Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Selection and Preparation
2.2. Scanning Electron Microscopy
2.3. Microstructures of Fiber Layers
2.4. Microstructure of the Honeycombs
3. Beetle-Based BHS
3.1. Structural Crashworthiness Criteria
3.2. The Design of BHSs
3.3. Mechanical Behavior of the BHS’s Material
4. Numerical Simulations
4.1. Finite Element Modeling
4.2. Validation of the FE Model
4.3. Comparison of Energy Absorption Properties of BHS-1 with Different Filling Cell Size
4.4. Comparison of Energy Aabsorption Characteristics of BHS-2 with Different Filling Cell Size
4.5. Comparison of Energy Absorption Properties of BHSs with Different Impact Velocity
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zohrabi, M.; Niknejad, A.; Ziaee, S. A novel method for enhancing energy absorption capability by thin-walled sections during the flattening process. Thin Walled Struct. 2015, 97, 140–153. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Zhu, J.; Gao, Y.; Nie, L.; Li, W. A new method to investigate the energy absorption characteristics of thin-walled metal circular tube using finite element analysis. Thin Walled Struct. 2015, 95, 24–30. [Google Scholar] [CrossRef]
- Darvizeh, A.; Darvizeh, M.; Ansari, R.; Meshkinzar, A. Analytical and experimental investigations into the controlled energy absorption characteristics of thick-walled tubes with circumferential grooves. J. Mech. Sci. Technol. 2014, 28, 4199–4212. [Google Scholar] [CrossRef]
- Zhang, X.; Huh, H. Energy absorption of longitudinally grooved square tubes under axial compression. Thin Walled Struct. 2009, 47, 1469–1477. [Google Scholar] [CrossRef]
- Najafi, A.; Marin, E.B.; Rais-Rohani, M. Concurrent multi-scale crush simulations with a crystal plasticity model. Thin Walled Struct. 2012, 53, 176–187. [Google Scholar] [CrossRef]
- Haghi, M.; Shahsavari, H.; Akbarshahi, H.; Shakeri, M. Bitubular square tubes with different arrangements under quasi-static axial compression loading. Mater. Des. 2013, 51, 1095–1103. [Google Scholar] [CrossRef]
- Alavi, A.; Badnava, H.; Fallah, K. An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes. Mater. Des. 2011, 32, 3594–3607. [Google Scholar] [CrossRef]
- Rouzegar, J.; Assaee, H.; Niknejad, A.; Elahi, S. Geometrical discontinuities effects on lateral crushing and energy absorption of tubular structures. Mater. Des. 2015, 65, 343–359. [Google Scholar] [CrossRef]
- Smith, D.; Graciano, C.; Martínez, G.; Teixeira, P. Axial crushing of flattened expanded metal tubes. Thin Walled Struct. 2014, 85, 42–49. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, Z.; Zhang, H. Axial crushing and optimal design of square tubes with graded thickness. Thin Walled Struct. 2014, 84, 263–274. [Google Scholar] [CrossRef]
- Niknejad, A.; Abedi, M.; Liaghat, G.; Nejad, M. Absorbed energy by foam-filled quadrangle tubes during the crushing process by considering the interaction effects. Arch. Civ. Mech. Eng. 2015, 15, 376–391. [Google Scholar] [CrossRef]
- Azarakhsh, S.; Rahi, A.; Ghamarian, A.; Motamedi, H. Axial crushing analysis of empty and foam-filled brass bitubular cylinder tubes. Thin Walled Struct. 2015, 95, 60–72. [Google Scholar] [CrossRef]
- Chiu, L.; Falzon, B.; Ruan, D.; Xu, S.; Thomson, R.; Chen, B.; Yan, W. Crush responses of composite cylinder under quasi-static and dynamic loading. Compos. Struct. 2015, 131, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Shariatpanahi, M.; Masoumi, A.; Ataei, A. Optimum design of partially tapered rectangular thin-walled tubes in axial crushing. J. Eng. Manuf. 2008, 222, 285–291. [Google Scholar] [CrossRef]
