Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. The Length of the First Leaf and Dry Weight
2.3. Malondialdehyde (MDA) Content
2.4. Photosynthetic Pigments Content
2.5. Soluble Sugars (Glucose, Fructose, and Sucrose) Content
2.6. The Total Soluble Protein Content
2.7. Freezing Tolerance of Plants
2.8. Total RNA Extraction, cDNA Synthesis and Gene Expression by Real-Time Quantitative PCR
2.9. Expression Level of COR-Genes and Genes Encoding RuBisCo
2.10. Statistical Analysis
3. Results
3.1. Effect of Low Temperature on the Length of the First Leaf
3.2. Effect of Low Temperature on Dry Weight and Water Content
3.3. Effect of Low Temperature on Content of Photosynthetic Pigments
3.4. Effect of Low Temperature on Intensity of LPO
3.5. Effect of Low Temperature on the Content of Primary Metabolites
3.5.1. The Total Soluble Protein
3.5.2. Soluble Sugars
3.6. Effect of Low Temperature on the Expression of COR-Genes and Genes Encoding RuBisCo
3.7. Freezing Tolerance of Wheat Genotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Megha, S.; Basu, U.; Kav, N.N. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018, 41, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Źrobek-Sokolnik, A. Temperature stress and responses of plants. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M.N.V., Eds.; Springer Science & Business Media: New York, NY, USA, 2012; pp. 113–134. [Google Scholar]
- Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature 2017, 4, 371–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, X.; Su, Y.H.; Zhang, X.S. Genetic mechanisms of cold signaling in wheat (Triticum aestivum L.). Life 2022, 12, 700. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Xu, Q.; Guo, F.; Lv, Y.; Song, C.; Feng, M.; Yu, J.; Zhang, D.; Cang, J. Identification and characterization of long non—Coding RNAs as competing endogenous RNAs in the cold stress response of Triticum aestivum. Plant Biol. 2020, 22, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Gul, A.; Batool, T.S.; Huda, N.U.; Naseeer, F.; Abdul Salam, U.; Abdul Salam, M.; Ilyas, M.; Turkyilmaz Unal, B.; Ozturk, M. Molecular and genetic perspectives of cold tolerance in wheat. Mol. Biol. Rep. 2023, 50, 6997–7015. [Google Scholar] [CrossRef]
- Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot. 2015, 66, 3487–3498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.M.; Li, Z.H.; Zhou, Q.R.; Zhao, J.W.; Yan, Z.H.; Zhao, M.T.; Fan, Y.H.; Huang, Z.L.; Zhang, W.J. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting. J. Integr. Agric. 2023; in press. [Google Scholar] [CrossRef]
- Li, X.; Pu, H.; Liu, F.; Zhou, Q.; Cai, J.; Dai, T.; Cao, W.; Jiang, D. Winter wheat photosynthesis and grain yield responses to spring freeze. Agron. J. 2015, 107, 1002–1010. [Google Scholar] [CrossRef]
- Liu, N.; Yang, W.X. Photosynthetic rate and water utilization of rainfed wheat with plastic mulching on the semiarid loess plateau, China. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 1047–1056. [Google Scholar] [CrossRef]
- Hassan, H.; Alatawi, A.; Abdulmajeed, A.; Emam, M.; Khattab, H. Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 2021, 7, 16. [Google Scholar] [CrossRef]
- Venzhik, Y.V.; Talanova, V.V.; Titov, A.F. Features of the photosynthetic apparatus in winter and spring wheat plants with different cold tolerance. Russ. Agric. Sci. 2014, 40, 233–236. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Zolla, L.; Rinalducci, S. Low temperature tolerance in plants: Changes at the protein level. Phytochem 2015, 117, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Peshev, D.; Van den Ende, W. Sugars as antioxidants in plants. In Crop Improvement under Adverse Conditions; Tuteja, N., Gill, S.S., Eds.; Springer Science+Business Media: New York, NY, USA, 2013; pp. 285–307. [Google Scholar]
