Previous Issue

Table of Contents

Nanomaterials, Volume 8, Issue 6 (June 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-90
Export citation of selected articles as:
Open AccessArticle Hydrophilic Chlorin e6-Poly(amidoamine) Dendrimer Nanoconjugates for Enhanced Photodynamic Therapy
Nanomaterials 2018, 8(6), 445; https://doi.org/10.3390/nano8060445 (registering DOI)
Received: 24 May 2018 / Revised: 11 June 2018 / Accepted: 15 June 2018 / Published: 18 June 2018
PDF Full-text (4875 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In photodynamic therapy (PDT), chlorin e6 (Ce6), with its high phototoxic potential and strong absorption of visible light, penetrates deeply into photodamaged tissue. However, despite this fact, the direct application of Ce6 to PDT has been limited by its low water solubility and
[...] Read more.
In photodynamic therapy (PDT), chlorin e6 (Ce6), with its high phototoxic potential and strong absorption of visible light, penetrates deeply into photodamaged tissue. However, despite this fact, the direct application of Ce6 to PDT has been limited by its low water solubility and poor cancer cell localization. To ameliorate this situation, we report herein on the use of a hydrophilic nanoconjugate (DC) comprised of Ce6 and poly(amidoamine) dendrimer, which improves the water solubility and intracellular uptake of Ce6, thereby enhancing PDT efficacy. The synthesis of DC was verified by 1H nuclear magnetic resonance (NMR) analysis, and the coupling ratio of Ce6 introduced onto DC was 2.64. The prepared DC was spherical, with an average diameter of 61.7 ± 3.5 nm. In addition, the characteristic ultraviolet-visible absorption bands of DC in distilled water were similar to those of free Ce6 in dimethyl sulfoxide (DMSO), indicating that the Ce6 chromophore did not change upon conjugation. Investigation using fluorescence spectroscopy and confocal microscopy revealed a greater intracellular uptake of DC than of Ce6 alone. Moreover, DC exhibited significantly increased phototoxicity to human cervical cancer cells, mostly because of apoptotic cell death. These results imply that DC is a candidate for the clinical treatment of PDT. Full article
Figures

Graphical abstract

Open AccessArticle In Situ Synthesis of Ag@Cu2O-rGO Architecture for Strong Light-Matter Interactions
Nanomaterials 2018, 8(6), 444; https://doi.org/10.3390/nano8060444 (registering DOI)
Received: 10 May 2018 / Revised: 11 June 2018 / Accepted: 12 June 2018 / Published: 17 June 2018
PDF Full-text (4385 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Emerging opportunities based on two-dimensional (2D) layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu2O-rGO, where the reduced graphene oxide (rGO) 2D acting as
[...] Read more.
Emerging opportunities based on two-dimensional (2D) layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu2O-rGO, where the reduced graphene oxide (rGO) 2D acting as a platform is uniformly decorated by Ag@Cu2O core-shell nanoparticles. Cu2O nanoparticles occupy the defect positions on the surface of the rGO platform and restore the conjugation of the rGO structure, which contributes to the significant decrease of the ID/IG intensity ratio. The rGO platform can not only bridge the isolated nanoparticles together but also can quickly transfer the free electrons arising from the Ag core to the Cu2O shell to improve the utilization efficiency of photogenerated electrons, as is verified by high efficient photocatalytic activity of Methyl Orange (MO). The multi-interface coupling of the Ag@Cu2O-rGO platform-core-shell nanostructure leads to the decrease of the bandgap with an increase of the Cu2O shell thickness, which broadens the absorption range of the visible light spectrum. Full article
Figures

Graphical abstract

Open AccessCommunication Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On–Off–On Fluorescent Sensors to Detect Fe(III) and Biothiols
Nanomaterials 2018, 8(6), 443; https://doi.org/10.3390/nano8060443 (registering DOI)
Received: 28 May 2018 / Revised: 14 June 2018 / Accepted: 14 June 2018 / Published: 17 June 2018
PDF Full-text (3571 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
On–off–on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment.
[...] Read more.
On–off–on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment. The obtained N-CNPs showed good photoluminescent properties and excellent water dispersibility. Thus, they were applied as fluorescence “on–off–on” probes for the detection of Fe(III) and biothiols. The “on–off” process was achieved by adding Fe(III) into N-CNP solution, which resulted in the selective fluorescence quenching, with the detection limit of 0.20 μM in the linear range of 1–500 μM. Following this, the introduction of biothiols could recover the fluorescence efficiently, in order to realize the “off–on” process. By using glutathione (GSH) as the representative, the linear range was in the range of 1–1000 μM, and the limit of detection was 0.13 μM. Moreover, this useful strategy was successfully applied for the determination of amounts of GSH in fetal calf serum samples. Full article
(This article belongs to the Special Issue Nanostructured Biosensors)
Figures

