Next Issue
Volume 14, May
Previous Issue
Volume 14, March
 
 

Metabolites, Volume 14, Issue 4 (April 2024) – 69 articles

Cover Story (view full-size image): Little is known about lipid changes that occur with MASLD improvement. This study examined lipidome changes in 40 adolescent boys with hepatic steatosis ≥5%, randomized to a low-free sugar diet (LFSD) or usual diet for 8 weeks. Using LC-MS/MS, we observed decreased levels in triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) in the LFSD group. Network analysis showed significantly lower levels of palmitate-enriched TG species post-intervention. Targeted oxylipins analysis indicated changes in eicosanoids, with decreased 8-isoprostane and 14,15-DiHET and increased 8,9-DiHET. These lipids are linked to MASLD progression, suggesting potential improvement in lipid metabolism, DNL, insulin resistance, and lipotoxicity. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 4214 KiB  
Article
Transcriptomic and Lipidomic Analysis Reveals Complex Regulation Mechanisms Underlying Rice Roots’ Response to Salt Stress
by Yingbin Xue, Chenyu Zhou, Naijie Feng, Dianfeng Zheng, Xuefeng Shen, Gangshun Rao, Yongxiang Huang, Wangxiao Cai, Ying Liu and Rui Zhang
Metabolites 2024, 14(4), 244; https://doi.org/10.3390/metabo14040244 - 21 Apr 2024
Viewed by 374
Abstract
Rice (Oryza sativa L.), a crucial food crop that sustains over half the world’s population, is often hindered by salt stress during various growth stages, ultimately causing a decrease in yield. However, the specific mechanism of rice roots’ response to salt stress [...] Read more.
Rice (Oryza sativa L.), a crucial food crop that sustains over half the world’s population, is often hindered by salt stress during various growth stages, ultimately causing a decrease in yield. However, the specific mechanism of rice roots’ response to salt stress remains largely unknown. In this study, transcriptomics and lipidomics were used to analyze the changes in the lipid metabolism and gene expression profiles of rice roots in response to salt stress. The results showed that salt stress significantly inhibited rice roots’ growth and increased the roots’ MDA content. Furthermore, 1286 differentially expressed genes including 526 upregulated and 760 downregulated, were identified as responding to salt stress in rice roots. The lipidomic analysis revealed that the composition and unsaturation of membrane lipids were significantly altered. In total, 249 lipid molecules were differentially accumulated in rice roots as a response to salt stress. And most of the major phospholipids, such as phosphatidic acid (PA), phosphatidylcholine (PC), and phosphatidylserine (PS), as well as major sphingolipids including ceramide (Cer), phytoceramide (CerP), monohexose ceramide (Hex1Cer), and sphingosine (SPH), were significantly increased, while the triglyceride (TG) molecules decreased. These results suggested that rice roots mitigate salt stress by altering the fluidity and integrity of cell membranes. This study enhances our comprehension of salt stress, offering valuable insights into changes in the lipids and adaptive lipid remodeling in rice’s response to salt stress. Full article
(This article belongs to the Special Issue Metabolic Responses of Plants to Abiotic Stress)
Show Figures

Figure 1

17 pages, 2604 KiB  
Article
A Data-Driven Approach to Sugarcane Breeding Programs with Agronomic Characteristics and Amino Acid Constituent Profiling
by Chiaki Ishikawa, Yasuhiro Date, Makoto Umeda, Yusuke Tarumoto, Megumi Okubo, Yasujiro Morimitsu, Yasuaki Tamura, Yoichi Nishiba and Hiroshi Ono
Metabolites 2024, 14(4), 243; https://doi.org/10.3390/metabo14040243 - 21 Apr 2024
Viewed by 350
Abstract
Sugarcane (Saccharum spp. hybrids) and its processed products have supported local industries such as those in the Nansei Islands, Japan. To improve the sugarcane quality and productivity, breeders select better clones by evaluating agronomic characteristics, such as commercially recoverable sugar and cane [...] Read more.
Sugarcane (Saccharum spp. hybrids) and its processed products have supported local industries such as those in the Nansei Islands, Japan. To improve the sugarcane quality and productivity, breeders select better clones by evaluating agronomic characteristics, such as commercially recoverable sugar and cane yield. However, other constituents in sugarcane remain largely unutilized in sugarcane breeding programs. This study aims to establish a data-driven approach to analyze agronomic characteristics from breeding programs. This approach also determines a correlation between agronomic characteristics and free amino acid composition to make breeding programs more efficient. Sugarcane was sampled in clones in the later stage of breeding selection and cultivars from experimental fields on Tanegashima Island. Principal component analysis and hierarchical cluster analysis using agronomic characteristics revealed the diversity and variability of each sample, and the data-driven approach classified cultivars and clones into three groups based on yield type. A comparison of free amino acid constituents between these groups revealed significant differences in amino acids such as asparagine and glutamine. This approach dealing with a large volume of data on agronomic characteristics will be useful for assessing the characteristics of potential clones under selection and accelerating breeding programs. Full article
Show Figures