- Niknejad, A.; Elahi, S.; Elahi, S.; Elahi, S. Theoretical and experimental study on the flattening deformation of the rectangular brazen and aluminum columns. Arch. Civ. Mech. Eng. 2013, 13, 449–464. [Google Scholar] [CrossRef]
- Abedi, M.; Niknejad, A.; Liaghat, G.; Nejad, M. Theoretical and experimental study on empty and foam-filled columns with square and rectangular cross section under axial compression. Int. J. Mech. Sci. 2012, 65, 134–146. [Google Scholar] [CrossRef]
- Nia, A.; Hamedani, J. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin Walled Struct. 2010, 48, 946–954. [Google Scholar]
- Zhang, X.; Zhang, H. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements. Thin Walled Struct. 2012, 57, 25–36. [Google Scholar] [CrossRef]
- Mahmoudabadi, M.; Sadighi, M. A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb—Theoretical and experimental. Mater. Sci. Eng. A 2011, 530, 333–343. [Google Scholar] [CrossRef]
- Guler, M.; Cerit, M.; Bayram, B.; Gerceker, B.; Karakaya, E. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. Int. J. Crashworthines 2018, 15, 377–390. [Google Scholar] [CrossRef]
- Ghamarian, A.; Zarei, H.; Farsi, M.; Ariaeifar, N. Experimental and Numerical Crashworthiness Investigation of the Empty and Foam-Filled Conical Tube with Shallow Spherical Caps. Strain 2013, 49, 199–211. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, G.; Liu, K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 2013, 55, 80–89. [Google Scholar] [CrossRef]
- Paz, J.; Díaz, J.; Romera, L.; Costas, M. Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices. Finite Elem. Anal. Des. 2014, 91, 30–39. [Google Scholar] [CrossRef]
- Bollen, P.; Quievy, N.; Detrembleur, C.; Thomassin, J.; Monnereau, L.; Bailly, C.; Huynen, I.; Pardoen, T. Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb. Mater. Des. 2016, 89, 323–334. [Google Scholar] [CrossRef]
- Mozafari, H.; Khatami, S.; Molatefi, H. Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress–Numerical study. Mater. Des. 2015, 66, 400–411. [Google Scholar] [CrossRef]
- Xie, B.; Cheng, W.; Xu, Z. Studies on the effect of shape-stabilized PCM filled aluminum honeycomb composite material on thermal control. Int. J. Heat Mass Transf. 2015, 91, 135–143. [Google Scholar] [CrossRef]
- Baroutaji, A.; Gilchrist, M.; Smyth, D.; Olabi, A. Analysis and optimization of sandwich tubes energy absorbers under lateral loading. Int. J. Impact Eng. 2015, 82, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Nagasankar, P.; Prabu, S.; Velmurugan, R. Role of different fiber orientations and thicknesses of the skins and the core on the transverse shear damping of polypropylene honeycomb sandwich structures. Mech. Mater. 2015, 91, 252–261. [Google Scholar] [CrossRef]
- Zaheri, A.; Restrepo, D.; Daly, M.; Wang, D. Revealing the mechenics of helicoidal composites through additive manufacturing and beetle developmental stage analysis. Adv. Funct. Mater. 2018. [Google Scholar] [CrossRef]
- Vural, M.; Ravichandran, G. Microstructural aspects and modeling of failure in naturally occurring porous composites. Mech. Mater. 2015, 35, 523–536. [Google Scholar] [CrossRef]
- Koohbor, B.; Ravindran, S.; Kidane, A. Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading. Mech. Mater. 2018, 116, 67–76. [Google Scholar] [CrossRef]
- Chen, J.; Wu, G. Beetle forewings: Epitome of the optimal design for lightweight composite materials. Carbohydr. Polym. 2013, 91, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Du, J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater. Sci. Eng. A 2017, 696, 283–289. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J.; Li, D.; Scarpa, F. Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra. J. Mater. Sci. 2017, 52, 13247–13260. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J.; Li, D.; Zhen, C. Functional morphology and structural characteristics of wings of the ladybird beetle, Coccinella septempunctata (L.). Microsc. Res. Tech. 2016, 79, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Du, J. Mechanical properties of bio-mimetic energy-absorbing materials under impact loading. J. Mater. Sci. 2018, 53, 3189–3197. [Google Scholar] [CrossRef]