Figure 1

Open AccessArticle Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies
Nanomaterials 2018, 8(6), 442; https://doi.org/10.3390/nano8060442 (registering DOI)
Received: 15 May 2018 / Revised: 11 June 2018 / Accepted: 13 June 2018 / Published: 16 June 2018
PDF Full-text (3981 KB) | HTML Full-text | XML Full-text
Abstract
Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of,
[...] Read more.
Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Nanowires)
Figures

Figure 1

Open AccessArticle Synthesis of Magnetic Wood Fiber Board and Corresponding Multi-Layer Magnetic Composite Board, with Electromagnetic Wave Absorbing Properties
Nanomaterials 2018, 8(6), 441; https://doi.org/10.3390/nano8060441 (registering DOI)
Received: 25 May 2018 / Revised: 12 June 2018 / Accepted: 14 June 2018 / Published: 16 June 2018
PDF Full-text (5555 KB) | HTML Full-text | XML Full-text
Abstract
With the rapid growth in the use of wireless electronic devices, society urgently needs electromagnetic wave (EMW) absorbing material with light weight, thin thickness, wide effective absorbing band width, and strong absorption capacity. Herein, the multi-layer magnetic composite boards are fabricated by hot-pressing
[...] Read more.
With the rapid growth in the use of wireless electronic devices, society urgently needs electromagnetic wave (EMW) absorbing material with light weight, thin thickness, wide effective absorbing band width, and strong absorption capacity. Herein, the multi-layer magnetic composite boards are fabricated by hot-pressing magnetic fiber boards and normal veneer layer-by-layer. The magnetic fibers obtained using in-situ chemical co-precipitation are used to fabricate magnetic fiber board by hot-pressing. The magnetic wave absorbing capacities of the magnetic fiber boards obtained with 72 h impregnation time exhibit strongest adsorption capacities of −51.01 dB with a thickness of 3.00 mm. It is proved that this outstanding EMW absorption property is due to the strongest dielectric loss, the optimal magnetic loss, and the dipole relaxation polarization. Meanwhile, the EMW absorbing capacities of the corresponding multi-layer composite magnetic board increases from −14.14 dB (3-layer) to −60.16 dB (7-layer). This is due to the generated multi-interfaces between magnetic fiber board and natural wood veneer in the EMW propagation direction, which significantly benefit multireflection and attenuation of the incident waves. The results obtained in this work indicate that natural wood fibers are of great potential in the fabrication of magnetic multi-layer boards treated as EMW absorbers via a low cost, green, and scalable method. Full article
Figures

Graphical abstract

Open AccessArticle Hazy Al2O3-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S:TiO2 Nanostructures
Nanomaterials 2018, 8(6), 440; https://doi.org/10.3390/nano8060440 (registering DOI)
Received: 22 May 2018 / Revised: 12 June 2018 / Accepted: 15 June 2018 / Published: 16 June 2018
PDF Full-text (5128 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites
[...] Read more.
In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites integrating ZnO and sulfur doped TiO2 (S:TiO2) nanoparticles (i.e., ZnO-FTO and S:TiO2-FTO nanocomposites), the newly developed Al2O3-FTO nanocomposites show medium haze factor HT of about 30%, while they exhibit the least loss in total transmittance Ttot. In addition, Al2O3-FTO nanocomposites present a low fraction of large-sized nanoparticle agglomerates with equivalent radius req > 1 μm; effectively 90% of the nanoparticle agglomerates show req < 750 nm. The smaller feature size in Al2O3-FTO nanocomposites, as compared to ZnO-FTO and S:TiO2-FTO nanocomposites, makes them more suitable for applications that are sensitive to roughness and large-sized features. With the help of a simple optical model developed in this work, we have simulated the optical scattering by a single nanoparticle agglomerate characterized by bottom radius r0, top radius r1, and height h. It is found that r0 is the main factor affecting the HT(λ), which indicates that the haze factor of Al2O3-FTO and related FTO nanocomposites is mainly determined by the total surface coverage of all the nanoparticle agglomerates present. Full article
Figures