Figure 1

16 pages, 3442 KiB  
Article
Widely Targeted Metabolomic Analysis Provides New Insights into the Effect of Rootstocks on Citrus Fruit Quality
by Min Wang, Yang Chen, Shuang Li, Jianjun Yu, Lei Yang and Lin Hong
Metabolites 2024, 14(4), 242; https://doi.org/10.3390/metabo14040242 - 21 Apr 2024
Viewed by 303
Abstract
The use of different rootstocks has a significant effect on the content of flavor components and overall fruit quality. However, little information is available about the metabolic basis of the nutritional value of citrus plants. In this study, UPLC-MS/MS (ultra-performance liquid chromatography-tandem mass [...] Read more.
The use of different rootstocks has a significant effect on the content of flavor components and overall fruit quality. However, little information is available about the metabolic basis of the nutritional value of citrus plants. In this study, UPLC-MS/MS (ultra-performance liquid chromatography-tandem mass spectrometry) was performed to analyze the metabolites of three late-maturing hybrid mandarin varieties (‘Gold Nugget’, ‘Tango’ and ‘Orah’) grafted on four rootstocks (‘Trifoliate orange’, ‘Carrizo citrange’, ‘Red tangerine’ and ‘Ziyang Xiangcheng’). A total of 1006 metabolites were identified through OPLS-DA (Orthogonal Partial Least Squares-Discriminant Analysis) analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed the most critical pathways among the different pathways associated with genes grafted on the four rootstocks that were differentially activated, including tryptophan metabolism and sphingolipid metabolism in ‘Gold Nugget’; tryptophan metabolism, phenylpropanoid biosynthesis and sphingolipid metabolism in ‘Tango’; and pantothenate and CoA biosynthesis- and photosynthesis-related biosynthesis in ‘Orah’. A considerable difference between the different rootstocks was also observed in the accumulation of lipids, phenolic acids and flavonoids; further analysis revealed that the rootstocks regulated specific metabolites, including deacetylnomylinic acid, sudachinoid A, amoenin evodol, rutaevin, cyclo (phenylalanine-glutamic acid), cyclo (proline-phenylalanine), 2-hydroxyisocaproic acid, and 2-hydroxy-3-phenylpropanoic acid. The results of this study provide a useful foundation for further investigation of rootstock selection for late-maturation hybrid mandarin varieties. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

14 pages, 2611 KiB  
Article
Salicylic Acid and Water Stress: Effects on Morphophysiology and Essential Oil Profile of Eryngium foetidum
by Sabrina Kelly dos Santos, Daniel da Silva Gomes, Vanessa de Azevedo Soares, Estephanni Fernanda Oliveira Dantas, Ana Flávia Pellegrini de Oliveira, Moises Henrique Almeida Gusmão, Elyabe Monteiro de Matos, Tancredo Souza, Lyderson Facio Viccini, Richard Michael Grazul, Juliane Maciel Henschel and Diego Silva Batista
Metabolites 2024, 14(4), 241; https://doi.org/10.3390/metabo14040241 - 21 Apr 2024
Viewed by 243
Abstract
The exogenous application of bioregulators, such as salicylic acid (SA), has exhibited promising outcomes in alleviating drought stress. Nevertheless, its impact on culantro (Eryngium foetidum L.) remains unexplored. Thus, the aim of this study was to assess how SA impacts the growth, [...] Read more.
The exogenous application of bioregulators, such as salicylic acid (SA), has exhibited promising outcomes in alleviating drought stress. Nevertheless, its impact on culantro (Eryngium foetidum L.) remains unexplored. Thus, the aim of this study was to assess how SA impacts the growth, morphophysiology, and essential oil composition of culantro when subjected to drought. To achieve this, culantro plants were grown under three different watering regimes: well-watered, drought-stressed, and re-watered. Additionally, they were either treated with SA (100 µM) or left untreated, with water serving as the control. SA application did not mitigate the effects of drought in biomass production but increased biomass, leaf number, leaf area, and photosynthetic pigments under well-irrigated and re-watered conditions. After a drought period followed by re-watering, plants recovered membrane integrity independently of SA application. Water stress and the exogenous application of SA also modulated the profile of essential oils. This is the first report about SA and drought affecting growth and essential oil composition in culantro. Full article
(This article belongs to the Special Issue Metabolic Responses of Plants to Abiotic Stress)
Show Figures

Figure 1

19 pages, 2039 KiB  
Article
Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria
by Paul L. Wood, Annie Le and Dominic L. Palazzolo
Metabolites 2024, 14(4), 240; https://doi.org/10.3390/metabo14040240 - 20 Apr 2024
Viewed by 333
Abstract
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of [...] Read more.
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs). Full article
(This article belongs to the Special Issue Lipidomics in Health and Disease)
Show Figures

Graphical abstract

19 pages, 2508 KiB  
Article
HMOs Impact the Gut Microbiome of Children and Adults Starting from Low Predicted Daily Doses
by Danica Bajic, Frank Wiens, Eva Wintergerst, Stef Deyaert, Aurélien Baudot and Pieter Van den Abbeele
Metabolites 2024, 14(4), 239; https://doi.org/10.3390/metabo14040239 - 20 Apr 2024
Viewed by 340
Abstract
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower [...] Read more.
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species—2′Fucosyllactose (2′FL), Lacto-N-neotetraose (LNnT), 3′Sialyllactose (3′SL), and 6′Sialyllactose (6′SL)—at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3–0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6′SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2′FL and 3′SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut–brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2′FL (children/adults). Full article
Show Figures

Figure 1

12 pages, 3089 KiB  
Article
Anaplerotic Therapy Using Triheptanoin in Two Brothers Suffering from Aconitase 2 Deficiency
by Maximilian Penkl, Johannes A. Mayr, René G. Feichtinger, Ralf Reilmann, Otfried Debus, Manfred Fobker, Anja Penkl, Janine Reunert, Stephan Rust and Thorsten Marquardt
Metabolites 2024, 14(4), 238; https://doi.org/10.3390/metabo14040238 - 20 Apr 2024
Viewed by 296
Abstract
Citric acid cycle deficiencies are extremely rare due to their central role in energy metabolism. The ACO2 gene encodes the mitochondrial isoform of aconitase (aconitase 2), the second enzyme of the citric acid cycle. Approximately 100 patients with aconitase 2 deficiency have been [...] Read more.
Citric acid cycle deficiencies are extremely rare due to their central role in energy metabolism. The ACO2 gene encodes the mitochondrial isoform of aconitase (aconitase 2), the second enzyme of the citric acid cycle. Approximately 100 patients with aconitase 2 deficiency have been reported with a variety of symptoms, including intellectual disability, hypotonia, optic nerve atrophy, cortical atrophy, cerebellar atrophy, and seizures. In this study, a homozygous deletion in the ACO2 gene in two brothers with reduced aconitase 2 activity in fibroblasts has been described with symptoms including truncal hypotonia, optic atrophy, hyperopia, astigmatism, and cerebellar atrophy. In an in vivo trial, triheptanoin was used to bypass the defective aconitase 2 and fill up the citric acid cycle. Motor abilities in both patients improved. Full article
Show Figures

