A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation
Abstract
:1. Introduction
2. System Requirement
2.1. Link Budget Model
2.2. System Architecture
2.3. FDD and FD Modes of Operation
3. Design and Implementation
3.1. RF Isolation from the Transmitter Chain to the Receiver
3.2. Digital SI Cancellation Scheme
4. System Measurement
4.1. Transmitter Power
4.2. HD Link Measurement
4.3. Frequency Division Duplex Measurement
4.4. Full-Duplex Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, J.; Tokgoz, K.K. A 28.16-Gb/s area-efficient 60-GHz CMOS bidirectional transceiver for IEEE 802.11ay. IEEE Trans. Microw. Theory Tech. 2020, 68, 252–263. [Google Scholar] [CrossRef]
- Pang, J.; Maki, S.; Kawai, S.; Nagashima, N.; Seo, Y.; Dome, M.; Kato, H.; Katsuragi, M.; Kimura, K.; Kondo, S.; et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance. IEEE J. Solid-State Circuit 2019, 54, 1375–1390. [Google Scholar] [CrossRef]
- Byeon, C.W.; Eun, K.C.; Park, C.S. A 2.65-pJ/bit 12.5-Gb/s 60-GHz OOK CMOS transmitter and receiver for proximity communications. IEEE Trans. Microw. Theory Tech. 2020, 68, 2902–2910. [Google Scholar] [CrossRef]
- Kodak, U.; Rupakula, B.; Zihir, S.; Rebeiz, G.M. 60-GHz 64- and 256-element dual-polarized dual-beam wafer-scale phased-array transceivers with reticle-to-reticle stitching. IEEE Trans. Microw. Theory Tech. 2020, 68, 2745–2767. [Google Scholar] [CrossRef]
- Kolodziej, K.E.; Perry, B.T.; Herd, J.S. In-band full-duplex technology: Techniques and systems survey. IEEE Trans. Microw. Theory Tech. 2019, 67, 3025–3041. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, X.; Sun, S.; Huang, Y.; Dong, L.; Jiang, Y. Full-duplex versus half-duplex amplify-and-forward relaying: Which is more energy efficient in 60-GHz dual-hop indoor wireless systems? IEEE J. Sel. Areas Commun. 2015, 33, 2936–2947. [Google Scholar] [CrossRef]
- Liu, G.; Yu, F.R.; Ji, H.; Leung, V.C.M.; Li, X. In-band full-duplex relaying: A survey, research issues and challenges. IEEE Commun. Surv. Tutorials 2015, 17, 500–524. [Google Scholar] [CrossRef]
- Dinc, T.; Chakrabarti, A.; Krishnaswamy, H. A 60 GHz CMOS full-duplex transceiver and link with polarization-based antenna and RF cancellation. IEEE J. Solid-State Circuits 2016, 51, 1125–1140. [Google Scholar] [CrossRef]
- Khaledian, S.; Farzami, F.; Smida, B.; Erricolo, D. Inherent self-interference cancellation for in-band full-duplex single- antenna systems. IEEE Trans. Microw. Theory Tech. 2018, 66, 2842–2850. [Google Scholar] [CrossRef]
- Vosoogh, A.; Sorkherizi, M.S.; Vassilev, V.; Zaman, A.U.; He, Z.S.; Yang, J.; Kishk, A.A.; Zirath, H. Compact integrated full-duplex gap waveguide-based radio frontend for multi-Gbit/s point-to-point backhaul links at E-band. IEEE Trans. Microw. Theory Tech. 2019, 67, 3783–3797. [Google Scholar] [CrossRef]
- Chi, T.; Park, J.S.; Li, S.; Wang, H.A. millimeter-wave polarization-division-duplex transceiver frontend with an on-chip multi-feed self-interference-canceling antenna and an all-passive reconfigurable canceller. IEEE J. Solid-State Circuit 2018, 53, 3628–3639. [Google Scholar] [CrossRef]
- IEEE Std 802.11-2016; IEEE Standard for Information Technology: Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: New York, NY, USA, 2016; p. 2408.