Figure 1

Open AccessShort Note Time-Dependent Growth of Silica Shells on CdTe Quantum Dots
Nanomaterials 2018, 8(6), 439; https://doi.org/10.3390/nano8060439 (registering DOI)
Received: 24 May 2018 / Revised: 11 June 2018 / Accepted: 14 June 2018 / Published: 16 June 2018
PDF Full-text (1813 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO2 QDs) were synthesized by the Ströber process,
[...] Read more.
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO2 QDs) were synthesized by the Ströber process, which used CdTe QDs co-stabilized by mercaptopropionic acid. The coating procedure used silane primer (3-mercaptopropyltrimethoxysilane) in order to make the quantum dots (QDs) surface vitreophilic. The total size of QDs was dependent on both the time of silica shell growth in the presence of sodium silicate, and on the presence of ethanol during this growth. The size of particles was monitored during the first 72 h using two principally different methods: Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). The data obtained by both methods were compared and reasons for differences discussed. Without ethanol precipitation, the silica shell thickness grew slowly and increased the nanoparticle total size from approximately 23 nm up to almost 30 nm (DLS data), and up to almost 60 nm (SEM data) in three days. During the same time period but in the presence of ethanol, the size of CdTe/SiO2 QDs increased more significantly: up to 115 nm (DLS data) and up to 83 nm (SEM data). The variances occurring between silica shell thicknesses caused by different methods of silica growth, as well as by different evaluation methods, were discussed. Full article
(This article belongs to the Special Issue Preparation, Characterization and Utility of Quantum Dots)
Figures

Graphical abstract

Open AccessArticle Functionalized Tyrosinase-Lignin Nanoparticles as Sustainable Catalysts for the Oxidation of Phenols
Nanomaterials 2018, 8(6), 438; https://doi.org/10.3390/nano8060438
Received: 22 May 2018 / Revised: 12 June 2018 / Accepted: 14 June 2018 / Published: 15 June 2018
PDF Full-text (3121 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Sustainable catalysts for the oxidation of phenol derivatives under environmentally friendly conditions were prepared by the functionalization of lignin nanoparticles with tyrosinase. Lignin, the most abundant polyphenol in nature, is the main byproduct in the pulp and paper manufacturing industry and biorefinery. Tyrosinase
[...] Read more.
Sustainable catalysts for the oxidation of phenol derivatives under environmentally friendly conditions were prepared by the functionalization of lignin nanoparticles with tyrosinase. Lignin, the most abundant polyphenol in nature, is the main byproduct in the pulp and paper manufacturing industry and biorefinery. Tyrosinase has been immobilized by direct adsorption, encapsulation, and layer-by-layer deposition, with or without glutaraldehyde reticulation. Lignin nanoparticles were found to be stable to the tyrosinase activity. After the enzyme immobilization, they showed a moderate to high catalytic effect in the synthesis of catechol derivatives, with the efficacy of the catalyst being dependent on the specific immobilization procedures. Full article
Figures