- Matros, A.; Peshev, D.; Peukert, M.; Mock, H.P.; Van den Ende, W. Sugars as hydroxyl radical scavengers: Proof of concept by studying the fate of sucralose in Arabidopsis. Plant J. 2015, 82, 822–839. [Google Scholar] [CrossRef] [PubMed]
- Caverzan, A.; Casassola, A.; Brammer, S.P. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 2016, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, M.; Xia, J.; Ren, Z.; Xing, J.; Li, C.; Xu, Q.; Cang, J.; Zhang, D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. Plant Biol. 2023, 25, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Tominaga, Y.; Nakagawara, C.; Shigematsu, S.; Minami, A.; Kawamura, Y. Responses of the plasma membrane to low temperatures. Physiol. Plant. 2006, 126, 81–89. [Google Scholar] [CrossRef]
- Rihan, H.Z.; Al-Issawi, M.; Fuller, M.P. Advances in physiological and molecular aspects of plant cold tolerance. J. Plant Interact. 2017, 12, 143–157. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Du Fall, L.A.; Solomon, P.S. Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen interactions. Metabolites 2011, 1, 64–78. [Google Scholar] [CrossRef]
- Fernie, A.R.; Pichersky, E. Focus issue on metabolism: Metabolites, metabolites everywhere. Plant Physiol. 2015, 169, 1421–1423. [Google Scholar] [CrossRef]
- Aslam, M.; Fakher, B.; Ashraf, M.A.; Cheng, Y.; Wang, B.; Qin, Y. Plant low-temperature stress: Signaling and response. Agronomy 2022, 12, 702. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, D.; Gao, Z.; Dong, Q.; He, L. Physiological responses to low temperature in spring and winter wheat varieties. J. Sci. Food Agric. 2016, 96, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Tsvetanov, S.; Atanassov, A.; Nakamura, C. Gold responsive gene/protein families and cold/freezing tolerance in cereals. Biotechnol. Biotechnol. Equip. 2014, 14, 3–11. [Google Scholar] [CrossRef]
- Winfield, M.O.; Lu, C.; Wilson, I.D.; Coghill, J.A.; Edwards, K.J. Plant responses to cold: Transcriptome analysis of wheat. Plant Biotechnol. J. 2010, 8, 749–771. [Google Scholar] [CrossRef]
- Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation—What is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef]
- Deryabin, A.N.; Trunova, T.I. Colligative effects of solutions of low-molecular sugars and their role in plants under hypothermia. Biol. Bull. 2021, 48 (Suppl. 3), S29–S37. [Google Scholar] [CrossRef]
- Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 2018, 87, 3583–3596. [Google Scholar] [CrossRef]
- Ahmad, I.Z. Role of sugars in abiotic stress signaling in plants. In Plant Signaling Molecules; Iqbal, M., Khan, R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 207–217. [Google Scholar]
- Nawaz, F.; Majeed, S.; Ahmad, K.S.; Hamid, A.; Shabbir, R.N.; Aqib, M.; Ikram, R.M. Use of osmolytes in improving abiotic stress tolerance to wheat (Triticum aestivum L.). In Wheat Production in Changing Environments; Hasanuzzaman, M., Nahar, K., Hossain, M., Eds.; Springer: Singapore, 2019; pp. 497–519. [Google Scholar]
- Xin, Z.; Browse, J. Cold comfort farm: The acclimation of plants to freezing temperatures. Plant Cell Environ. 2000, 23, 893–902. [Google Scholar] [CrossRef]
- Kaplan, F.; Kopka, J.; Sung, D.Y.; Zhao, W.; Popp, M.; Porat, R.; Guy, C.L. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 2007, 50, 967–981. [Google Scholar] [CrossRef]
- Pollock, C.J.; Eagles, C.F.; Sims, I.M. Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2 °C. Ann. Bot. 1988, 62, 95–100. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Lichtenthaler, H. K Chlorophylls and carotenoids—Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350. [Google Scholar]
- Nakamura, M. Determination of fructose in the presence of a large excess of glucose. Part IV. A modified resorcinol-thiourea-hydrochloric acid reaction. Agric. Biol. Chem. 1968, 32, 696–700. [Google Scholar]