- Yong, S.-K.; Xia, P.; Valdes-Garcia, A. 60 GHz channel characterizations and modeling. In 60 GHz Technology for Gbps WLAN and WPAN; Wiley: Hoboken, NJ, USA, 2010; Chapter 2; pp. 17–61. [Google Scholar]
- Smulders, P.F. Smulders.Statistical characterization of 60 GHz indoor radio channels. IEEE Trans. Antennas Propag. 2009, 57, 2820–2829. [Google Scholar] [CrossRef]
- Ma, K.; Mou, S.; Lu, Y.; Yang, W.; Yeo, K.S.; Chin, F.; Peng, X.; Chai, A.; Png, K.-B.; Ho, W.S.; et al. An integrated 60 GHz low power two-chip wireless system based on IEEE 802.11ad standard. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Kumar, T.; Ma, K.; Yeo, K.S.; Yang, W. A 35-mW 30-dB gain control range current mode linear-in-decibel programmable gain amplifier with bandwidth enhancement. IEEE Trans. Microw. Theory Tech. 2014, 62, 3465–3475. [Google Scholar] [CrossRef]
- van den Broek, D.; Klumperink, E.A.M.; Nauta, B. An in-band full-duplex radio receiver with a passive vector modulator down mixer for self-interference cancellation. IEEE J. Solid-State Circuits 2015, 50, 3003–3014. [Google Scholar] [CrossRef]
- Kiayani, A.; Waheed, M.Z.; Anttila, L.; Abdelaziz, M.; Korpi, D.; Syrjala, V.; Kosunen, M.; Stadius, K.; Ryynanen, J.; Valkama, M. Adaptive nonlinear RF cancellation for improved isolation in simultaneous transmit-receive systems. IEEE Trans. Microw. Theory Tech. 2018, 66, 2299–2312. [Google Scholar] [CrossRef]
- Ahmed, E.; Eltawil, A.M. All-digital self-interference cancellation technique for full-duplex systems. IEEE Trans. Wirel. Commun. 2015, 14, 3519–3532. [Google Scholar] [CrossRef]
- Ginzberg, N.; Regev, D.; Tsodik, G.; Shilo, S.; Ezri, D.; Cohen, E. A full-duplex quadrature balanced RF frontend with digital pre-PA self-interference cancellation. IEEE Trans. Microw. Theory Tech. 2019, 67, 5257–5267. [Google Scholar] [CrossRef]
- Mondal, S.; Paramesh, J. Power-efficient design techniques for mm-wave hybrid/digital FDD/full-duplex MIMO transceivers. IEEE J. Solid-State Circuit 2020, 55, 2011–2026. [Google Scholar] [CrossRef]
- Korpi, D.; Riihonen, T. Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges. IEEE Trans. Wirel. Commun. 2014, 13, 3821–3836. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, K.; Vasilakos, A.V.; Hanzo, L. Full-duplex wireless communications: Challenges, solutions, and future research directions. Proc. IEEE 2016, 104, 1369–1409. [Google Scholar] [CrossRef]
- Ma, K.; Mou, S.; Wang, Y.; Yan, J.; Yeo, K.S.; Lim, W.M. A miniaturized 28 mW 60 GHz differential quadrature sub-harmonic QPSK modulator in 0.18 µm SiGe BiCMOS. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Sun, M.; Qing, X.; Chen, Z.N. 60-GHz antipodal Fermi antenna on PCB. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 3109–3112. [Google Scholar]
