Hidden Glutathione Transferases in the Human Genome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Gene 1 | Location | Name | Comment 2 |
---|---|---|---|
GSTA1 | 6p12.2 | Glutathione S-transferase alpha 1 | Substrates: Δ5AD, BCDE, BPDE, Busulfan, Chlorambucil, DBADE, DBPDE, BPhDE, N-a-PhIP |
GSTA2 | 6p12.2 | Glutathione S-transferase alpha 2 | CuOOH, DBPDE, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole |
GSTA3 | 6p12.2 | Glutathione S-transferase alpha 3 | Substrates: Δ5AD, Δ5-pregnene-3,20-dione, DBPDE |
GSTA4 | 6p12.2 | Glutathione S-transferase alpha 4 | Substrates: COMC-6, EA, 4-hydroxynonenal, 4-hydroxydecenal |
GSTA5 | 6p12.2 | Glutathione S-transferase alpha 5 | Uncharacterized |
GSTM1 | 1p13.3 | Glutathione S-transferase mu 1 | Substrates: trans-4-phenyl-3-buten-2-one, BPDE, CDE, DBADE, trans-stilbene oxide, styrene-7,8-oxide |
GSTM2 | 1p13.3 | Glutathione S-transferase mu 2 | Substrates: COMC-6, 1,2-dichloro-4-nitrobenzene, aminochrome, dopa O-quinone, PGH2 → PGE2 |
GSTM3 | 1p13.3 | Glutathione S-transferase mu 3 | Substrates: BCNU, PGH2 → PGE2 |
GSTM4 | 1p13.3 | Glutathione S-transferase mu 4 | CDNB |
GSTM5 | 1p13.3 | Glutathione S-transferase mu 5 | Uncharacterized |
GSTO1 | 10q25.1 | Glutathione S-transferase omega 1 | Substrates: MMA, dehydroascorbate, S-(4-nitrophenacyl)glutathione |
GSTO2 | 10q25.1 | Glutathione S-transferase omega 2 | Glutaredoxin-like activities |
GSTP1 | 11q13.2 | Glutathione S-transferase pi 1 | Substrates: CDNB, acrolein, base propenals, BPDE, CDE, Chlorambucil, COMC-6, EA, Thiotepa |
GSTT1 | 22q11.23 | Glutathione S-transferase theta 1 | A pseudogene in the reference genome. Protein coding in some individuals. Substrates: BCNU, butadiene epoxide, CH2Cl2, EPNP, ethylene oxide |
GSTT2 | 22q11.23 | Glutathione S-transferase theta 2 | CuOOH, 1-menaphthyl sulfate |
GSTT2B | 22q11.23 | Glutathione S-transferase theta 2B | A pseudogene in some individuals. Substrates: CuOOH, 1-menaphthyl sulfate |
GSTT4 | 22q11.23 | Glutathione S-transferase theta 4 | Uncharacterized |
GSTZ1 | 14q24.3 | Maleylacetoacetate isomerase | Substrates: dichloroacetate, fluoroacetate, 2-chloropropionate, malelyacetoacetate |
HPGDS | 4q22.3 | Hematopoietic prostaglandin D synthase | PGH2 → PGD2 |
PTGES2 | 9q34.11 | Prostaglandin E synthase 2 | PGH2 → PGE2 |
GDAP1 | 8q21.11 | Ganglioside-induced differentiation-associated protein 1 | Mitochondrial transport |
GDAP1L1 | 20q13.12 | Ganglioside-induced differentiation-associated protein-1-like 1 | Mitochondrial transport |
CLIC1 | 6p21.33 | Chloride intracellular channel 1 | Intracellular chloride ion channel |
CLIC2 | Xq28 | Chloride intracellular channel 2 | Intracellular chloride ion channel |
CLIC3 | 9q34.3 | Chloride intracellular channel 3 | Intracellular chloride ion channel |
CLIC4 | 1p36.11 | Chloride intracellular channel 4 | Intracellular chloride ion channel |
CLIC5 | 6p21.1 | Chloride intracellular channel 5 | Intracellular chloride ion channel |
CLIC6 | 21q22.12 | Chloride intracellular channel 6 | Intracellular chloride ion channel |
MTX1 | 1q22 | Metaxin 1 | Mitochondrial outer membrane component |
MTX2 | 2q31.1 | Metaxin 2 | Mitochondrial outer membrane component |
MTX3 | 5q14.1 | Metaxin 3 | Mitochondrial outer membrane component |
FAXC | 6q16.2 | Failed axon connections homolog | |
GSTCD | 4q24 | Glutathione S-transferase C-terminal domain-containing protein | Probable methyltransferase |
EEF1E1 | 6p24.3 | Eukaryotic translation elongation factor 1 epsilon 1 | MSC component |
AIMP2 | 7p22.1 | Aminoacyl tRNA synthetase complex interacting multifunctional protein 2 | MSC component |
EPRS1 | 1q41 | Glutamyl-prolyl-tRNA synthetase 1 | MSC component |
MARS1 | 12q13.3 | Methionyl-tRNA synthetase 1 | MSC component |
EEF1G | 11q12.3 | Eukaryotic translation elongation factor 1 gamma | eEF1 component |