- Kalinowska, E.; Chodorska, M.; Paduch-Cichal, E.; Mroczkowska, K. An improved method for RNA isolation from plants using commercial extraction kits. Acta Biochim. Pol. 2012, 59, 391–393. [Google Scholar] [CrossRef]
- Resuehr, D.; Spiess, A.N. A real-time polymerase chain reaction-based evaluation of cDNA synthesis priming methods. Anal. Biochem. 2003, 322, 287–291. [Google Scholar] [CrossRef]
- Pashkovskiy, P.; Kreslavski, V.D.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Shmarev, A.; Strokina, V.; Kuznetsov, V.V.; Allakhverdiev, S.I. Influence of light of different spectral compositions on the growth, photosynthesis, and expression of light-dependent genes of scots pine seedlings. Cells 2021, 10, 3284. [Google Scholar] [CrossRef]
- Perdomo, J.A.; Buchner, P.; Carmo-Silva, E. The relative abundance of wheat Rubisco activase isoforms is post-transcriptionally regulated. Photosyn. Res. 2021, 148, 47–56. [Google Scholar] [CrossRef]
- Xue, G.-P.; Sadat, S.; Drenth, J.; McIntyre, C.L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 2014, 65, 539–557. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Sarhadi, E.; Mahfoozi, S.; Hosseini, S.A.; Salekdeh, G.H. Cold acclimation proteome analysis reveals close link between up-regulation of low-temperature associated proteins and vernalization fulfillment. J. Proteome Res. 2010, 9, 5658–5667. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Alizadeh, H.; Naghavi, M.R.; Sharifi, G. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol. Biol. Rep. 2014, 41, 3897–3905. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Carvalho, M.E.; Azevedo, R.A.; Fidalgo, F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant. Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, J.; Mojović, M.; Milosavić, N.; Mitrović, A.; Vućinić, L.; Spasojević, I. Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur. Biophys. J. 2008, 37, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, E.N.; Pearce, R.S. Extracellular freezing in leaves of freezing-sensitive species. Planta 2002, 214, 798. [Google Scholar] [CrossRef] [PubMed]
- Beck, E.H.; Heim, R.; Hansen, J. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 2004, 29, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Trunova, T.I. Rastenie i Nizkotemperaturnyi Stress (64-e Timiryazevskie chteniya) (Plants and Cold Stress (64th Timiryazev Memorial Lectures)); Nauka: Moscow, Russia, 2007; 54p. (In Russian) [Google Scholar]
- Reyes-Diaz, M.; Ulloa, N.; Zuniga-Feest, A.; Gutierrez, A.; Gidekel, M.; Alberdi, M.; Corcuera, L.J.; Bravo, L.A. Arabidopsis thaliana avoids freezing by supercooling. J. Exp. Bot. 2006, 57, 3687–3696. [Google Scholar] [CrossRef] [PubMed]
- Sum, A.K.; Faller, R.; de Pablo, J.J. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys. J. 2003, 85, 2830–2844. [Google Scholar] [CrossRef]
- Kamata, T.; Uemura, M. Solute accumulation in wheat seedlings during cold acclimation: Contribution to increased freezing tolerance. CryoLetters 2004, 25, 311–322. [Google Scholar]
- Rekarte-Cowie, I.; Ebshish, O.S.; Mohamed, K.S.; Pearce, R.S. Sucrose helps regulate cold acclimation of Arabidopsis thaliana. J. Exp. Bot. 2008, 59, 4205–4217. [Google Scholar] [CrossRef] [PubMed]
- Salmon, Y.; Lintunen, A.; Dayet, A.; Chan, T.; Dewar, R.; Vesala, T.; Hölttä, T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 2020, 226, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Song, L.Z.; Fan, Z.X.; Zhang, F.Y.; Liu, Y.T.; Wang, S.G.; Zhu, L.X.; Zhu, B.L.; Xu, M.Z.; Gao, H.Q. Photosynthesis and its effects on growth of winter wheat during winter. Acta Agric. Nucl. Sin. 2001, 16, 243–246. [Google Scholar]
- Fernandez, O.; Theocharis, A.; Bordiec, S.; Feil, R.; Jacquens, L.; Clément, C.; Fontaine, F.; Barka, E.A. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol. Plant Microbe Interact. 2012, 4, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Babenko, L.M.; Kosakivska, I.V.; Akimov, Y.A.; Klymchuk, D.O.; Skaternya, T.D. Effect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol. 2014, 4, 117–125. [Google Scholar]