Graphical abstract

21 pages, 3328 KiB  
Article
Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites
by Glaucimar A. P. Resende, Michelle S. S. Amaral, Bruno G. Botelho and Philip J. Marriott
Metabolites 2024, 14(4), 237; https://doi.org/10.3390/metabo14040237 - 19 Apr 2024
Viewed by 376
Abstract
Since hop secondary metabolites have a direct correlation with the quality of beer and other hop-based beverages, and the volatile fraction of hop has a complex composition, requiring effective separation, here we explore the application of headspace solid-phase microextraction as a sample preparation [...] Read more.
Since hop secondary metabolites have a direct correlation with the quality of beer and other hop-based beverages, and the volatile fraction of hop has a complex composition, requiring effective separation, here we explore the application of headspace solid-phase microextraction as a sample preparation method, coupled with comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS) analysis. The methodology involved the use of a DVB/PDMS fibre with 500 mg of hop cone powder, extracted for 40 min at 50 °C, for both GC–MS and GC×GC–MS. The varieties Azacca, Cascade, Enigma, Loral, and Zappa were studied comprehensively. The results demonstrate that GC×GC–MS increases the number of peaks by over 300% compared to classical GC–MS. Overall, 137 compounds were identified or tentatively identified and categorised into 10 classes, representing between 87.6% and 96.9% of the total peak area. The composition revealed the highest concentration of sesquiterpene hydrocarbons for Enigma, whilst Zappa showed a relatively significant concentration of monoterpene hydrocarbons. Principal component analysis for all compounds and classes, along with hierarchical cluster analysis, indicated similarities between Zappa and Cascade, and Azacca and Loral. In conclusion, this method presents an optimistic advancement in hop metabolite studies with a simple and established sample preparation procedure in combination with an effective separation technique. Full article
Show Figures

Graphical abstract

27 pages, 5816 KiB  
Article
High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass (Micropterus salmoides)
by Yuanyuan Xie, Xianping Shao, Penghui Zhang, Hao Zhang, Jiaxing Yu, Xinfeng Yao, Yifan Fu, Jiao Wei and Chenglong Wu
Metabolites 2024, 14(4), 236; https://doi.org/10.3390/metabo14040236 - 19 Apr 2024
Viewed by 324
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High [...] Read more.
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3–D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass. Full article
(This article belongs to the Special Issue Metabolism in Aquatic Products)
Show Figures

Figure 1

14 pages, 2568 KiB  
Article
Development of New Predictive Equations for the Resting Metabolic Rate (RMR) of Women with Lipedema
by Małgorzata Jeziorek, Jakub Wronowicz, Łucja Janek, Krzysztof Kujawa and Andrzej Szuba
Metabolites 2024, 14(4), 235; https://doi.org/10.3390/metabo14040235 - 19 Apr 2024
Viewed by 308
Abstract
This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect calorimetry, while [...] Read more.
This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect calorimetry, while body composition and anthropometric measurements were conducted using standardized protocols. Due to multicollinearity among predictors, classical multiple regression was deemed inadequate for developing the new equation. Therefore, we employed machine learning techniques, utilizing principal component analysis (PCA) for dimensionality reduction and predictor selection. Regression models, including support vector regression (SVR), random forest regression (RFR), and k-nearest neighbor (kNN) were evaluated in Python’s scikit-learn framework, with hyperparameter tuning via GridSearchCV. Model performance was assessed through mean absolute percentage error (MAPE) and cross-validation, complemented by Bland–Altman plots for method comparison. A novel equation incorporating body composition parameters was developed, addressing a gap in accurate RMR prediction methods. By incorporating measurements of body circumference and body composition parameters alongside traditional predictors, the model’s accuracy was improved. The segmented regression model outperformed others, achieving an MAPE of 10.78%. The proposed predictive equation for RMR offers a practical tool for personalized treatment planning in patients with lipedema. Full article
(This article belongs to the Special Issue Epidemiology, Nutrition and Metabolism)
Show Figures

Figure 1

12 pages, 1365 KiB  
Article
Comparison of the Effect of Two Different Handling Conditions at Slaughter in Saliva Analytes in Pigs
by María Botía, Damián Escribano, Alba Ortín-Bustillo, María J. López-Martínez, Pablo Fuentes, Francisco J. Jiménez-Caparrós, Juan L. Hernández-Gómez, Antonio Avellaneda, José J. Cerón, Camila P. Rubio, Asta Tvarijonaviciute, Silvia Martínez-Subiela, Marina López-Arjona and Fernando Tecles
Metabolites 2024, 14(4), 234; https://doi.org/10.3390/metabo14040234 - 18 Apr 2024
Viewed by 346
Abstract
In this report, different handling conditions at slaughterhouse were studied to assess changes in salivary biomarkers. For this purpose, finishing pigs were divided into two groups, one in which handling was improved to minimize stress (Group A, n = 24, transported and stabled [...] Read more.
In this report, different handling conditions at slaughterhouse were studied to assess changes in salivary biomarkers. For this purpose, finishing pigs were divided into two groups, one in which handling was improved to minimize stress (Group A, n = 24, transported and stabled at the slaughterhouse at low density without mixing with unfamiliar animals throughout the whole process) and another one in which animals had a more stressful handling process (Group B, n = 24, transported and stabled at high density with unfamiliar animals). Saliva samples were taken the day before transport to the slaughterhouse at 8:00 a.m. (B0) and 12:00 a.m. (B4), and the day of slaughter just after unloading animals at the slaughterhouse at approximately 8:00 a.m. (S0) and after 4 h of lairage at approximately 12:00 a.m. (S4). Group B showed significantly higher cortisol, total esterase activity, oxytocin, adenosine deaminase and haptoglobin levels than the Group A at both S0 and S4 sampling times, and higher levels of calprotectin and creatine kinase at S4 sampling time. This report indicates that differences in the way in which the pigs are handled at the slaughterhouse can lead to changes in salivary biomarkers and opens the possibility of the use of biomarker at slaughter to monitor handling conditions. Full article
Show Figures

