Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires
Abstract
:1. Introduction
2. Experiments: Piezoelectricity Measurements on Horizontal Capacitive GaN Wires Devices
- What is the physical nature of the piezoelectric signal measured in these capacitive flexible devices based on horizontal GaN wires? What is the role of the size and shape of the wires and the role of the bending amplitude?
- What is the role of the wire density, orientation and interaction?
- What are the best wire features in terms of geometry and configuration to be used in the flexible capacity devices?
3. Finite Element Modelling of Piezo-Potential Generation in Single GaN Wires
3.1. Method: Geometry and Physical Parameters
3.2. Method: Bending Deformation and Potential Generation
3.3. Potential Generation Dependence as a Function of Wire Length at Fixed Conicity
3.4. Potential Generation Dependence as a Function of Wire Conicity at Fixed Length
4. Finite-Element Modelling of the Complete Capacitive Stacking with Metallic Contacts and Wire Assemblies
4.1. Method: Simulated Structure and Calculation of Periodic Boundary Conditions
4.2. Screening of Electric Fields in a One-Dimensional Network
4.3. Screening of Piezoelectric Fields in a Two-Dimensional Network
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L.F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B.J.; Gösele, U.; et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28–35. [Google Scholar] [CrossRef]
- Messanvi, A.; Zhang, H.; Neplokh, V.; Julien, F.H.; Bayle, F.; Foldyna, M.; Bougerol, C.; Gautier, E.; Babichev, A.; Durand, C.; et al. Investigation of Photovoltaic Properties of Single Core-Shell GaN/InGaN Wires. ACS Appl. Mater. Interfaces 2015, 7, 21898–21906. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Messanvi, A.; Zhang, H.; Durand, C.; Eymery, J.; Bougerol, C.; Julien, F.H.; Tchernycheva, M. Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. Nano Lett. 2015, 15, 6958–6964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacopin, G.; De Luna Bugallo, A.; Lavenus, P.; Rigutti, L.; Julien, F.H.; Zagonel, L.F.; Kociak, M.; Durand, C.; Salomon, D.; Chen, X.J.; et al. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Appl. Phys. Express 2012, 5, 014101. [Google Scholar] [CrossRef]
- Chang, S.; Hsueh, T.; Chen, I.; Hsieh, S.; Chang, S.; Hsu, C.; Lin, Y.; Huang, B. Highly Sensitive ZnO Nanowire Acetone Vapor Sensor with Au Adsorption. IEEE Trans. Nanotechnol. 2008, 7, 754–759. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722. [Google Scholar] [CrossRef] [PubMed]
- Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28. [Google Scholar] [CrossRef]
- Su, W.S.; Chen, Y.F.; Hsiao, C.L.; Tu, L.W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl. Phys. Lett. 2007, 90, 063110. [Google Scholar] [CrossRef]
- Wang, Z.L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567. [Google Scholar] [CrossRef]
- Hinchet, R.; Ferreira, J.; Keraudy, J.; Ardila, G.; Pauliac-Vaujour, E.; Mouis, M.; Montès, L. Scaling rules of piezoelectric nanowires in view of sensor and energy harvester integration. In Proceedings of the 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; Volume 6, pp. 119–122. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, R.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y.; Xu, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng. Rep. 2010, 70, 320–329. [Google Scholar] [CrossRef]
- Huang, C.; Song, J.; Lee, W.; Ding, Y.; Gao, Z. GaN Nanowire Arrays for High-Output Nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766–4771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Yang, R.; Wang, S.; Wang, Z.L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R.L.; Wang, Z.L. Self-Powered System with Wireless Data Transmission. Nano Lett. 2011, 11, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2016, 10, 013001. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hinchet, R.; Lee, Y.; Yang, Y.; Lin, Z.-H.; Ardila, G.; Montès, L.; Mouis, M.; Wang, Z.L. Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion. Adv. Funct. Mater. 2014, 24, 1163–1168. [Google Scholar] [CrossRef]