VARS1 | 6p21.33 | Valyl-tRNA synthetase 1 | eEF1 component |
3.1. Prediction of GST Homo- and HeteroDimers
3.2. Metaxins and FAXC
3.3. GDAP1 and GDAP1L1
3.4. CLICs
3.5. GSTCD
3.6. MCS Components
3.7. X EEF1 Components
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Booth, J.; Boyland, E.; Sims, P. An enzyme from rat liver catalysing conjugations with glutathione. Biochem. J. 1961, 79, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinemer, P.; Dirr, H.W.; Ladenstein, R.; Schaffer, J.; Gallay, O.; Huber, R. The 3-dimensional structure of class-pi glutathione-S-transferase in complex with glutathione sulfonate at 2.3 Å resolution. EMBO J. 1991, 10, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Dirr, H.; Reinemer, P.; Huber, R. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2·1 Å resolution. J. Mol. Biol. 1994, 243, 72–92. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y.; Zhang, T.; Ding, J. Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism. Biochem. J. 2011, 439, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.; Michael, O.N.; Alexander, P.; Natasha, A.; Andrew, S.; Tim, G.; Augustin, Ž.; Russ, B.; Sam, B.; Jason, Y.; et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv 2021. [Google Scholar] [CrossRef]
- Holm, L. Using Dali for Protein Structure Comparison. Methods Mol. Biol. 2020, 2112, 29–42. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.A.-O.; Ferrin, T.A.-O. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fan, Y.; Xue, B.; Luo, L.; Shen, J.; Zhang, S.; Jiang, Y.; Yin, Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 2006, 25, 5787–5800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Jowsey, I.R.; Thomson, A.M.; Flanagan, J.U.; Murdock, P.R.; Moore, G.B.; Meyer, D.J.; Murphy, G.J.; Smith, S.A.; Hayes, J.D. Mammalian class Sigma glutathione S-transferases: Catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochem. J. 2001, 359, 507–516. [Google Scholar] [CrossRef]
- Yamada, T.; Komoto, J.; Watanabe, K.; Ohmiya, Y.; Takusagawa, F. Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). J. Mol. Biol. 2005, 348, 1163–1176. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, E.; Wang, W.; Hsieh, C.H.; Wang, X.; Feng, W.; Wang, X.; Shen, K. Metaxins are core components of mitochondrial transport adaptor complexes. Nat. Commun. 2021, 12, 83. [Google Scholar] [CrossRef]
- Cromer, B.A.; Gorman, M.A.; Hansen, G.; Adams, J.J.; Coggan, M.; Littler, D.R.; Brown, L.J.; Mazzanti, M.; Breit, S.N.; Curmi, P.M.; et al. Structure of the Janus protein human CLIC2. J. Mol. Biol. 2007, 374, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Littler, D.R.; Harrop, S.J.; Fairlie, W.D.; Brown, L.J.; Pankhurst, G.J.; Pankhurst, S.; DeMaere, M.Z.; Campbell, T.J.; Bauskin, A.R.; Tonini, R.; et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J. Biol. Chem. 2004, 279, 9298–9305. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.Y.; Lee, H.J.; Choi, Y.S.; Kim, D.K.; Jin, K.S.; Kim, S.; Kang, B.S. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase. J. Mol. Biol. 2019, 431, 4475–4496. [Google Scholar] [CrossRef]
- Bondarchuk, T.V.; Shalak, V.F.; Lozhko, D.M.; Fatalska, A.; Szczepanowski, R.H.; Liudkovska, V.; Tsuvariev, O.Y.; Dadlez, M.; El’skaya, A.V.; Negrutskii, B.S. Quaternary organization of the human eEF1B complex reveals unique multi-GEF domain assembly. Nucleic Acids Res. 2022, 50, 9490–9504. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Gustafsson, A.; Nilsson, L.O.; Mannervik, B. Hybridization of alpha class subunits generating a functional glutathione transferase A1-4 heterodimer. J. Mol. Biol. 2002, 316, 395–406. [Google Scholar] [CrossRef]
- Danielson, U.H.; Mannervik, B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem. J. 1985, 231, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, N.E.; Colman, R.F. Heterodimers of glutathione S-transferase can form between isoenzyme classes pi and mu. Arch. Biochem. Biophys. 2001, 396, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, P.; McKinney, C.E.; LaMarca, M.E.; Winfield, S.; Shingu, T.; Devarayalu, S.; Vos, H.L.; Ginns, E.I. Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: Implications for Gaucher disease. Proc. Natl. Acad. Sci. USA 1995, 92, 4547–4551. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.C.; Komiya, T.; Bergman, B.E.; Mihara, K.; Bornstein, P. Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J. Biol. Chem. 1997, 272, 6510–6518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynen, M.A.; Mühlmeister, M.; Gotthardt, K.; Guerrero-Castillo, S.; Brandt, U. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim. Biophys. Acta 2016, 1863, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elouej, S.; Harhouri, K.; Le Mao, M.; Baujat, G.; Nampoothiri, S.; Kayserili, H.; Menabawy, N.A.; Selim, L.; Paneque, A.L.; Kubisch, C.; et al. Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nat. Commun. 2020, 11, 4589. [Google Scholar] [CrossRef]
- Long, G.L.; Winfield, S.; Adolph, K.W.; Ginns, E.I.; Bornstein, P. Structure and organization of the human metaxin gene (MTX) and pseudogene. Genomics 1996, 33, 177–184. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, T.; Kawaguchi, T.; Saiki, Y.; Aoki, C.; Kasagi, N.; Adachi, K.; Saida, K.; Matsumoto, N.; Nanba, E.; Maegaki, Y. Clinical course of a Japanese patient with developmental delay linked to a small 6q16.1 deletion. Hum. Genome Var. 2022, 9, 14. [Google Scholar] [CrossRef]
- Googins, M.R.; Woghiren-Afegbua, A.O.; Calderon, M.; St Croix, C.M.; Kiselyov, K.I.; VanDemark, A.P. Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily. FASEB J. 2020, 34, 7192–7207. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.T.T.; Sutinen, A.; Raasakka, A.; Muruganandam, G.; Loris, R.; Kursula, P. Structure of the Complete Dimeric Human GDAP1 Core Domain Provides Insights into Ligand Binding and Clustering of Disease Mutations. Front. Mol. Biosci. 2020, 7, 631232. [Google Scholar] [CrossRef]
- Shield, A.J.; Murray, T.P.; Board, P.G. Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase. Biochem. Biophys. Res. Commun. 2006, 347, 859–866. [Google Scholar] [CrossRef]
- Huber, N.; Bieniossek, C.; Wagner, K.M.; Elsässer, H.P.; Suter, U.; Berger, I.; Niemann, A. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. Sci. Rep. 2016, 6, 36930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alalaiwe, A.; Chen, C.Y.; Chang, Z.Y.; Sung, J.T.; Chuang, S.Y.; Fang, J.Y. Psoriasiform Inflammation Is Associated with Mitochondrial Fission/GDAP1L1 Signaling in Macrophages. Int. J. Mol. Sci. 2021, 22, 10410. [Google Scholar] [CrossRef]
- Harrop, S.J.; DeMaere, M.Z.; Fairlie, W.D.; Reztsova, T.; Valenzuela, S.M.; Mazzanti, M.; Tonini, R.; Qiu, M.R.; Jankova, L.; Warton, K.; et al. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J. Biol. Chem. 2001, 276, 44993–45000. [Google Scholar] [CrossRef] [Green Version]
- Friedli, M.; Guipponi, M.; Bertrand, S.; Bertrand, D.; Neerman-Arbez, M.; Scott, H.S.; Antonarakis, S.E.; Reymond, A. Identification of a novel member of the CLIC family, CLIC6, mapping to 21q22.12. Gene 2003, 320, 31–40. [Google Scholar] [CrossRef]
- Patel, D.; Ythier, D.; Brozzi, F.; Eizirik, D.L.; Thorens, B. Clic4, a novel protein that sensitizes β-cells to apoptosis. Mol. Metab. 2015, 4, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Henry, A.P.; Probert, K.; Stewart, C.E.; Thakker, D.; Bhaker, S.; Azimi, S.; Hall, I.P.; Sayers, I. Defining a role for lung function associated gene GSTCD in cell homeostasis. Respir. Res. 2019, 20, 172. [Google Scholar] [CrossRef] [Green Version]
