Epoxy Coatings Doped with (3-Aminopropyl)triethoxysilane-Modified Silica Nanoparticles for Anti-Corrosion Protection of Zinc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Functionalization of the SiO2 Nanoparticles
2.4. Coatings’ Preparation
3. Results and Discussion
3.1. Characterization of the Silica Nanoparticles
3.2. Coatings Characterization
3.2.1. Thickness Measurements
3.2.2. Adhesion Tests
3.2.3. Contact Angle Measurements
3.2.4. Scanning Electron Microscopy (SEM)
3.3. Electrochemical Investigation of the Coatings
4. Conclusions
- The modification of silica NPs with APTES was put in evidence by using FT-IR and TEM. FT-IR spectra confirmed that the APTES molecules attached to the terminal oxygens of SiO2, forming terminal -NH2 groups. The TEM images demonstrated that during the modification with APTES, the particle size decreased by approximately half.
- The composite structure was confirmed via SEM/EDS analysis, which exhibited the presence of SiO2 and its dispersion in the EP matrix.
- The electrochemical measurements performed using the EIS and PDP methods revealed the enhanced protective effect of the composite layers against Zn corrosion and their improved stability. This can be attributed to the NPs filling the pores of the EP, thereby extending the diffusion path of the corrosive medium.
- Although all nanocomposite coatings, regardless of the filler, showed superior characteristics compared to neat EP coatings, modification of the SiO2 NPs with APTES followed by their introduction into the epoxy resin (method I) led to weaker results than the deposits prepared through functionalization of the SiO2 NPs in the epoxy gel before the addition of the hardener (method II).
- The composite EP-SiO2 NP coatings are more suitable as protective layers than plain EP coatings; the first ones are more uniform, more adherent and less hydrophilic than the latter, being at the same time responsible for the better anti-corrosion properties of the coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makhlouf, A.S.H. Handbook of Smart Coatings for Materials Protection; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780857096807. [Google Scholar]
- Tiwari, A.; Hihara, L.; Rawlins, J. (Eds.) Intelligent Coatings for Corrosion Control; Butterworth-Heinemann: Oxford, UK, 2014; pp. 59–91. [Google Scholar]
- Muresan, L.M. Nanocomposite Coatings for Anti-Corrosion Properties of Metallic Substrates. Materials 2023, 16, 5092. [Google Scholar] [CrossRef]
- Randis, R.; Darmadi, D.B.; Gapsari, F.; Sonief, A.A.A.; Akpan, E.D.; Ebenso, E.E. The potential of nanocompo-site-based coatings for corrosion protection of metals: A Review. J. Mol. Liq. 2023, 390, 123067. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y. Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog. Org. Coat. 2009, 64, 497–503. [Google Scholar] [CrossRef]
- Ollik, K.; Lieder, M. Review of the Application of Graphene-Based Coatings as Anticorrosion Layers. Coatings 2020, 10, 883. [Google Scholar] [CrossRef]
- Sari, M.G.; Shamshiri, M.; Ramezanzadeh, B. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet. Corros. Sci. 2017, 129, 38–53. [Google Scholar] [CrossRef]
- Hou, W.; Gao, Y.; Wang, J.; Blackwood, D.J.; Teo, S. Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Mater. Today Commun. 2020, 23, 100883. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; El-Saeed, A.M.; Tawfeek, A.M.; Sabeela, N.I. Self-healing of chemically bonded hybrid silica/epoxy for steel coating. Prog. Org. Coat. 2020, 141, 105549. [Google Scholar] [CrossRef]
- Chang, K.-C.; Lin, H.-F.; Lin, C.-Y.; Kuo, T.-H.; Huang, H.-H.; Hsu, S.-C.; Yeh, J.-M.; Yang, J.-C.; Yu, Y.-H. Effect of Amino-Modified Silica Nanoparticles on the Corrosion Protection Properties of Epoxy Resin-Silica Hybrid Materials. J. Nanosci. Nanotechnol. 2008, 8, 3040–3049. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 2014, 292, 432–437. [Google Scholar] [CrossRef]
- Rajabi, M.; Rashed, G.R.; Zaarei, D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel. Corros. Eng. Sci. Technol. 2015, 50, 509–516. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M.M. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
- Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film. Corros. Sci. 2017, 123, 55–75. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Ramezanzadeh, B.; Sari, M.G.; Saeb, M.R. Corrosion resistance of epoxy coating on mild steel through polyamidoamine dendrimer-covalently functionalized graphene oxide nanosheets. J. Ind. Eng. Chem. 2020, 82, 290–302. [Google Scholar] [CrossRef]
- Pourhashem, S.; Rashidi, A.; Vaezi, M.R.; Bagherzadeh, M.R. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf. Coat. Technol. 2017, 317, 1–9. [Google Scholar] [CrossRef]
- Keshmiri, N.; Najmi, P.; Ramezanzadeh, M.; Ramezanzadeh, B. Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. J. Clean. Prod. 2021, 319, 128732. [Google Scholar] [CrossRef]
- Chen, L.; Chai, S.; Liu, K.; Ning, N.; Gao, J.; Liu, Q.; Chen, F.; Fu, Q. Enhanced Epoxy/Silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface. ACS Appl. Mater. Interfaces 2012, 4, 4398–4404. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Albert, E.; Cotolan, N.; Nagy, N.; Sáfrán, G.; Szabó, G.; Mureşan, L.-M.; Hórvölgyi, Z. Mesoporous silica coatings with improved corrosion protection properties. Microporous Mesoporous Mater. 2015, 206, 102–113. [Google Scholar] [CrossRef]
- Cotolan, N.; Varvara, S.; Albert, E.; Szabó, G.; Hórvölgyi, Z.; Mureşan, L.-M. Evaluation of corrosion inhibition performance of silica sol–gel layers deposited on galvanised steel. Corros. Eng. Sci. Technol. 2016, 51, 373–382. [Google Scholar] [CrossRef]
- Szabó, G.; Albert, E.; Both, J.; Kócs, L.; Sáfrán, G.; Szöke, A.; Hórvölgyi, Z.; Mureşan, L.M. Influence of embedded inhibitors on the corrosion resistance of zinc coated with mesoporous silica layers. Surf. Interfaces 2019, 15, 216–223. [Google Scholar] [CrossRef]
- Ovari, T.-R.; Katona, G.; Coros, M.; Szabó, G.; Muresan, L.M. Corrosion behaviour of zinc coated with composite silica layers incorporating poly(amidoamine)-modified graphene oxide. J. Solid State Electrochem. 2023, 27, 1795–1811. [Google Scholar] [CrossRef]
- Both, J.; Szabó, G.; Katona, G.; Muresan, L.M. Tannic acid reinforced sol-gel silica coatings for corrosion protection of zinc substrates. Mater. Chem. Phys. 2022, 282, 125912. [Google Scholar] [CrossRef]
- Mehmood, S.; Ali, N.; Ali, F.; Haq, F.; Haroon, M.; Fahad, S. The Influence of Surface Modified Silica Nanoparticles: Properties of Epoxy Nanocomposites. Z. Phys. Chem. 2021, 235, 649–661. [Google Scholar] [CrossRef]
- Kongparakul, S.; Kornprasert, S.; Suriya, P.; Le, D.; Samart, C.; Chantarasiri, N.; Prasassarakich, P.; Guan, G. Self-healing hybrid nanocomposite anticorrosive coating from epoxy/modified nanosilica/perfluorooctyl triethox-ysilane. Prog. Org. Coat. 2017, 104, 173–179. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Z.; Shi, J.; Chen, G.; Zhang, Q.; Weng, Z.; Wu, K.; Lu, M. Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings. Appl. Surf. Sci. 2019, 484, 759–770. [Google Scholar] [CrossRef]
- Gao, X.; Yan, R.; Lv, Y.; Ma, H.; Ma, H. In situ pretreatment and self-healing smart anti-corrosion coating pre-pared through eco-friendly water-base epoxy resin combined with non-toxic chelating agents decorated biomass porous carbon. J. Clean. Prod. 2020, 266, 121920. [Google Scholar] [CrossRef]
- Irfan, M.; Iqbal, S.; Ahmad, S. Waterborne reduced graphene oxide dispersed sebacic acid modified soy epoxy nanocomposite: A green and sustainable approach for high performance mechanically robust anticorrosive coatings. Prog. Org. Coat. 2022, 170, 106984. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Y.; Yan, S.; Li, C.; Li, H.; Chen, W.; Yan, J.; Wu, G.; Yuan, X. Eco-friendly design of α-zirconium phosphate modified by phytic acid for reinforcing the corrosion resistance of waterborne epoxy coating. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 106984. [Google Scholar] [CrossRef]
- Measuring Adhesion by Tape Test per ASTM D3359 Issues and Challenges Behind a “Basic” Adhesion Test. Available online: https://kta.com/kta-university/adhesion-astm-d3359/#:~:text=The%20scale%20ranges%20from%200,used%20(e.g.%2C%203B) (accessed on 18 October 2023).