Figure 1

15 pages, 1228 KiB  
Article
Vitamin D and Ceramide Metabolomic Profile in Acute Myocardial Infarction
by Melania Gaggini, Federica Marchi, Nataliya Pylypiv, Alessandra Parlanti, Simona Storti, Umberto Paradossi, Sergio Berti and Cristina Vassalle
Metabolites 2024, 14(4), 233; https://doi.org/10.3390/metabo14040233 - 18 Apr 2024
Viewed by 310
Abstract
Sphingolipids (SLs) influence several cellular pathways, while vitamin D exerts many extraskeletal effects in addition to its traditional biological functions, including the modulation of calcium homeostasis and bone health. Moreover, Vitamin D and SLs affect the regulation of each others’ metabolism; hence, this [...] Read more.
Sphingolipids (SLs) influence several cellular pathways, while vitamin D exerts many extraskeletal effects in addition to its traditional biological functions, including the modulation of calcium homeostasis and bone health. Moreover, Vitamin D and SLs affect the regulation of each others’ metabolism; hence, this study aims to evaluate the relationship between the levels of 25(OH)D and ceramides in acute myocardial infarction (AMI). In particular, the blood abundance of eight ceramides and 25(OH)D was evaluated in 134 AMI patients (aged 68.4 ± 12.0 years, 72% males). A significant inverse correlation between 25(OH)D and both Cer(d18:1/16:0) and Cer(d18:1/18:0) was found; indeed, patients with severe hypovitaminosis D (<10 ng/mL) showed the highest levels of the two investigated ceramides. Moreover, diabetic/dyslipidemic patients with suboptimal levels of 25(OH)D (<30 ng/mL) had higher levels of both the ceramides when compared with the rest of the population. On the other hand, 25(OH)D remained an independent determinant for Cer(d18:1/16:0) (STD Coeff −0.18, t-Value −2, p ≤ 0.05) and Cer(d18:1/18:0) (−0.2, −2.2, p < 0.05). In light of these findings, the crosstalk between sphingolipids and vitamin D may unravel additional mechanisms by which these molecules can influence CV risk in AMI. Full article
Show Figures

Figure 1

18 pages, 1555 KiB  
Review
Computational Applications: Beauvericin from a Mycotoxin into a Humanized Drug
by Charbel Al Khoury, Sima Tokajian, Nabil Nemer, Georges Nemer, Kelven Rahy, Sergio Thoumi, Lynn Al Samra and Aia Sinno
Metabolites 2024, 14(4), 232; https://doi.org/10.3390/metabo14040232 - 18 Apr 2024
Viewed by 485
Abstract
Drug discovery was initially attributed to coincidence or experimental research. Historically, the traditional approaches were complex, lengthy, and expensive, entailing costly random screening of synthesized compounds or natural products coupled with in vivo validation largely depending on the availability of appropriate animal models. [...] Read more.
Drug discovery was initially attributed to coincidence or experimental research. Historically, the traditional approaches were complex, lengthy, and expensive, entailing costly random screening of synthesized compounds or natural products coupled with in vivo validation largely depending on the availability of appropriate animal models. Currently, in silico modeling has become a vital tool for drug discovery and repurposing. Molecular docking and dynamic simulations are being used to find the best match between a ligand and a molecule, an approach that could help predict the biomolecular interactions between the drug and the target host. Beauvericin (BEA) is an emerging mycotoxin produced by the entomopathogenic fungus Beauveria bassiana, being originally studied for its potential use as a pesticide. BEA is now considered a molecule of interest for its possible use in diverse biotechnological applications in the pharmaceutical industry and medicine. In this manuscript, we provide an overview of the repurposing of BEA as a potential therapeutic agent for multiple diseases. Furthermore, considerable emphasis is given to the fundamental role of in silico techniques to (i) further investigate the activity spectrum of BEA, a secondary metabolite, and (ii) elucidate its mode of action. Full article
Show Figures

Figure 1

14 pages, 3268 KiB  
Article
Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites
by Mouyixing Chen, Guo Yu, Hui Qiu, Pingping Jiang, Xuemei Zhong and Jie Liu
Metabolites 2024, 14(4), 231; https://doi.org/10.3390/metabo14040231 - 18 Apr 2024
Viewed by 279
Abstract
Heavy metal pollution poses significant environmental challenges, and understanding how plants and endophytic bacteria interact to mitigate these challenges is of utmost importance. In this study, we investigated the roles of endophytic bacteria, particularly Chryseobacterium and Comamonas, in Leersia hexandra Swartz ( [...] Read more.
Heavy metal pollution poses significant environmental challenges, and understanding how plants and endophytic bacteria interact to mitigate these challenges is of utmost importance. In this study, we investigated the roles of endophytic bacteria, particularly Chryseobacterium and Comamonas, in Leersia hexandra Swartz (L. hexandra) in response to chromium and nickel co-pollution. Our results demonstrated the remarkable tolerance of Chryseobacterium and Comamonas to heavy metals, and their potential to become dominant species in the presence of co-pollution. We observed a close relationship between these endophytic bacteria and the significant differences in metabolites, particularly carbohydrates, flavonoids, and amino acids in L. hexandra. These findings shed light on the potential of endophytic bacteria to promote the production of aspartic acid and other metabolites in plants as a response to abiotic stressors. Furthermore, our study presents a new direction for plant and bioremediation strategies in heavy metal pollution and enhances our understanding of L. hexandra’s mechanisms for heavy metal tolerance. Full article
Show Figures