- Mui Chan, C.; Zhou, C.; Brunzelle, J.S.; Huang, R.H. Structural and biochemical insights into 2’-O-methylation at the 3’-terminal nucleotide of RNA by Hen1. Proc. Natl. Acad. Sci. USA 2009, 106, 17699–17704. [Google Scholar] [CrossRef] [PubMed]
- Rubio Gomez, M.A.; Ibba, M. Aminoacyl-tRNA synthetases. RNA 2020, 26, 910–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.J.; Park, M.C.; Choi, S.J.; Oh, Y.S.; Choi, E.C.; Cho, H.J.; Kim, M.H.; Kim, S.H.; Kim, D.W.; Kim, S.; et al. Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J. Biol. Chem. 2008, 283, 14032–14040. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, S.; Ranjan, N. Translation Phases in Eukaryotes. Methods Mol. Biol. 2022, 2533, 217–228. [Google Scholar] [CrossRef]
- Negrutskii, B.S.; Shalak, V.F.; Kerjan, P.; El’skaya, A.V.; Mirande, M. Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J. Biol. Chem. 1999, 274, 4545–4550. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Kidou, S.; Ejiri, S. Detection and characterization of glutathione S-transferase activity in rice EF-1betabeta’gamma and EF-1gamma expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 2001, 288, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Vanwetswinkel, S.; Kriek, J.; Andersen, G.R.; Güntert, P.; Dijk, J.; Canters, G.W.; Siegal, G. Solution structure of the 162 residue C-terminal domain of human elongation factor 1Bgamma. J. Biol. Chem. 2003, 278, 43443–43451. [Google Scholar] [CrossRef] [Green Version]
- Bec, G.; Kerjan, P.; Waller, J.P. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J. Biol. Chem. 1994, 269, 2086–2092. [Google Scholar] [CrossRef]
- Jiang, S.; Wolfe, C.L.; Warrington, J.A.; Norcum, M.T. Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit. FEBS Lett. 2005, 579, 6049–6054. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci. 2022, 31, e4379. [Google Scholar] [CrossRef]
Protein | PDB ID | Resolution (Å) | RMSD (Å) 1 | RMSD (Å) 1 |
---|---|---|---|---|
GSTA1 | 1K3Y | 1.3 | 0.353 (220) | 0.490 (221) |
GSTA2 | 2VCT | 2.1 | 0.431 (220) | 0.459 (221) |
GSTA3 | 2VCV | 1.8 | 0.414 (219) | 0.414 (219) |
GSTA4 | 3IK7 | 1.97 | 0.425 (218) | 0.550 (220) |
GSTM1 | 7BEU | 1.59 | 0.484 (215) | 0.551 (218) |
GSTM2 2 | 2C4J | 1.35 | 0.356 (214) | 0.438 (217) |
GSTM3 | 3GTU | 2.8 | 0.533 (210) | 1.682 (224) |
GSTM4 | 4GTU | 3.3 | 0.586 (216) | 0.611 (217) |
GSTO1 | 5YVN | 1.33 | 0.540 (229) | 1.082 (238) |
GSTO2 3 | 3Q18 | 1.70 | 0.374 (235) | 0.412 (236) |
GSTP1 | 5J41 | 1.19 | 0.251 (208) | 0.251 (208) |
GSTT1 | 2C3N | 1.5 | 0.393 (239) | 0.393 (239) |
GSTT2 | 4MPF | 2.10 | 0.302 (243) | 0.385 (244) |
GSTT2B | 4MPC | 1.95 | 0.189 (243) | 0.189 (243) |
GSTZ1 | 1FW1 | 1.90 | 0.301 (207) | 0.334 (208) |
HPGDS | 7JR8 | 1.13 | 0.536 (196) | 0.609 (199) |
PTGES2 4 | 1Z9H | 2.60 | 0.490 (266) | 0.794 (274) |
GDAP1 | 7AIA | 2.2 | 0.721 (206) | 7.511 (259) |
CLIC1 | 1K0M | 1.4 | 0.559 (220) | 2.180 (236) |
1RK4 5 | 1.79 | 0.569 (165) | 7.472 (213) | |
CLIC2 | 2R4V | 1.85 | 0.573 (211) | 1.962 (226) |
CLIC3 | 3KJY | 1.95 | 0.488 (211) | 0.948 (217) |
CLIC4 | 2D2Z | 2.20 | 0.521 (221) | 0.828 (229) |
CLIC5 | 6Y2H | 2.15 | 0.518 (210) | 1.291 (223) |
EEF1E1 | 2UZ8 | 2.00 | 0.677 (154) | 1.747 (164) |
EEF1G | 5JPO | 2.00 | 0.322 (214) | 0.322 (214) |
AIMP2 | 5A5H | 2.32 | 0.473 (187) | 1.914 (209) |
EPRS1 6 | 5A1N | 2.1 | 0.612 (166) | 0.737 (167) |
MARS1 | 4BVX | 1.60 | 0.652 (197) | 0.829 (203) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oakley, A.J. Hidden Glutathione Transferases in the Human Genome. Biomolecules 2023, 13, 1240. https://doi.org/10.3390/biom13081240
Oakley AJ. Hidden Glutathione Transferases in the Human Genome. Biomolecules. 2023; 13(8):1240. https://doi.org/10.3390/biom13081240
Chicago/Turabian StyleOakley, Aaron J. 2023. "Hidden Glutathione Transferases in the Human Genome" Biomolecules 13, no. 8: 1240. https://doi.org/10.3390/biom13081240