- Karnati, S.R.; Oldham, D.; Fini, E.H.; Zhang, L. Surface functionalization of silica nanoparticles to enhance aging resistance of asphalt binder. Constr. Build. Mater. 2019, 211, 1065–1072. [Google Scholar] [CrossRef]
- Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 2009, 204, 237–245. [Google Scholar] [CrossRef]
- Kong, X.-F.; Yang, B.; Xiong, H.; Zhou, Y.; Xue, S.-G.; Xu, B.-Q.; Wang, S.-X. Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups. J. Cent. South Univ. 2014, 21, 3575–3579. [Google Scholar] [CrossRef]
- Alipanah, N.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G. Fabrication of MIL-88A sandwiched in graphene oxide nanocomposites using a green approach to induce active/barrier protective functioning in epoxy coatings. J. Clean. Prod. 2021, 321, 128928. [Google Scholar] [CrossRef]
- Scully, J.R. Electrochemical Impedance of Organic-Coated Steel: Correlation of Impedance Parameters with Long-Term Coating Deterioration. J. Electrochem. Soc. 1989, 136, 979–990. [Google Scholar] [CrossRef]
- McIntyre, J.M.; Pham, H.Q. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Prog. Org. Coat. 1996, 27, 201–207. [Google Scholar] [CrossRef]
- Miszczyk, A.; Darowicki, K. Water uptake in protective organic coatings and its reflection in measured coating impedance. Prog. Org. Coat. 2018, 124, 296–302. [Google Scholar] [CrossRef]
- Ma, I.W.; Ammar, S.; Bashir, S.; Selvaraj, M.; Assiri, M.A.; Ramesh, K.; Ramesh, S. Preparation of hybrid chi-tosan/silica composites via ionotropic gelation and its electrochemical impedance studies. Prog. Org. Coat. 2020, 145, 105679. [Google Scholar]
- González, S.; Fox, V.; Souto, R.M. Laboratory evaluation of corrosion resistance at metallic substrates by an organic coating: Delamination effects. J. Adhes. Sci. Technol. 2004, 18, 455–464. [Google Scholar] [CrossRef]
- Hack, H.P.; Scully, J.R. Defect Area Determination of Organic Coated Steels in Seawater Using the Breakpoint Frequency Method. J. Electrochem. Soc. 1991, 138, 33–40. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Bonora, P. Determination of the reactive area of organic coated metals: Physical meaning and limits of the break-point method. Electrochim. Acta 1993, 38, 1609–1613. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511–528. [Google Scholar] [CrossRef]
- Razin, A.A.; Ramezanzadeh, B.; Yari, H. Detecting and estimating the extent of automotive coating delamination and damage indexes after stone chipping using electrochemical impedance spectroscopy. Prog. Org. Coat. 2016, 92, 95–109. [Google Scholar] [CrossRef]
