Sub-Threshold Standard Cell Sizing Methodology and Library Comparison
Abstract
:1. Introduction
2. Sub-Threshold Cell Sizing Methodology
2.1. Sub-Threshold Current Distribution Model
2.2. Sub-Threshold Cell Balancing Method
2.3. Stack Sizing Model
Number of transistors in series | Simulation results | Normalized | Calculation from Equation (6) | |
---|---|---|---|---|
(A) | ||||
2 × 0.50 μm | 2.31 × 10−8 | 42.35% | 1 | 1 |
3 × 0.33 μm | 1.39 × 10−8 | 53.03% | 1.252 | 1.237 |
4 × 0.25 μm | 1.11 × 10−8 | 58.68% | 1.386 | 1.401 |
5 × 0.20 μm | 0.95 × 10−8 | 66.18% | 1.563 | 1.573 |
2.4. Parallel Sizing Model
Number of parallel transistors | Simulated (A) | Normalized | Calculation from Equation (7) |
---|---|---|---|
1 × 1.20 μm | 1.18 × 10−7 | 1.00 | 1.00 |
2 × 0.60 μm | 1.33 × 10−7 | 1.13 | 1.12 |
3 × 0.40 μm | 1.41 × 10−7 | 1.19 | 1.24 |
4 × 0.30 μm | 1.52 × 10−7 | 1.29 | 1.36 |
5 × 0.24 μm | 1.71 × 10−7 | 1.45 | 1.48 |
6 × 0.20 μm | 1.91 × 10−7 | 1.62 | 1.61 |
2.5. Complex Cell Translation
Algorithm 1. |
1. If n transistors in Parallel |
2. Then Size of parallel transistors: |
3. W1 = W2 = … = Wn |
4. Parallel Equivalent Size: Equation (8) |
5. If m transistors in Series |
6. Then Size of transistors in stack: |
7. |
8. Stack Equivalent Size: Equation (4) |
9. *U means next to output node; L means away from output node. |
3. Library Characterization
4. Library Comparisons
5. Circuit Synthesis Comparisons
5.1. ITC B14 Benchmark
5.2. ITC Benchmark Circuits
Delay (ns) | % | Area (μm2) | % | Total Power (nW) | % | ||||
---|---|---|---|---|---|---|---|---|---|
Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | ||||
B01 | 850 | 480 | 43.5 | 320 | 334 | −4.4 | 0.502 | 0.308 | 38.6 |
B02 | 780 | 450 | 42.3 | 213 | 227 | −6.6 | 0.237 | 0.161 | 32.1 |
B03 | 880 | 510 | 42.0 | 582 | 660 | −13.4 | 0.229 | 0.164 | 28.4 |
B04 | 1170 | 630 | 46.2 | 2120 | 2525 | −19.1 | 1.267 | 0.865 | 31.7 |
B05 | 1820 | 1030 | 43.4 | 3118 | 3664 | −17.5 | 1.336 | 0.920 | 31.1 |
B14 | 3600 | 1720 | 52.2 | 25866 | 28056 | −8.5 | 3.795 | 2.780 | 26.7 |
Delay (ns) | % | Area (μm2) | Total Power (nW) | % | ||||
---|---|---|---|---|---|---|---|---|
Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | |||
B01 | 850 | 500 | 41.2 | 320 | 315 | 0.502 | 0.298 | 40.6 |
B02 | 780 | 490 | 37.2 | 213 | 204 | 0.237 | 0.148 | 37.6 |
B03 | 880 | 750 | 14.8 | 582 | 555 | 0.229 | 0.138 | 39.7 |
B04 | 1170 | 810 | 30.8 | 2120 | 2077 | 1.267 | 0.765 | 39.6 |
B05 | 1820 | 1200 | 34.1 | 3118 | 3114 | 1.336 | 0.826 | 38.2 |
B14 | 3600 | 2000 | 44.4 | 25866 | 25614 | 3.795 | 2.466 | 35.0 |
Delay (ns) | Area (μm2) | % | Total Power (nW) | % | ||||
---|---|---|---|---|---|---|---|---|
Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | Super-threshold library | Width and length tuning | |||
B01 | 850 | 850 | 320 | 243 | 24.1 | 0.502 | 0.238 | 52.6 |
B02 | 780 | 780 | 213 | 177 | 16.9 | 0.237 | 0.144 | 39.2 |
B03 | 880 | 880 | 582 | 536 | 7.9 | 0.229 | 0.139 | 39.3 |
B04 | 1170 | 1170 | 2120 | 1671 | 21.2 | 1.267 | 0.877 | 30.8 |
B05 | 1820 | 1820 | 3118 | 2726 | 12.6 | 1.336 | 0.723 | 45.9 |
B14 | 3600 | 3600 | 25866 | 24121 | 6.7 | 3.795 | 2.852 | 24.8 |
6. Conclusions
References
- Liu, B.; Ashouei, M.; Huisken, J.; de Gyvez, J.P. Standard Cell Sizing for Subthreshold Operation. In Proceedings of the 49th Design Automation Conference (DAC), San Fransico, CA, USA, 3–7 June 2012; pp. 962–967.