Figure 1

17 pages, 3312 KiB  
Article
Discrimination of Lipogenic or Glucogenic Diet Effects in Early-Lactation Dairy Cows Using Plasma Metabolite Abundances and Ratios in Combination with Machine Learning
by Xiaodan Wang, Sanjeevan Jahagirdar, Wouter Bakker, Carolien Lute, Bas Kemp, Ariette van Knegsel and Edoardo Saccenti
Metabolites 2024, 14(4), 230; https://doi.org/10.3390/metabo14040230 - 17 Apr 2024
Viewed by 263
Abstract
During early lactation, dairy cows have a negative energy balance since their energy demands exceed their energy intake: in this study, we aimed to investigate the association between diet and plasma metabolomics profiles and how these relate to energy unbalance of course in [...] Read more.
During early lactation, dairy cows have a negative energy balance since their energy demands exceed their energy intake: in this study, we aimed to investigate the association between diet and plasma metabolomics profiles and how these relate to energy unbalance of course in the early-lactation stage. Holstein-Friesian cows were randomly assigned to a glucogenic (n = 15) or lipogenic (n = 15) diet in early lactation. Blood was collected in week 2 and week 4 after calving. Plasma metabolite profiles were detected using liquid chromatography–mass spectrometry (LC-MS), and a total of 39 metabolites were identified. Two plasma metabolomic profiles were available every week for each cow. Metabolite abundance and metabolite ratios were used for the analysis using the XGboost algorithm to discriminate between diet treatment and lactation week. Using metabolite ratios resulted in better discrimination performance compared with the metabolite abundances in assigning cows to a lipogenic diet or a glucogenic diet. The quality of the discrimination of performance of lipogenic diet and glucogenic diet effects improved from 0.606 to 0.753 and from 0.696 to 0.842 in week 2 and week 4 (as measured by area under the curve, AUC), when the metabolite abundance ratios were used instead of abundances. The top discriminating ratios for diet were the ratio of arginine to tyrosine and the ratio of aspartic acid to valine in week 2 and week 4, respectively. For cows fed the lipogenic diet, choline and the ratio of creatinine to tryptophan were top features to discriminate cows in week 2 vs. week 4. For cows fed the glucogenic diet, methionine and the ratio of 4-hydroxyproline to choline were top features to discriminate dietary effects in week 2 or week 4. This study shows the added value of using metabolite abundance ratios to discriminate between lipogenic and glucogenic diet and lactation weeks in early-lactation cows when using metabolomics data. The application of this research will help to accurately regulate the nutrition of lactating dairy cows and promote sustainable agricultural development. Full article
(This article belongs to the Collection Advances in Metabolomics)
Show Figures

Figure 1

24 pages, 2543 KiB  
Hypothesis
Mitochondrial–Stem Cell Connection: Providing Additional Explanations for Understanding Cancer
by Pierrick Martinez, Ilyes Baghli, Géraud Gourjon and Thomas N. Seyfried
Metabolites 2024, 14(4), 229; https://doi.org/10.3390/metabo14040229 - 17 Apr 2024
Viewed by 1499
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial–stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency [...] Read more.
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial–stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses. Full article
Show Figures

Figure 1

15 pages, 1073 KiB  
Review
Iron Absorption: Molecular and Pathophysiological Aspects
by Margherita Correnti, Elena Gammella, Gaetano Cairo and Stefania Recalcati
Metabolites 2024, 14(4), 228; https://doi.org/10.3390/metabo14040228 - 17 Apr 2024
Viewed by 321
Abstract
Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the [...] Read more.
Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the other hand, excess iron may lead to cell and tissue damage. Consequently, iron balance is strictly regulated. As iron excretion is not physiologically controlled, systemic iron homeostasis is maintained at the level of absorption, which is mainly influenced by the amount of iron stores and the level of erythropoietic activity, the major iron consumer. Here, we outline recent advances that increased our understanding of the molecular aspects of iron absorption. Moreover, we examine the impact of these recent insights on dietary strategies for maintaining iron balance. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 4163 KiB  
Article
Combined Metabolomics and Biochemical Analyses of Serum and Milk Revealed Parity-Related Metabolic Differences in Sanhe Dairy Cattle
by Zixin Liu, Aoyu Jiang, Xiaokang Lv, Dingkun Fan, Qingqing Chen, Yicheng Wu, Chuanshe Zhou and Zhiliang Tan
Metabolites 2024, 14(4), 227; https://doi.org/10.3390/metabo14040227 - 16 Apr 2024
Viewed by 349
Abstract
The production performance of dairy cattle is closely related to their metabolic state. This study aims to provide a comprehensive understanding of the production performance and metabolic features of Sanhe dairy cattle across different parities, with a specific focus on evaluating variations in [...] Read more.
The production performance of dairy cattle is closely related to their metabolic state. This study aims to provide a comprehensive understanding of the production performance and metabolic features of Sanhe dairy cattle across different parities, with a specific focus on evaluating variations in milk traits and metabolites in both milk and serum. Sanhe dairy cattle from parities 1 to 4 (S1, n = 10; S2, n = 9; S3, n = 10; and S4, n = 10) at mid-lactation were maintained under the same feeding and management conditions. The milk traits, hydrolyzed milk amino acid levels, serum biochemical parameters, and serum free amino acid levels of the Sanhe dairy cattle were determined. Multiparous Sanhe dairy cattle (S2, S3, and S4) had a greater milk protein content, lower milk lactose content, and lower solids-not-fat content than primiparous Sanhe dairy cattle (S1). Moreover, S1 had a higher ratio of essential to total amino acids (EAAs/TAAs) in both the serum and milk. The serum biochemical results showed the lower glucose and total protein levels in S1 cattle were associated with milk quality. Furthermore, ultra-high-resolution high-performance liquid chromatography with tandem MS analysis (UPLC-MS/MS) identified 86 and 105 differential metabolites in the serum and milk, respectively, and these were mainly involved in amino acid, carbohydrate, and lipid metabolism. S1 and S2/S3/S4 had significantly different metabolic patterns in the serum and milk, and more vitamin B-related metabolites were significantly higher identified in S1 than in multiparous cattle. Among 36 shared differential metabolites in the serum and milk, 10 and 7 metabolites were significantly and strongly correlated with differential physiological indices, respectively. The differential metabolites identified were enriched in key metabolic pathways, illustrating the metabolic characteristics of the serum and milk from Sanhe dairy cattle of different parities. L-phenylalanine, dehydroepiandrosterone, and linoleic acid in the milk and N-acetylornithine in the serum could be used as potential marker metabolites to distinguish between Sanhe dairy cattle with parities of 1–4. In addition, a metabolic map of the serum and milk from the three aspects of carbohydrates, amino acids, and lipids was created for the further analysis and exploration of their relationships. These results reveal significant variations in milk traits and metabolites across different parities of Sanhe dairy cattle, highlighting the influence of parity on the metabolic profiles and production performance. Tailored nutritional strategies based on parity-specific metabolic profiles are recommended to optimize milk production and quality in Sanhe cattle. Full article
(This article belongs to the Special Issue Metabolites in Ruminant Health)
Show Figures