- Mahalingam, N.; Wang, Y.; Ma, K.; Yeo, K.S.; Mou, S.X. A 24 GHz low power low phase noise dual-mode phase locked loop frequency synthesizer for 60 GHz applications. In Proceedings of the 2014 IEEE/MTT-S International Microwave Symposium—MTT 2014, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Yeh, P.; Chiou, H.; Lee, C.-Y.; Yeh, J.; Tang, D.; Chern, J. An experimental study on high-frequency substrate noise isolation in BiCMOS technology. IEEE Electron Device Lett. 2008, 29, 255–258. [Google Scholar] [CrossRef]
MCS Index | Modulation Type | Code Rate | EVM Requirements (dB) 1 | Receiver Sensitivity (dBm) 2 |
---|---|---|---|---|
5 | π/2BPSK | 13/16 | −12 | −58.6 |
6 | π/2QPSK | 1/2 | −11 | −59.6 |
7 | π/2QPSK | 5/8 | −12 | −58.6 |
8 | π/2QPSK | 3/4 | −13 | −57.6 |
9 | π/2QPSK | 13/16 | −15 | −55.6 |
9.1 | π/2QPSK | 7/8 | −16 | −54.6 |
10 | 16-QAM | 1/2 | −19 | −51.6 |
11 | 16-QAM | 5/8 | −20 | −50.6 |
12 | 16-QAM | 3/4 | −21 | −49.6 |
12.1 | 16-QAM | 13/16 | −22 | −48.6 |
12.2 | 16-QAM | 7/8 | −23 | −47.6 |
12.3 | 64-QAM | 5/8 | −26 | −44.6 |
12.4 | 64-QAM | 3/4 | −27 | −43.6 |
12.5 | 64-QAM | 13/16 | −29 | −41.6 |
12.6 | 64-QAM | 7/8 | −31 | −39.6 |
This Work | [1] | [2] | [3] | [8] | [10] | [11] | |||
---|---|---|---|---|---|---|---|---|---|
Process technology | 180 nm SiGe BiCMOS | 40 nm CMOS | 65 nm CMOS | 65 nm CMOS | 45 nm SOI CMOS | – | 45 nm SOI CMOS | ||
Operation mode | HD | FDD | FD | HD | HD | HD | FD | FDD | FD |
SIC Mode | RF | RF | RF + DSIC | – | – | – | Antenna + RF | RF | Antenna + RF |
SIC (dB) | 54 | 54 | 60.7 | – | – | – | 70 | 50 | 60 |
Silicon Area RF (mm2) | 20 | 0.96 | 6.0 | 0.36 + 0.25 | 4.5 | – | 7.3 | ||
Antenna Gain Tx + Rx (dBi) | 12 + 12 | 14 + 14 | 14 + 14 | 4.2 + 4.2 | 5.0 + 5.0 | 31 + 31 | – | ||
Psat (dBm) | 2.7 | −3 | −3 | 5.5 | 7.3 | 1.6 | 15 | 14/16 $ | 18.5 |
Tx + Rx Power Consumption (mW) | 194 (Tx mode) /231 (Rx mode) | 398 | 398 | 94 (Tx mode) /105 (Rx mode) | 169 (Tx mode) /139 (Rx mode) | 12.1 (Tx mode) /21 (Rx mode) | 206 (Tx mode) /111 (Rx mode) | – | – (Tx mode) /108 (Rx mode) |
Modulation Type | 16-QAM 1.76 GHz | 16-QAM 1.76 GHz | 16-QAM 1.0 GHz | 64-QAM 7.04 GHz | 64-QAM 10.44 GHz | OOK 12.5 GHz | BPSK 5.0 GHz | 32-QAM 1.6 GHz | 16-QAM 1.0 GHz |
Data Rate (Gbps) | 7.04 | 7.04 # | 4 # | 28.16 | 50.1 | 12.5 | 5 # | 8 # | 4 # |
Distance (m) | 1.5 | 0.8 | 0.8 | 0.01 | 0.04 | 0.05 | 0.7 | 25 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Thangarasu, B.K.; Mahalingam, N.; Ma, K.; Meng, F.; Huang, Y.; Yeo, K.S. A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation. Electronics 2024, 13, 483. https://doi.org/10.3390/electronics13030483
Wang Y, Thangarasu BK, Mahalingam N, Ma K, Meng F, Huang Y, Yeo KS. A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation. Electronics. 2024; 13(3):483. https://doi.org/10.3390/electronics13030483
Chicago/Turabian StyleWang, Yisheng, Bharatha Kumar Thangarasu, Nagarajan Mahalingam, Kaixue Ma, Fanyi Meng, Yibo Huang, and Kiat Seng Yeo. 2024. "A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation" Electronics 13, no. 3: 483. https://doi.org/10.3390/electronics13030483