- Liu, B.; de Gyvez, J.P.; Ashouei, M. Library Tuning for Subthreshold Operation. In Proceedings of the 2012 IEEE Subthreshold Microelectronics Conference (SubVT), Waltham, MA, USA, 9–10 October 2012; pp. 1–3.
- Calhoun, B.H.; Wang, A.; Chandrakasan, A. Modeling and sizing for minimum energy operation in subthreshold circuits. Solid-State Circ. IEEE J. 2005, 40, 1778–1786. [Google Scholar]
- Kwong, J.; Ramadass, Y.; Verma, N.; Koesler, M.; Huber, K.; Moormann, H.; Chandrakasan, A. A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Fransico, CA, USA, 3–7 February 2008; pp. 318–616.
- Seok, M.; Jeon, D.; Chakrabarti, C.; Blaauw, D.; Sylvester, D. A 0.27V 30MHz 17.7nJ/Transform 1024-pt Complex FFT Core with Super-Pipelining. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Fransico, CA, USA, 20–24 February 2011; pp. 342–344.
- Bol, D.; Kamel, D.; Flandre, D.; Legat, J.-D. Nanometer MOSFET Effects on the Minimum-Energy Point of 45nm Subthreshold Logic. In Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design, San Fancisco, CA, USA, 19–21 August 2009; pp. 3–8.
- Kwong, J.; Chandrakasan, A.P. Variation-Driven Device Sizing for Minimum Energy Sub-Threshold Circuits. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED), Tegernsee Germany, 4–6 October 2006; pp. 8–13.
- Kim, T.-H.; Hanyong, E.; Keane, J.; Kim, C. Utilizing Reverse Short Channel Effect for Optimal Subthreshold Circuit Design. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED), Tegernsee, Germany, 4–6 October 2006; pp. 127–130.
- Keane, J.; Hanyong, E.; Tae-Hyoung, K.; Sapatnekar, S.; Kim, C. Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing. In Proceedings of the 43rd Design Automation Conference, San Fransico, CA, USA, 24–24 June 2006; pp. 425–428.
- Jun, Z.; Jayapal, S.; Busze, B.; Huang, L.; Stuyt, J. A 40 nm Inverse-Narrow-Width-Effect-Aware Sub-Threshold Standard Cell Library. In Proceedings of the 48th Design Automation Conference (DAC), San Diego, CA, USA, 5–9 June 2011; pp. 441–446.
- Bol, D.; Flandre, D.; Legat, J.-D. Technology Flavor Selection and Adaptive Techniques for Timing-constrained 45nm Subthreshold Circuits. In Proceedings of the 14th International Symposium on Low Power Electronics and Design, San Fancisco, CA, USA, 19–21 August, 2009; pp. 21–26.