- Quinn, P.J. Effect of sugars on the phase behaviour of phospholipid model membranes. Biochem. Soc. Trans. 1989, 17, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Tjus, S.E.; Scheller, H.V.; Andersson, B.; Maller, B.L. Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiol. 2001, 125, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Nagy, L.; Kiss, V.; Brumfeld, V.; Osvay, K.; Börzsönyi, Á.; Magyar, M.; Szabó, T.; Dorogi, M.; Malkin, S. Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. Photochem. Photobiol. 2015, 91, 1368–1375. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kaur, N. Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 2005, 30, 761–776. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef]
- Kocsy, G.; Athmer, B.; Perovic, D.; Himmelbach, A.; Szűcs, A.; Vashegyi, I.; Schweizer, P.; Galiba, G.; Stein, N. Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol. Genet. Genom. 2010, 283, 351–363. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Xie, S.; Si, T.; Li, Y.; Zhu, J.K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016, 171, 2744–2759. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Prášil, I.T. The role of dehydrins in plant response to cold. Biol. Plant. 2007, 51, 601–617. [Google Scholar] [CrossRef]
- Bies-Etheve, N.; Gaubier-Comella, P.; Debures, A.; Lasserre, E.; Jobet, E.; Raynal, M.; Cooke, R.; Delseny, M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 2008, 67, 107–124. [Google Scholar] [CrossRef]
- Lissarre, M.; Ohta, M.; Sato, A.; Miura, K. Cold-responsive gene regulation during cold acclimation in plants. Plant Signal. Behav. 2010, 5, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.; Fowler, S.; Fiehn, O.; Thomashow, M.F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 15243–15248. [Google Scholar] [CrossRef]
- Vágújfalvi, A.; Aprile, A.; Miller, A.; Dubcovsky, J.; Delugu, G.; Galiba, G.; Cattivelli, L. The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol. Genet. Genom. 2005, 274, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Knox, A.K.; Li, C.; Vágújfalvi, A.; Galiba, G.; Stockinger, E.J.; Dubcovsky, J. Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol. Biol. 2008, 67, 257–270. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Sun, J.; Du, L.; Zhang, Y.; Yu, Q.; Liu, X. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol. 2013, 15, 292–303. [Google Scholar] [CrossRef]
Gene Name | Primer | Primer Sequences |
---|---|---|
TaRP15 | Forward | TCATTGTGGAGGACTCGTGG |
Reverse | GCAGACATAGCCCACACAT | |
Wcor726 | Forward | ACTGGAATGACCGGCTCG |
Reverse | TGTCCCGACTTCCCGTAGTT | |
CBF14 | Forward | ACAACCGATGACGAGAAGGAAA |
Reverse | AACCAGTGCTCATTCAACAGC | |
RbcS | Forward | GGATTCGACAACATGCGCCAGG |
Reverse | ATATGGCCTGTCGTGAGTGAGC | |
RbcL | Forward | ACCATTTATGCGCTGGAGAGACC |
Reverse | CAAGTAATGCCCCTTGATTTCACC |
Freezing | M39 | Zl | ||
---|---|---|---|---|
22 °C | 4 °C, 7 d | 22 °C | 4 °C, 7 d | |
0 °C, 24 h | 100 a | 100 a | 100 a | 100 a |
−3 °C, 24 h | 35 ± 2 c | 97 ± 3 a | 15 ± 2 d | 60 ± 3 b |
−5 °C, 24 h | 0 | 65 ± 4 b | 0 | 7 ± 2 e |
−7 °C, 24 h | 0 | 15 ± 2 d | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deryabin, A.; Zhukova, K.; Naraikina, N.; Venzhik, Y. Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance. Metabolites 2024, 14, 199. https://doi.org/10.3390/metabo14040199
Deryabin A, Zhukova K, Naraikina N, Venzhik Y. Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance. Metabolites. 2024; 14(4):199. https://doi.org/10.3390/metabo14040199
Chicago/Turabian StyleDeryabin, Alexander, Kseniya Zhukova, Natalia Naraikina, and Yuliya Venzhik. 2024. "Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance" Metabolites 14, no. 4: 199. https://doi.org/10.3390/metabo14040199