Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Colorants, Volume 3, Issue 2 (June 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 7868 KiB  
Review
Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach
by Alexandra Coia, Jackson Ruddick, Olivia Kuang and Li-Qiong Wang
Colorants 2024, 3(2), 152-174; https://doi.org/10.3390/colorants3020012 - 13 Jun 2024
Viewed by 1158
Abstract
Transition metal complexes have historically played a pivotal role in creating vibrant pigments utilized across artistic mediums such as ceramics, paintings, and glass mosaics. Despite their extensive historical use, our understanding of the mechanisms governing transition metal complex behavior has predominantly emerged in [...] Read more.
Transition metal complexes have historically played a pivotal role in creating vibrant pigments utilized across artistic mediums such as ceramics, paintings, and glass mosaics. Despite their extensive historical use, our understanding of the mechanisms governing transition metal complex behavior has predominantly emerged in recent times, leaving numerous aspects of this process ripe for exploration. These complexes exhibit striking color variations under diverse conditions when employed in pigment formulations. This review utilizes a bottom-up scientific approach, spanning from microscopic to macroscopic scales, to unravel the molecular origins of the colors generated by transition metal complexes in pigments and ceramic glazes. Advanced spectroscopy techniques and computational chemistry play pivotal roles in this endeavor, highlighting the significance of understanding and utilizing analytical data effectively, with careful consideration of each technique’s specific application. Furthermore, this review investigates the influence of processing conditions on color variations, providing valuable insights for artists and manufacturers aiming to enhance the precision and quality of their creations while mitigating environmental impact. Full article
Show Figures

Graphical abstract

14 pages, 6742 KiB  
Article
Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments
by Cássio Siqueira, Aline B. Schons, Patricia Appelt, Weslei D. Silva, Nayara Balaba, Mário A. A. Cunha and Fauze J. Anaissi
Colorants 2024, 3(2), 138-151; https://doi.org/10.3390/colorants3020011 - 20 May 2024
Viewed by 600
Abstract
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgO [...] Read more.
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgOst was prepared by the colloidal starch suspension method, using cassava starch. The oxides and hydroxides, before and after, were characterized by X-ray diffraction (XRD), and show that a phase change occurs: a transition from periclase (MgO) to brucite (Mg(OH)2) due to the incorporation of nickel ions from different salts (acetate, chloride, and nitrate), resulting in the solid solution [NixMg1−x(OH)2]. The FTIR spectrum corroborates the crystallographic structure identified through XRD patterns, confirming the formation of a crystal structure resembling brucite. The new samples present a green color, indicative of the incorporation of the Ni2+ ions. The antimicrobial activity of products resulting from the doping of magnesium oxide with nickel and the precursor MgOst was assessed through the minimum inhibitory concentration (MIC) test. The evaluation included three bacterial strains: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Salmonella gallinarum (ATCC 9184), and a yeast strain, Candida albicans (ATCC 10231). The obtained results were promising; the tested samples exhibited antimicrobial activity, with a MIC ranging from 0.312 to 0.625 μg.μL−1. The nickel compound, derived from the precursor chloride salt, demonstrated superior MIC activity. Notably, all tested samples displayed bactericidal activity against the S. aureus strain and exhibited a broad spectrum of inhibition, encompassing both Gram-positive and Gram-negative strains. Only the nickel compounds derived from precursors with acetate and nitrate anions demonstrated antimicrobial activity against C. albicans, exhibiting a fungistatic behavior. Based on the conducted studies, [NixMg1−x(OH)2] has emerged as a promising antimicrobial agent, suitable for applications requiring the delay or inhibition of bacterial growth. Full article
Show Figures

Figure 1

2 pages, 142 KiB  
Editorial
Colorants: Moving to the Next Stage
by Anthony Harriman
Colorants 2024, 3(2), 136-137; https://doi.org/10.3390/colorants3020010 - 14 May 2024
Viewed by 526
Abstract
As Editor-in-Chief of Colorants [ISSN: 2079-6447], I have watched the progressive growth of this journal and witnessed the expansion of topics way beyond the initial consideration [...] Full article
11 pages, 2511 KiB  
Article
Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites
by Magali Hernández, Carlos Felipe, Ariel Guzmán-Vargas, José Luis Rivera and Enrique Lima
Colorants 2024, 3(2), 125-135; https://doi.org/10.3390/colorants3020009 - 9 May 2024
Viewed by 761
Abstract
Structural hydroxide groups in layered magnesium–aluminum double hydroxides were partially replaced by fluoride ions. Fluorinated and fluorine-free materials were used as hosts for two dyes, carminic acid and hydroxyl naphthol blue, resulting in a hybrid pigment color palette. The pigments were produced by [...] Read more.
Structural hydroxide groups in layered magnesium–aluminum double hydroxides were partially replaced by fluoride ions. Fluorinated and fluorine-free materials were used as hosts for two dyes, carminic acid and hydroxyl naphthol blue, resulting in a hybrid pigment color palette. The pigments were produced by two ways, either incorporating chromophore during the synthesis of the layered double hydroxide or in a post-synthesis step through the memory effect of the LDHs. Additionally, the pigments were protected with a magnesium hydroxide phase to prevent the color from fading over time. The pigments were stable for periods as long as 10 years. The color properties of the pigments were significantly influenced by the host of dye since the presence of fluorine directly influences the acid–base properties of the layered double hydroxides. The pigments conferred their color to white cream in the preparation of colored creams. The colored creams acquired the color of the layered pigment. Full article
Show Figures