- Bol, D.; de Vos, J.; Hocquet, C.; Botman, F.; Durvaux, F.; Boyd, S.; Flandre, D.; Legat, J. SleepWalker: A 25-MHz 0.4-V Sub-mm2 7-uW/MHzMicrocontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. Solid-State Circ. IEEE J. 2013, 48, 20–32. [Google Scholar]
- Blesken, M.; Lu, X; Tkemeier, S.; Ruckert, U. Multiobjective Optimization for Transistor Sizing Sub-threshold CMOS Logic Standard Cells. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 1480–1483.
- Abouzeid, F.; Clerc, S.; Firmin, F.; Renaudin, M.; Sicard, G. A 45nm CMOS 0.35v-optimized Standard Cell Library for Ultra-low power Applications. In Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design, San Fancisco, CA, USA, 19–21 August 2009; pp. 225–230.
- Tsividis, Y. Operation and Modeling of the Mos Transistor (The Oxford Series in Electrical and Computer Engineering); Oxford University Press: New York, USA, 2004; pp. 62–96. [Google Scholar]
- Wang, A.; Calhoun, B.H.; Chandrakasan, A.P. Sub-Threshold Design for Ultra Low-Power Systems; Springer: New York, USA, 2006; pp. 27–32. [Google Scholar]
- Avant, Star-Hspice User's Manual; Synopsys: Mountain View, CA, USA, 2000; pp. 798–801.
- Crow, E.L.; Shimizu, K. Lognormal Distributions: Theory and Applications; Marcel Dekker: New York, NY, USA, 1988; pp. 195–210. [Google Scholar]
- Bo, Z.; Hanson, S.; Blaauw, D.; Sylvester, D. Analysis and Mitigation of Variability in Subthreshold Design. In Proceedings of the 2005 International Symposium on Low Power Electronics and Design, San Diego, CA, USA, 8–10 August 2005; pp. 20–25.
- Al-Hertani, H.; Al-Khalili, D.; Rozon, C. A New Subthreshold Leakage Model for NMOS transistor Stacks. In Proceedings of the IEEE Northeast Workshop on Circuits and Systems, Montreal, Canada, 5–8 August 2007; pp. 972–975.
- Fenton, L. The sum of log-normal probability distributions in scatter transmission systems. Commun. Syst. IRE Trans. 1960, 8, 57–67. [Google Scholar]
- Gemmeke, T.; Ashouei, M. Variability Aware Cell Library Optimization for Reliable Sub-Threshold Operation. In Proceedings of the European Solid States Circuits Conference (ESSCIRC), Bordeaux, France, 17–21 September 2012; pp. 42–45.
- Bhasker, J.; Chadha, R. Static Timing Analysis for Nanometer Designs: A Practical Approach; Springer: New York, USA, 2009; pp. 26–43. [Google Scholar]
- Pelgrom, M.J.M.; Duinmaijer, A.C.J.; Welbers, A.P.G. Matching properties of MOS transistors. Solid-State Circ. IEEE J. 1989, 24, 1433–1439. [Google Scholar]
- Corno, F.; Reorda, M.S.; Squillero, G. RT-level ITC'99 benchmarks and first ATPG results. Des. Test Comput. IEEE 2000, 17, 44–53. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, B.; De Gyvez, J.P.; Ashouei, M. Sub-Threshold Standard Cell Sizing Methodology and Library Comparison. J. Low Power Electron. Appl. 2013, 3, 233-249. https://doi.org/10.3390/jlpea3030233
Liu B, De Gyvez JP, Ashouei M. Sub-Threshold Standard Cell Sizing Methodology and Library Comparison. Journal of Low Power Electronics and Applications. 2013; 3(3):233-249. https://doi.org/10.3390/jlpea3030233
Chicago/Turabian StyleLiu, Bo, Jose Pineda De Gyvez, and Maryam Ashouei. 2013. "Sub-Threshold Standard Cell Sizing Methodology and Library Comparison" Journal of Low Power Electronics and Applications 3, no. 3: 233-249. https://doi.org/10.3390/jlpea3030233
APA StyleLiu, B., De Gyvez, J. P., & Ashouei, M. (2013). Sub-Threshold Standard Cell Sizing Methodology and Library Comparison. Journal of Low Power Electronics and Applications, 3(3), 233-249. https://doi.org/10.3390/jlpea3030233