- Tao, R.; Hinchet, R.; Ardila, G.; Mouis, M. Evaluation of Vertical Integrated Nanogenerator Performances in Flexion. J. Phys. Conf. Ser. 2013, 476, 012006. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lai, C.-H.; Hu, Y.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R.L.; Chen, L.-J.; Wang, Z.L. High output nanogenerator based on assembly of GaN nanowires. Nanotechnology 2011, 22, 475401. [Google Scholar] [CrossRef] [PubMed]
- Jamond, N.; Chrétien, P.; Houzé, F.; Lu, L.; Largeau, L.; Maugain, O.; Travers, L.; Harmand, J.C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N. Piezo-generator integrating a vertical array of GaN nanowires. Nanotechnology 2016, 27, 325403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogneau, N.; Jamond, N.; Chrétien, P.; Houzé, F.; Lefeuvre, E.; Tchernycheva, M. From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics. Semicond. Sci. Technol. 2016, 31, 103002. [Google Scholar] [CrossRef] [Green Version]
- Eymery, J.; Chen, X.; Durand, C.; Kolb, M.; Richter, G. Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers. Comptes Rend. Phys. 2013, 14, 221–227. [Google Scholar] [CrossRef]
- El Kacimi, A.; Pauliac-Vaujour, E.; Eymery, J. Flexible Capacitive Piezoelectric Sensor with Vertically Aligned Ultralong GaN Wires. ACS Appl. Mater. Interfaces 2018, 10, 4794–4800. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.P.; Gates, B.D. Directed assembly of nanowires. Mater. Today 2009, 12, 34–43. [Google Scholar] [CrossRef]
- Salomon, S.; Eymery, J.; Pauliac-Vaujour, E. GaN wire-based Langmuir-Blodgett films for self-powered flexible strain sensors. Nanotechnology 2014, 25, 375502. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Y.; Xu, C.; Zhu, G.; Wang, Z.L. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010, 10, 5025–5031. [Google Scholar] [CrossRef] [PubMed]
- Delléa, O.; Lebaigue, O. Boostream: A dynamic fluid flow process to assemble nanoparticles at liquid interface. Mech. Ind. 2017, 18, 602. [Google Scholar] [CrossRef]
- Zhao, Z.; Pu, X.; Han, C.; Du, C.; Li, L.; Jiang, C.; Hu, W.; Wang, Z.L. Piezotronic Effect in Polarity-Controlled GaN Nanowires. ACS Nano 2015, 9, 8578–8583. [Google Scholar] [CrossRef] [PubMed]
- Gogneau, N.; Chrétien, P.; Galopin, E.; Guilet, S.; Travers, L.; Harmand, J.-C.; Houzé, F. Impact of the GaN nanowire polarity on energy harvesting. Appl. Phys. Lett. 2014, 104, 213105. [Google Scholar] [CrossRef]
- Koester, R.; Hwang, J.S.; Durand, C.; Le Si Dang, D.; Eymery, J. Self-assembled growth of catalyst-free GaN wires by metal-organic vapour phase epitaxy. Nanotechnology 2010, 21, 015602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, C.; Chowdhury, R.; Adhikari, S. Size- and temperature-dependent piezoelectric properties of gallium nitride nanowires. Scr. Mater. 2013, 68, 627–630. [Google Scholar] [CrossRef]
- Minary-jolandan, M.; Bernal, R.A.; Kuljanishvili, I.; Parpoil, V.; Espinosa, H.D. Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D. Nano Lett. 2012, 12, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Espinosa, H.D. Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation. Nano Lett. 2011, 11, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III−V nitrides. Phys. Rev. B 1997, 56, R10024–R10027. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Kacimi, A.; Pauliac-Vaujour, E.; Delléa, O.; Eymery, J. Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires. Nanomaterials 2018, 8, 426. https://doi.org/10.3390/nano8060426
El Kacimi A, Pauliac-Vaujour E, Delléa O, Eymery J. Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires. Nanomaterials. 2018; 8(6):426. https://doi.org/10.3390/nano8060426
Chicago/Turabian StyleEl Kacimi, Amine, Emmanuelle Pauliac-Vaujour, Olivier Delléa, and Joël Eymery. 2018. "Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires" Nanomaterials 8, no. 6: 426. https://doi.org/10.3390/nano8060426
APA StyleEl Kacimi, A., Pauliac-Vaujour, E., Delléa, O., & Eymery, J. (2018). Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires. Nanomaterials, 8(6), 426. https://doi.org/10.3390/nano8060426