Graphical abstract

14 pages, 2996 KiB  
Article
An Archaeometric Study of the Iron Age Ceramics from Quinta do Almaraz Archaeologic Site (8th to 5th Centuries BC)—Colour and Mineralogical Characterization
by Luis Filipe Vieira Ferreira, Ana Olaio, Manuel Francisco Costa Pereira and Isabel Luisa Ferreira Machado
Colorants 2024, 3(2), 111-124; https://doi.org/10.3390/colorants3020008 - 25 Apr 2024
Viewed by 1313
Abstract
The ceramic pastes of ca. 31 samples recovered from the Almaraz archaeological site, located in the south bench of Tagus River, were studied in detail using XRF, micro-Raman and GSDR spectroscopies, as well as the XRD technique. The ceramic sherds could be grouped [...] Read more.
The ceramic pastes of ca. 31 samples recovered from the Almaraz archaeological site, located in the south bench of Tagus River, were studied in detail using XRF, micro-Raman and GSDR spectroscopies, as well as the XRD technique. The ceramic sherds could be grouped into six categories, red slip tableware, decorated tableware, yellow slip tableware, grey tableware, common tableware, and handmade pottery. Our studies of the mineralogic composition of the sherds’ body indicate all ceramics were produced locally, using siliceous clays in most cases and calcareous clays in a few ones. Micro-Raman and ground state diffuse reflectance absorption spectroscopy provided useful information regarding the materials used to produce the coloured ceramics: hematite and brookite for the red slip and decorated ceramics, jacobsite or carbon black for the black decoration or grey ceramics. For the yellow slip tableware, a simple engobe rich in yellow clay was used. XRF spectroscopic studies provided the elemental composition of all samples, and biplots of the potassium (K) versus calcium (Ca) contents, normalized to the silicon content of each ceramic paste, clearly show Pliocene and Miocene local clays sources were used to produce most ceramics. Only one sherd can be considered a Lisbon production. Full article
Show Figures

Figure 1

12 pages, 2417 KiB  
Article
Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye
by Emerson Colonetti, Lilian C. da Luz and Fabiano S. Rodembusch
Colorants 2024, 3(2), 99-110; https://doi.org/10.3390/colorants3020007 - 3 Apr 2024
Viewed by 1014
Abstract
Herein, we present the preparation of solid-state photoactive starches with a large Stokes shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole derivatives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded to the polymeric structure of starch [...] Read more.
Herein, we present the preparation of solid-state photoactive starches with a large Stokes shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole derivatives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded to the polymeric structure of starch through a reaction involving an isothiocyanate group and the hydroxyl groups of starch. These compounds exhibit absorption at approximately 350 nm, which is related to fully spin- and symmetry-allowed π → π* electronic transitions, and solid-state fluorescence at approximately 500 nm, which features a significant separation between the absorption and emission maxima (~9000 cm−1). Due to the minimal use of fluorophores in functionalized starch preparation, this modification does not affect the original properties of the starch. Finally, photoactive starch-based films with significantly high transparency were successfully produced. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Graphical abstract

13 pages, 4752 KiB  
Article
Optical Investigation of 2-amino-7-isocyanofluorene, a Novel Blue-Emitting Solvatochromic Dye
by Bence Kontra, Zoltán Mucsi, László Vanyorek and Miklós Nagy
Colorants 2024, 3(2), 86-98; https://doi.org/10.3390/colorants3020006 - 25 Mar 2024
Viewed by 1338
Abstract
Smart solvatochromic isocyano-aminoarenes (ICAArs) have been gaining attention owing to their unique photophysical, antifungal and anticancer properties. Using a simple dehydration reaction with in situ-generated dichlorocarbene, we prepared 2-amino-7-isocyanofluorene (2,7-ICAF). We studied the effect of the longer polarization axis provided by the fluorene [...] Read more.
Smart solvatochromic isocyano-aminoarenes (ICAArs) have been gaining attention owing to their unique photophysical, antifungal and anticancer properties. Using a simple dehydration reaction with in situ-generated dichlorocarbene, we prepared 2-amino-7-isocyanofluorene (2,7-ICAF). We studied the effect of the longer polarization axis provided by the fluorene core on the spectral properties and we also compared it to those of the starting diamine. 2,7-ICAF shows a clear solvatochromic behavior close to the blue part (370–420 nm) of the visible spectrum. Quantum chemical calculations show internal charge transfer (ICT) between the donor amino and the electron-withdrawing isocyano groups. 2,7-ICAF has high molar absorptivity (ε = 15–18·103 M−1cm−1) and excellent quantum yield (Φf = 70–95%) in most solvents; however, its fluorescence is completely quenched in water. The high brightness (ε·Φf) and close to zero quantum yield in water may be favorable in biolabeling applications, where background fluorescence should be kept minimal. Overall, 2,7-ICAF shows enhanced photophysical properties compared to its previously investigated relative 4-amino-4′-isocyano-1,1′-biphenyl (4,4′-ICAB). Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop