicin (DOX, chemotherapeutic agent) and curcumin (CUR, MDR modulator). The acid-cleavable PEGylated polymeric prodrug (DOX-h-PCEC), tumor cell-specific targeting peptide (CRGDK-PEG-PCL), and natural chemosensitizer (CUR) were ratiometrically assembled into in one single nanocarrier (CUR/DOX-h-PCEC@CRGDK NPs). The resulting CUR/DOX-h-PCEC@CRGDK NPs exhibited several desirable characteristics, such as efficient and ratiometric drug loading, high hemodynamic stability and low drug leakage, tumor intracellular acid-triggered cleavage, and subsequent intracellular simultaneous drug corelease, which are expected to maximize a synergistic effect of chemotherapy and chemosensitization. Collectively, the multifunctional nanocarrier is feasible for the creation of a robust nanoplatform for targeted multidrug codelivery and efficient MDR modulation. Full article
Figures

Figure 1

Open AccessArticle The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework
Nanomaterials 2018, 8(3), 166; https://doi.org/10.3390/nano8030166
Received: 21 February 2018 / Revised: 8 March 2018 / Accepted: 9 March 2018 / Published: 14 March 2018
PDF Full-text (9528 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous
[...] Read more.
To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs) to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols. Full article
Figures

Graphical abstract

Open AccessArticle The Effect of Laminin Surface Modification of Electrospun Silica Nanofiber Substrate on Neuronal Tissue Engineering
Nanomaterials 2018, 8(3), 165; https://doi.org/10.3390/nano8030165
Received: 12 February 2018 / Revised: 9 March 2018 / Accepted: 13 March 2018 / Published: 14 March 2018
Cited by 1 | PDF Full-text (6612 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, we first synthesized a slow-degrading silica nanofiber (SNF2) through an electrospun solution with an optimized tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP) ratio. Then, laminin-modified SNF2, namely SNF2-AP-S-L, was obtained through a series of chemical reactions to attach the extracellular
[...] Read more.
In this study, we first synthesized a slow-degrading silica nanofiber (SNF2) through an electrospun solution with an optimized tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP) ratio. Then, laminin-modified SNF2, namely SNF2-AP-S-L, was obtained through a series of chemical reactions to attach the extracellular matrix protein, laminin, to its surface. The SNF2-AP-S-L substrate was characterized by a combination of scanning electron microscopy (SEM), Fourier transform–infrared (FTIR) spectroscopy, nitrogen adsorption/desorption isotherms, and contact angle measurements. The results of further functional assays show that this substrate is a biocompatible, bioactive and biodegradable scaffold with good structural integrity that persisted beyond 18 days. Moreover, a synergistic effect of sustained structure support and prolonged biochemical stimulation for cell differentiation on SNF2-AP-S-L was found when neuron-like PC12 cells were seeded onto its surface. Specifically, neurite extensions on the covalently modified SNF2-AP-S-L were significantly longer than those observed on unmodified SNF and SNF subjected to physical adsorption of laminin. Together, these results indicate that the SNF2-AP-S-L substrate prepared in this study is a promising 3D biocompatible substrate capable of sustaining longer neuronal growth for tissue-engineering applications. Full article
(This article belongs to the Special Issue Functional Nanomaterials by Electrospinning)
Figures

Graphical abstract

Back to Top