Graphical abstract

Open AccessFeature PaperArticle Stable and High Piezoelectric Output of GaN Nanowire-Based Lead-Free Piezoelectric Nanogenerator by Suppression of Internal Screening
Nanomaterials 2018, 8(6), 437; https://doi.org/10.3390/nano8060437
Received: 30 April 2018 / Revised: 4 June 2018 / Accepted: 11 June 2018 / Published: 14 June 2018
PDF Full-text (2981 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A piezoelectric nanogenerator (PNG) that is based on c-axis GaN nanowires is fabricated on flexible substrate. In this regard, c-axis GaN nanowires were grown on GaN substrate using the vapor-liquid-solid (VLS) technique by metal organic chemical vapor deposition. Further, Polydimethylsiloxane (PDMS) was coated
[...] Read more.
A piezoelectric nanogenerator (PNG) that is based on c-axis GaN nanowires is fabricated on flexible substrate. In this regard, c-axis GaN nanowires were grown on GaN substrate using the vapor-liquid-solid (VLS) technique by metal organic chemical vapor deposition. Further, Polydimethylsiloxane (PDMS) was coated on nanowire-arrays then PDMS matrix embedded with GaN nanowire-arrays was transferred on Si-rubber substrate. The piezoelectric performance of nanowire-based flexible PNG was measured, while the device was actuated using a cyclic stretching-releasing agitation mechanism that was driven by a linear motor. The piezoelectric output was measured as a function of actuation frequency ranging from 1 Hz to 10 Hz and a linear tendency was observed for piezoelectric output current, while the output voltages remained constant. A maximum of piezoelectric open circuit voltages and short circuit current were measured 15.4 V and 85.6 nA, respectively. In order to evaluate the feasibility of our flexible PNG for real application, a long term stability test was performed for 20,000 cycles and the device performance was degraded by less than 18%. The underlying reason for the high piezoelectric output was attributed to the reduced free carriers inside nanowires due to surface Fermi-level pinning and insulating metal-dielectric-semiconductor interface, respectively; the former reduced the free carrier screening radially while latter reduced longitudinally. The flexibility and the high aspect ratio of GaN nanowire were the responsible factors for higher stability. Such higher piezoelectric output and the novel design make our device more promising for the diverse range of real applications. Full article
(This article belongs to the Special Issue 1D Nanostructure-Based Piezo-Generators)
Figures

Figure 1

Open AccessArticle Ag Nanotwin-Assisted Grain Growth-Induced by Stress in SiO2/Ag/SiO2 Nanocap Arrays
Nanomaterials 2018, 8(6), 436; https://doi.org/10.3390/nano8060436
Received: 1 June 2018 / Revised: 12 June 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
PDF Full-text (1626 KB) | HTML Full-text | XML Full-text
Abstract
A trilayer SiO2/Ag/SiO2 nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO2/Ag/SiO2 nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO
[...] Read more.
A trilayer SiO2/Ag/SiO2 nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO2/Ag/SiO2 nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO2 layer induced the formation of Ag nanotwins. Ag nanotwins assisted the growth of nanoparticles when the neighboring nanotwins changed the local misorientations. Nanocap shrinkage reduced the surface plasmon resonance (SPR) coupling between neighboring nanocaps; concurrently, grain growth decreased the SPR coupling between the particles in each nanocap, which led to a red shift of the localized surface plasmon resonance (LSPR) bands and decreased the surface-enhanced Raman scattering (SERS) signals. Full article
Figures

Graphical abstract

Open AccessArticle Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries
Nanomaterials 2018, 8(6), 435; https://doi.org/10.3390/nano8060435
Received: 16 May 2018 / Revised: 11 June 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
PDF Full-text (4272 KB) | HTML Full-text | XML Full-text
Abstract
In this work, new gelled electrolytes were prepared based on a mixture containing phosphonium ionic liquid (IL) composed of trihexyl(tetradecyl)phosphonium cation combined with bis(trifluoromethane)sulfonimide [TFSI] counter anions and lithium salt, confined in a host network made from an epoxy prepolymer and amine hardener.
[...] Read more.
In this work, new gelled electrolytes were prepared based on a mixture containing phosphonium ionic liquid (IL) composed of trihexyl(tetradecyl)phosphonium cation combined with bis(trifluoromethane)sulfonimide [TFSI] counter anions and lithium salt, confined in a host network made from an epoxy prepolymer and amine hardener. We have demonstrated that the addition of electrolyte plays a key role on the kinetics of polymerization but also on the final properties of epoxy networks, especially thermal, thermo-mechanical, transport, and electrochemical properties. Thus, polymer electrolytes with excellent thermal stability (>300 °C) combined with good thermo-mechanical properties have been prepared. In addition, an ionic conductivity of 0.13 Ms·cm−1 at 100 °C was reached. Its electrochemical stability was 3.95 V vs. Li0/Li+ and the assembled cell consisting in Li|LiFePO4 exhibited stable cycle properties even after 30 cycles. These results highlight a promising gelled electrolyte for future lithium ion batteries. Full article
Figures