Figure 1

16 pages, 2868 KiB  
Article
A System Biology Approach Reveals New Targets for Human Thyroid Gland Toxicity in Embryos and Adult Individuals
by Jeane Maria Oliveira, Jamilli Zenzeluk, Caroline Serrano-Nascimento, Marco Aurelio Romano and Renata Marino Romano
Metabolites 2024, 14(4), 226; https://doi.org/10.3390/metabo14040226 - 16 Apr 2024
Viewed by 371
Abstract
Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to [...] Read more.
Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function. Full article
(This article belongs to the Special Issue Effects of Chemical Exposure on Endocrine and Reproductive Functions)
Show Figures

Graphical abstract

22 pages, 5125 KiB  
Article
Characterization and Discrimination of Marigold Oleoresin from Different Origins Based on UPLC-QTOF-MS Combined Molecular Networking and Multivariate Statistical Analysis
by Xingfu Cai, Juanjuan Wu, Yunhe Lian, Shuaiyao Yang, Qiang Xue, Dewang Li and Di Wu
Metabolites 2024, 14(4), 225; https://doi.org/10.3390/metabo14040225 - 15 Apr 2024
Viewed by 349
Abstract
Marigold oleoresin is an oil-soluble natural colorant mainly extracted from marigold flowers. Xinjiang of China, India, and Zambia of Africa are the three main production areas of marigold flowers. Therefore, this study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technology, combined with [...] Read more.
Marigold oleoresin is an oil-soluble natural colorant mainly extracted from marigold flowers. Xinjiang of China, India, and Zambia of Africa are the three main production areas of marigold flowers. Therefore, this study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technology, combined with Global Natural Products Social Molecular Networking (GNPS) and multivariate statistical analysis, for the qualitative and discriminant analysis of marigold oleoresin obtained from three different regions. Firstly, 83 compounds were identified in these marigold oleoresin samples. Furthermore, the results of a principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated significant differences in the chemical compositions of the marigold oleoresin samples from different regions. Finally, 12, 23, and 38 differential metabolites were, respectively, identified by comparing the marigold oleoresin from Africa with Xinjiang, Africa with India, and Xinjiang with India. In summary, these results can be used to distinguish marigold oleoresin samples from different regions, laying a solid foundation for further quality control and providing a theoretical basis for assessing its safety and nutritional aspects. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

22 pages, 5886 KiB  
Article
Hypoglycemic Activity of Rice Resistant-Starch Metabolites: A Mechanistic Network Pharmacology and In Vitro Approach
by Jianing Ren, Jing Dai, Yue Chen, Zhenzhen Wang, Ruyi Sha, Jianwei Mao and Yangchen Mao
Metabolites 2024, 14(4), 224; https://doi.org/10.3390/metabo14040224 - 15 Apr 2024
Viewed by 404
Abstract
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further [...] Read more.
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand–receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Figure 1

24 pages, 7729 KiB  
Article
Cryoprotectant-Mediated Cold Stress Mitigation in Litchi Flower Development: Transcriptomic and Metabolomic Perspectives
by Xue-Wen Zheng, Xin-Yue Cao, Wen-Hao Jiang, Guang-Zhao Xu, Qing-Zhi Liang and Zhuan-Ying Yang
Metabolites 2024, 14(4), 223; https://doi.org/10.3390/metabo14040223 - 15 Apr 2024
Viewed by 375
Abstract
Temperature is vital in plant growth and agricultural fruit production. Litchi chinensis Sonn, commonly known as litchi, is appreciated for its delicious fruit and fragrant blossoms and is susceptible to stress when exposed to low temperatures. This study investigates the effect of two [...] Read more.
Temperature is vital in plant growth and agricultural fruit production. Litchi chinensis Sonn, commonly known as litchi, is appreciated for its delicious fruit and fragrant blossoms and is susceptible to stress when exposed to low temperatures. This study investigates the effect of two cryoprotectants that counteract cold stress during litchi flowering, identifies the genes that generate the cold resistance induced by the treatments, and hypothesizes the roles of these genes in cold resistance. Whole plants were treated with Bihu and Liangli cryoprotectant solutions to protect inflorescences below 10 °C. The soluble protein, sugar, fructose, sucrose, glucose, and proline contents were measured during inflorescence. Sucrose synthetase, sucrose phosphate synthetase, antioxidant enzymes (SOD, POD, CAT), and MDA were also monitored throughout the flowering stage. Differentially expressed genes (DEGs), gene ontology, and associated KEGG pathways in the transcriptomics study were investigated. There were 1243 DEGs expressed after Bihu treatment and 1340 in the control samples. Signal transduction pathways were associated with 39 genes in the control group and 43 genes in the Bihu treatment group. The discovery of these genes may contribute to further research on cold resistance mechanisms in litchi. The Bihu treatment was related to 422 low-temperature-sensitive differentially accumulated metabolites (DAMs), as opposed to 408 DAMs in the control, mostly associated with lipid metabolism, organic oxidants, and alcohols. Among them, the most significant differentially accumulated metabolites were involved in pathways such as β-alanine metabolism, polycyclic aromatic hydrocarbon biosynthesis, linoleic acid metabolism, and histidine metabolism. These results showed that Bihu treatment could potentially promote these favorable traits and increase fruit productivity compared to the Liangli and control treatments. More genomic research into cold stress is needed to support the findings of this study. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