Sample | EP | EP-SiO2 | EP-SiO2-APTES (I) | EP-SiO2-APTES (II) |
---|---|---|---|---|
0 min | 70° | 70° | 74° | 83° |
After 30 min | 56° | 58° | 64° | 74° |
Sample | Zn | EP | EP-SiO2 | EP-SiO2-APTES (I) | EP-SiO2-APTES (II) |
---|---|---|---|---|---|
|Z|0.01Hz (kΩ) | 1.67 | 2.14 × 103 | 3.72 × 103 | 5.58 × 103 | 8.95 × 103 |
Sample | Rs | 103 × Qcoat | n | Rcoat | 101 × Qdl | n | Rct | Rp = Rcoat + Rct | 103 × Chi2 |
---|---|---|---|---|---|---|---|---|---|
(kΩ cm2) | (μSsn) | (kΩ cm2) | (μSsn) | (kΩ cm2) | (kΩ cm2) | ||||
Zn | 0.01 | - | - | - | 731.0 | 0.8 | 1.20 | 1.20 | 7.63 |
Zn/EP | 0.39 | 15.80 | 0.8 | 1789 | 0.019 | 0.9 | 428 | 2217 | 3.09 |
Zn/EP-SiO2 | 1.40 | 7.630 | 0.8 | 497 | 2.590 | 0.6 | 2918 | 3415 | 7.15 |
Zn/EP-SiO2-APTES (I) | 1.32 | 0.940 | 0.9 | 1176 | 1.300 | 0.7 | 6042 | 7218 | 6.87 |
Zn/EP-SiO2-APTES (II) | 1.41 | 0.613 | 1 | 1171 | 0.524 | 0.7 | 7014 | 8185 | 9.10 |
Sample | 0 min | 2 h | 1 Day | 2 Day |
---|---|---|---|---|
EP | ||||
|Z|0.01Hz (Ω) | 2.09 × 106 | 1.01 × 105 | 1.99 × 104 | 8.40 × 103 |
EP-SiO2 | ||||
|Z|0.01Hz (Ω) | 2.14 × 106 | 2.86 × 105 | 1.85 × 105 | 6.01 × 104 |
EP-SiO2-APTES (I) | ||||
|Z|0.01Hz (Ω) | 4.58 × 106 | 1.05 × 106 | 2.11 × 105 | 1.90 × 105 |
EP-SiO2-APTES (II) | ||||
|Z|0.01Hz (Ω) | 7.16 × 106 | 2.73 × 106 | 4.80 × 105 | 2.18 × 105 |
Sample | Ecorr (V vs. Ag/AgCl/KClsat) | icorr (µA/cm2) | ba (V/dec) | bc (V/dec) | IE (%) |
---|---|---|---|---|---|
Zn | −1.00 | 37.10 | - | 0.018 | - |
Zn/EP | −0.97 | 3.84 | - | 0.025 | 89 |
Zn/EP-SiO2 | −0.95 | 2.05 | 1.06 | 0.023 | 94 |
Zn/EP-SiO2-APTES (I) | −0.93 | 0.95 | 0.56 | 0.043 | 97 |
Zn/EP-SiO2-APTES (II) | −0.92 | 0.75 | - | 0.058 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovari, T.-R.; Toth, T.; Katona, G.; Szabó, G.S.; Muresan, L.M. Epoxy Coatings Doped with (3-Aminopropyl)triethoxysilane-Modified Silica Nanoparticles for Anti-Corrosion Protection of Zinc. Coatings 2023, 13, 1844. https://doi.org/10.3390/coatings13111844
Ovari T-R, Toth T, Katona G, Szabó GS, Muresan LM. Epoxy Coatings Doped with (3-Aminopropyl)triethoxysilane-Modified Silica Nanoparticles for Anti-Corrosion Protection of Zinc. Coatings. 2023; 13(11):1844. https://doi.org/10.3390/coatings13111844
Chicago/Turabian StyleOvari, Tamara-Rita, Timea Toth, Gabriel Katona, Gabriella Stefánia Szabó, and Liana Maria Muresan. 2023. "Epoxy Coatings Doped with (3-Aminopropyl)triethoxysilane-Modified Silica Nanoparticles for Anti-Corrosion Protection of Zinc" Coatings 13, no. 11: 1844. https://doi.org/10.3390/coatings13111844