- Audysho, R.; Smith, R.; Altenhof, W. Mechanical assessment and deformation mechanisms of aluminum foam filled stainless steel braided tubes subjected to transverse loading. Thin Walled Struct. 2014, 79, 95–107. [Google Scholar] [CrossRef]
- Koohbor, B.; Kidane, A.; Lu, W.; Sutton, M. Investigation of the dynamic stress-strain response of compressible polymeric foam using a non-parametric analysis. Int. J. Impact Eng. 2016, 91, 170–182. [Google Scholar] [CrossRef]
- Yang, S.; Qi, C. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. Int. J. Impact Eng. 2013, 54, 177–191. [Google Scholar] [CrossRef]
- Karagiozova, D.; Nurick, G.; Yuen, S. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load. Thin Walled Struct. 2005, 43, 956–982. [Google Scholar] [CrossRef]
- Hong, J.; Yu, P.; Zhang, D.; Liang, Z. Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact. Chin. J. Aeronaut. 2018, 31, 498–513. [Google Scholar] [CrossRef]
- Zhang, D.; Xia, Y.; Scarpa, F.; Hong, J.; Ma, Y. Interfacial contact stiffness of fractal rough surfaces. Sci. Rep. 2018, 7, 12874. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tong, Z.; Tang, Z.; Liu, Y.; Zhang, Z. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin Walled Struct. 2015, 88, 70–81. [Google Scholar] [CrossRef]
- Duarte, I.; Vesenjak, M.; Krstulović-Opara, L.; Anžel, I.; Ferreira, J. Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes. Mater. Des. 2015, 66, 532–544. [Google Scholar] [CrossRef]
- Lee, K.; Yang, Y.; Kim, S.; Yang, I. Energy absorption control characteristics of Al thin-walled tubes under impact load. Acta Mech. Solida Sin. 2008, 21, 383–388. [Google Scholar] [CrossRef]
- Reddy, S.; Abbasi, M.; Fard, M. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin Walled Struct. 2015, 94, 56–66. [Google Scholar] [CrossRef]
Density (kg/m3) | Young’s Modulus (GPa) | Yield Stress (MPa) | Ultimate Stress (MPa) | Poisson’s Ratio |
---|---|---|---|---|
2700 | 67.9 | 162 | 191 | 0.3 |
Cell Size | Pm/kN | Pmax/kN | Eint/kJ | m/kg | SEA (kJ/kg) | CFE/% |
---|---|---|---|---|---|---|
0 | 23.263 | 31.714 | 0.919 | 0.074 | 12.421 | 73.353 |
2 | 36.860 | 45.620 | 1.471 | 0.082 | 17.939 | 80.801 |
4 | 48.519 | 58.723 | 1.919 | 0.091 | 21.088 | 82.624 |
6 | 52.237 | 65.969 | 2.051 | 0.099 | 20.717 | 79.185 |
8 | 52.852 | 66.545 | 2.063 | 0.108 | 19.101 | 79.423 |
Cell Size | Pm/kN | Pmax/kN | Eint/kJ | m/kg | SEA (kJ/kg) | CFE/% |
---|---|---|---|---|---|---|
0 | 52.2375 | 65.9690 | 2.051 | 0.099 | 20.717 | 79.185 |
1 | 75.0829 | 93.9902 | 2.930 | 0.112 | 26.161 | 79.884 |
2 | 95.3310 | 114.002 | 3.699 | 0.130 | 28.454 | 83.622 |
3 | 112.560 | 127.234 | 4.386 | 0.147 | 29.837 | 88.467 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Hao, P. Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing. Nanomaterials 2018, 8, 667. https://doi.org/10.3390/nano8090667
Du J, Hao P. Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing. Nanomaterials. 2018; 8(9):667. https://doi.org/10.3390/nano8090667
Chicago/Turabian StyleDu, Jianxun, and Peng Hao. 2018. "Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing" Nanomaterials 8, no. 9: 667. https://doi.org/10.3390/nano8090667
APA StyleDu, J., & Hao, P. (2018). Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing. Nanomaterials, 8(9), 667. https://doi.org/10.3390/nano8090667