16 pages, 1903 KiB  
Article
A Comparative Analysis of Polysaccharides and Ethanolic Extracts from Two Egyptian Sweet Potato Cultivars, Abees and A 195: Chemical Characterization and Immunostimulant Activities
by Rehab M. Elgabry, Mariam Hassan, Ghada A. Fawzy, Khaled M. Meselhy, Osama G. Mohamed, Areej M. Al-Taweel and Mohamed S. Sedeek
Metabolites 2024, 14(4), 222; https://doi.org/10.3390/metabo14040222 - 14 Apr 2024
Viewed by 348
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. The roots of sweet potatoes are rich in valuable phytochemical constituents that vary according to the flesh color. Our investigation focused on the chemical profiling of two Egyptian sweet potato cultivars, Abees and A 195, using UPLC-QTOF and the analysis of their polysaccharide fractions by GC-MS. Furthermore, we assessed the immunostimulant properties of these extracts in immunosuppressed mice. The study revealed that sweet potato roots contain significant concentrations of phenolic acids, including caffeoylquinic, caffeic, caffeoyl-feruloyl quinic, and p-coumaric acids, as well as certain flavonoids, such as diosmin, diosmetin, and jaceosidin, and coumarins, such as scopoletin and umbelliferone. Moreover, polysaccharides prepared from both studied cultivars were analyzed using GC-MS. Further biological analysis demonstrated that all the tested extracts possessed immunostimulant properties by elevating the level of WBCs, IL-2, TNF, and IFN-γ in the immunosuppressed mice relative to the control group with the highest values in polysaccharide fractions of A195 (the ethanolic extract showed a higher effect on TNF and IFN-γ, while its polysaccharide fraction exhibited a promising effect on IL-2 and WBCs). In conclusion, the roots of the Egyptian sweet potato cultivars Abees and A 195 demonstrated significant immunostimulant activities, which warrants further investigation through clinical studies. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

18 pages, 1750 KiB  
Article
The Effect of Maternal Overweight/Obesity on Serum and Breastmilk Leptin, and Its Associations with Body Composition, Cardiometabolic Health Indices, and Maternal Diet: The BLOOM Study
by Monika A. Zielinska-Pukos, Łukasz Kopiasz and Jadwiga Hamulka
Metabolites 2024, 14(4), 221; https://doi.org/10.3390/metabo14040221 - 13 Apr 2024
Viewed by 455
Abstract
In overweight and obese patients, elevated serum and breastmilk leptin concentrations are observed, with serum leptin also being likely affected by the diet. We analyzed serum and breastmilk leptin in normal weight (NW) and overweight/obese (OW/OB) mothers, and evaluated its associations with (1) [...] Read more.
In overweight and obese patients, elevated serum and breastmilk leptin concentrations are observed, with serum leptin also being likely affected by the diet. We analyzed serum and breastmilk leptin in normal weight (NW) and overweight/obese (OW/OB) mothers, and evaluated its associations with (1) maternal anthropometric parameters; (2) markers of cardiometabolic health; and (3) the maternal diet. The BLOOM (Breastmilk and the Link to Overweight/Obesity and Maternal diet) study was conducted among 40 women (n = 20 OW/OB; n = 20, NW) who were exclusively or predominantly breastfeeding for 15.5 ± 1.2 (OW/OB group (0.99)) weeks. We collected 24 h breastmilk and fasting blood samples for leptin analysis by ELISA. Maternal dietary habits were evaluated using a 3-day dietary record and food frequency questionnaire, which were used to calculate the Polish-adapted Mediterranean Diet score. Maternal anthropometric measurements and DEXA scans were performed, and anthropometric and cardiometabolic indices were calculated. The OW mothers had 1.4 times higher serum levels, while OB mothers had 4.5 and 6.2 higher serum and breastmilk leptin levels, respectively, in comparison to the NW mothers. The FM% was correlated with serum and breastmilk leptin levels (r = 0.878, r = 0.638). Serum leptin was associated with markers of cardiometabolic health such as AIP, CMI, and VAI in the NW mothers, and with LAP in the OW/OB mothers. Higher energy, fructose intake and adherence to the Mediterranean diet were associated with serum leptin in the NW mothers (β = 0.323, 0.039–0.608; β = 0.318, 0.065–0.572; β = 0.279, 0.031–0.528); meanwhile, higher adherence to the Mediterranean diet could protect against elevated breastmilk leptin concentrations in OW/OB mothers (β = −0.444, −0.839–−0.050), even after adjustment for FM%. Our results suggest a potential association between maternal serum leptin concentrations and cardiometabolic health. In addition, we confirm the importance of healthy dietary patterns in the improvement of breastmilk composition. Full article
(This article belongs to the Special Issue Dietary Strategies for Metabolic Syndrome)
Show Figures

Figure 1

12 pages, 1932 KiB  
Article
Chronic Administration of Exogenous Lactate Increases Energy Expenditure during Exercise through Activation of Skeletal Muscle Energy Utilization Capacity in Mice
by Inkwon Jang, Sunghwan Kyun, Deunsol Hwang, Taeho Kim, Kiwon Lim, Hun-Young Park, Sung-Woo Kim and Jisu Kim
Metabolites 2024, 14(4), 220; https://doi.org/10.3390/metabo14040220 - 13 Apr 2024
Viewed by 364
Abstract
We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON [...] Read more.
We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON (sedentary + saline), LAC (sedentary + lactate), EXE (exercise + saline), and EXLA (exercise + lactate). The total experimental period was set at 4 weeks, the training intensity was set at 60–70% VO2max, and each exercise group was administered a solution immediately after exercise. Changes in the energy substrate utilization at rest and during exercise, the protein levels related to energy substrate utilization in skeletal muscles, and the body composition were measured. Lactate intake and exercise increased carbohydrate oxidation as a substrate during exercise, leading to an increased energy expenditure and increased protein levels of citrate synthase and malate dehydrogenase 2, key factors in the TCA(tricarboxylic acid) cycle of skeletal muscle. Exercise, but not lactate intake, induced the upregulation of the skeletal muscle glucose transport factor 4 and a reduction in body fat. Hence, chronic lactate administration, as a metabolic regulator, influenced energy substrate utilization by the skeletal muscle and increased energy expenditure during exercise through the activation of carbohydrate metabolism-related factors. Therefore, exogenous lactate holds potential as a metabolic regulator. Full article
(This article belongs to the Special Issue Exercise Physiology and Cardiovascular Metabolism)
Show Figures