Graphical abstract

Open AccessArticle Applications of Nanomaterials Based on Magnetite and Mesoporous Silica on the Selective Detection of Zinc Ion in Live Cell Imaging
Nanomaterials 2018, 8(6), 434; https://doi.org/10.3390/nano8060434
Received: 7 May 2018 / Revised: 24 May 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
PDF Full-text (6345 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Functionalized magnetite nanoparticles (FMNPs) and functionalized mesoporous silica nanoparticles (FMSNs) were synthesized by the conjugation of magnetite and mesoporous silica with the small and fluorogenic benzothiazole ligand, that is, 2(2-hydroxyphenyl)benzothiazole (hpbtz). The synthesized fluorescent nanoparticles were characterized by FTIR, XRD, XRF,
[...] Read more.
Functionalized magnetite nanoparticles (FMNPs) and functionalized mesoporous silica nanoparticles (FMSNs) were synthesized by the conjugation of magnetite and mesoporous silica with the small and fluorogenic benzothiazole ligand, that is, 2(2-hydroxyphenyl)benzothiazole (hpbtz). The synthesized fluorescent nanoparticles were characterized by FTIR, XRD, XRF, 13C CP MAS NMR, BET, and TEM. The photophysical behavior of FMNPs and FMSNs in ethanol was studied using fluorescence spectroscopy. The modification of magnetite and silica scaffolds with the highly fluorescent benzothiazole ligand enabled the nanoparticles to be used as selective and sensitive optical probes for zinc ion detection. Moreover, the presence of hpbtz in FMNPs and FMSNs induced efficient cell viability and zinc ion uptake, with desirable signaling in the normal human kidney epithelial (Hek293) cell line. The significant viability of FMNPs and FMSNs (80% and 92%, respectively) indicates a potential applicability of these nanoparticles as in vitro imaging agents. The calculated limit of detections (LODs) were found to be 2.53 × 10−6 and 2.55 × 10−6 M for Fe3O4-H@hpbtz and MSN-Et3N-IPTMS-hpbtz-f1, respectively. FMSNs showed more pronounced zinc signaling relative to FMNPs, as a result of the more efficient penetration into the cells. Full article
(This article belongs to the Special Issue Nanostructured Biosensors)
Figures

Graphical abstract

Open AccessArticle Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System
Nanomaterials 2018, 8(6), 433; https://doi.org/10.3390/nano8060433
Received: 11 May 2018 / Revised: 1 June 2018 / Accepted: 5 June 2018 / Published: 14 June 2018
PDF Full-text (1970 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding
[...] Read more.
The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials. Full article
(This article belongs to the Special Issue Pharmaceutical Nanotechnology)
Figures

Figure 1

Open AccessArticle Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers
Nanomaterials 2018, 8(6), 432; https://doi.org/10.3390/nano8060432
Received: 30 April 2018 / Revised: 7 June 2018 / Accepted: 10 June 2018 / Published: 13 June 2018
PDF Full-text (3669 KB) | HTML Full-text | XML Full-text
Abstract
Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto
[...] Read more.
Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2) electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support. Full article
(This article belongs to the Special Issue Graphitic Carbon Nitride Nanostructures: Catalysis and Beyond)
Figures

Graphical abstract

Open AccessArticle Preparation of TiO2/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B
Nanomaterials 2018, 8(6), 431; https://doi.org/10.3390/nano8060431
Received: 17 May 2018 / Revised: 10 June 2018 / Accepted: 11 June 2018 / Published: 13 June 2018
PDF Full-text (3491 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this report, ternary titanium dioxide (TiO2)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman
[...] Read more.
In this report, ternary titanium dioxide (TiO2)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance was tested by the degradation efficiency of RhB under UV-vis light irradiation. The experimental results indicated that photocatalytic activity improved as the ratio of CNTs:TiO2 ranged from 0.5% to 3% but reduced when the content increased to 5% and 10%, and the TiO2/CNTs/rGO-3% composites showed superior photocatalytic activity compared with the binary ones (i.e., TiO2/CNTs, TiO2/rGO) and pristine TiO2. The rate constant k of the pseudo first-order reaction was about 1.5 times that of TiO2. The improved photocatalytic activity can be attributed to the addition of rGO and CNTs, which reduced the recombination of photo-induced electron-hole pairs, and the fact that CNTs and rGO, with a high specific surface area and high adsorption ability to efficiently adsorb O2, H2O and organics, can increase the hydroxyl content of the photocatalyst surface. Full article
Figures

Graphical abstract

Back to Top