Figure 1

10 pages, 1078 KiB  
Article
Metabolomic Analysis Reveals the Association of Severe Bronchopulmonary Dysplasia with Gut Microbiota and Oxidative Response in Extremely Preterm Infants
by Chih-Yung Chiu, Ming-Chou Chiang, Meng-Han Chiang, Reyin Lien, Ren-Huei Fu, Kai-Hsiang Hsu and Shih-Ming Chu
Metabolites 2024, 14(4), 219; https://doi.org/10.3390/metabo14040219 - 13 Apr 2024
Viewed by 397
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of [...] Read more.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of enrolling preterm infants born before 32 weeks gestational age (GA) was prospectively performed. These preterm infants were subsequently stratified into the following two groups for further analysis: no or mild BPD, and moderate or severe BPD based on the 2019 NICHD criteria. Urinary metabolomic profiling was performed using 1H-Nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA) at a corrected age of 6 months. Metabolites significantly differentially related to GA and BPD severity were performed between groups, and their roles in functional metabolic pathways were also assessed. A total of 89 preterm infants born before 32 weeks gestation and 50 infants born at term age (above 37 completed weeks’ gestation) served as controls and were enrolled into the study. There were 21 and 24 urinary metabolites identified to be significantly associated with GA and BPD severity, respectively (p < 0.05). Among them, N-phenylacetylglycine, hippurate, acetylsalicylate, gluconate, and indoxyl sulfate were five metabolites that were significantly higher, with the highest importance in both infants with GA < 28 weeks and those with moderate to severe BPD, whereas betaine and N,N-dimethylglycine were significantly lower (p < 0.05). Furthermore, ribose and a gluconate related pentose phosphate pathway were strongly associated with these infants (p < 0.01). In conclusion, urinary metabolomic analysis highlights the crucial role of gut microbiota dysbiosis in the pathogenesis of BPD in preterm infants, accompanied by metabolites related to diminished antioxidative capacity, prompting an aggressive antioxidation response in extremely preterm infants with severe BPD. Full article
(This article belongs to the Special Issue Application of Metabolomics in Clinical Neonatology)
Show Figures

Figure 1

41 pages, 14139 KiB  
Review
Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective
by Yansong Fu, Zhipeng Wang and Hong Qin
Metabolites 2024, 14(4), 218; https://doi.org/10.3390/metabo14040218 - 12 Apr 2024
Viewed by 423
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical [...] Read more.
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD. Full article
(This article belongs to the Special Issue Advances in Dietary Nutrition Intervention on Metabolic Diseases)
Show Figures

Graphical abstract

25 pages, 1506 KiB  
Review
Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism
by Xu Li, Pingdong Cai, Xinyuan Tang, Yingzi Wu, Yue Zhang and Xianglu Rong
Metabolites 2024, 14(4), 217; https://doi.org/10.3390/metabo14040217 - 12 Apr 2024
Viewed by 342
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, [...] Read more.
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions. Full article
(This article belongs to the Special Issue Metabolic Changes and Epigenetic Alterations)
Show Figures

Figure 1

24 pages, 16432 KiB  
Article
The Water Extract of Rhubarb Prevents Ischemic Stroke by Regulating Gut Bacteria and Metabolic Pathways
by Xiaoyao Liu, Yuxi Wang, Yuan Tian, Jiahui Hu, Zhen Liu, Yuncheng Ma, Wenhui Xu, Weiling Wang, Jian Gao and Ting Wang
Metabolites 2024, 14(4), 216; https://doi.org/10.3390/metabo14040216 - 12 Apr 2024
Viewed by 379
Abstract
Rhubarb (RR), Chinese name Dahuang, is commonly used in the treatment of ischemic stroke (IS). However, its potential mechanism is not fully elucidated. This study intended to verify the effect of RR on IS and investigate the possible mechanism of RR in preventing [...] Read more.
Rhubarb (RR), Chinese name Dahuang, is commonly used in the treatment of ischemic stroke (IS). However, its potential mechanism is not fully elucidated. This study intended to verify the effect of RR on IS and investigate the possible mechanism of RR in preventing IS. IS in male rats was induced by embolic middle cerebral artery occlusion (MCAO) surgery, and drug administration was applied half an hour before surgery. RR dramatically decreased the neurological deficit scores, the cerebral infarct volume, and the cerebral edema rate, and improved the regional cerebral blood flow (rCBF) and histopathological changes in the brain of MCAO rats. The 16S rRNA analysis showed the harmful microbes such as Fournierella and Bilophila were decreased, and the beneficial microbes such as Enterorhabdus, Defluviitaleaceae, Christensenellaceae, and Lachnospira were significantly increased, after RR pretreatment. 1H-nuclear magnetic resonance (1H-NMR) was used to detect serum metabolomics, and RR treatment significantly changed the levels of metabolites such as isoleucine, valine, N6-acetyllysine, methionine, 3-aminoisobutyric acid, N, N-dimethylglycine, propylene glycol, trimethylamine N-oxide, myo-inositol, choline, betaine, lactate, glucose, and lipid, and the enrichment analysis of differential metabolites showed that RR may participate in the regulation of amino acid metabolism and energy metabolism. RR exerts the role of anti-IS via regulating gut bacteria and metabolic pathways. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

20 pages, 3744 KiB  
Article
Cathepsin S Is More Abundant in Serum of Mycobacterium avium subsp. paratuberculosis-Infected Dairy Cows
by Heidi C. Duda, Christine von Toerne, Lucia Korbonits, Andrea Didier, Armin M. Scholz, Erwin Märtlbauer, Stefanie M. Hauck and Cornelia A. Deeg
Metabolites 2024, 14(4), 215; https://doi.org/10.3390/metabo14040215 - 11 Apr 2024
Viewed by 615
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological [...] Read more.
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host–pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host–pathogen response to MAP and improved detection of paratuberculosis-diseased cattle. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop