Next Issue
Previous Issue

Table of Contents

Robotics, Volume 6, Issue 1 (March 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Editorial

Jump to: Research

Open AccessEditorial Acknowledgement to Reviewers of Robotics in 2016
Robotics 2017, 6(1), 1; doi:10.3390/robotics6010001
Received: 11 January 2017 / Revised: 11 January 2017 / Accepted: 11 January 2017 / Published: 11 January 2017
PDF Full-text (269 KB) | HTML Full-text | XML Full-text
Abstract The editors of Robotics would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article

Research

Jump to: Editorial

Open AccessArticle Robot-Assisted Therapy for Learning and Social Interaction of Children with Autism Spectrum Disorder
Robotics 2017, 6(1), 4; doi:10.3390/robotics6010004
Received: 1 December 2016 / Revised: 6 March 2017 / Accepted: 7 March 2017 / Published: 14 March 2017
PDF Full-text (1668 KB) | HTML Full-text | XML Full-text
Abstract
This paper puts forward the potential for designing a parrot-inspired robot and an indirect teaching technique, the adapted model-rival method (AMRM), to help improve learning and social interaction abilities of children with autism spectrum disorder. The AMRM was formulated by adapting two popular
[...] Read more.
This paper puts forward the potential for designing a parrot-inspired robot and an indirect teaching technique, the adapted model-rival method (AMRM), to help improve learning and social interaction abilities of children with autism spectrum disorder. The AMRM was formulated by adapting two popular conventional approaches, namely, model-rival method and label-training procedure. In our validation trials, we used a semi-autonomous parrot-inspired robot, called KiliRo, to simulate a set of autonomous behaviors. A proposed robot-assisted therapy using AMRM was pilot tested with nine children with autism spectrum disorder for five consecutive days in a clinical setting. We analyzed the facial expressions of children when they interacted with KiliRo using an automated emotion recognition and classification system, Oxford emotion API (Application Programming Interface). Results provided some indication that the children with autism spectrum disorder appeared attracted and happy to interact with the parrot-inspired robot. Short qualitative interviews with the children’s parents, the pediatrician, and the child psychologist who participated in this pilot study, also acknowledged that the proposed parrot-inspired robot and the AMRM may have some merit in aiding in improving learning and social interaction abilities of children with autism spectrum disorder. Full article
Figures

Figure 1

Open AccessArticle Experimental and Simulation-Based Investigation of Polycentric Motion of an Inherent Compliant Pneumatic Bending Actuator with Skewed Rotary Elastic Chambers
Robotics 2017, 6(1), 2; doi:10.3390/robotics6010002
Received: 13 September 2016 / Revised: 6 January 2017 / Accepted: 17 January 2017 / Published: 25 January 2017
PDF Full-text (13198 KB) | HTML Full-text | XML Full-text
Abstract
To offer a functionality that could not be found in traditional rigid robots, compliant actuators are in development worldwide for a variety of applications and especially for human–robot interaction. Pneumatic bending actuators are a special kind of such actuators. Due to the absence
[...] Read more.
To offer a functionality that could not be found in traditional rigid robots, compliant actuators are in development worldwide for a variety of applications and especially for human–robot interaction. Pneumatic bending actuators are a special kind of such actuators. Due to the absence of fixed mechanical axes and their soft behavior, these actuators generally possess a polycentric motion ability. This can be very useful to provide an implicit self-alignment to human joint axes in exoskeleton-like rehabilitation devices. As a possible realization, a novel bending actuator (BA) was developed using patented pneumatic skewed rotary elastic chambers (sREC). To analyze the actuator self-alignment properties, knowledge about the motion of this bending actuator type, the so-called skewed rotary elastic chambers bending actuator (sRECBA), is of high interest and this paper presents experimental and simulation-based kinematic investigations. First, to describe actuator motion, the finite helical axes (FHA) of basic actuator elements are determined using a three-dimensional (3D) camera system. Afterwards, a simplified two-dimensional (2D) kinematic simulation model based on a four-bar linkage was developed and the motion was compared to the experimental data by calculating the instantaneous center of rotation (ICR). The equivalent kinematic model of the sRECBA was realized using a series of four-bar linkages and the resulting ICR was analyzed in simulation. Finally, the FHA of the sRECBA were determined and analyzed for three different specific motions. The results show that the actuator’s FHA adapt to different motions performed and it can be assumed that implicit self-alignment to the polycentric motion of the human joint axis will be provided. Full article
Figures

Figure 1

Open AccessArticle Synthetic Aperture Computation as the Head is Turned in Binaural Direction Finding
Robotics 2017, 6(1), 3; doi:10.3390/robotics6010003
Received: 28 December 2016 / Revised: 28 February 2017 / Accepted: 9 March 2017 / Published: 12 March 2017
Cited by 1 | PDF Full-text (2759 KB) | HTML Full-text | XML Full-text
Abstract
Binaural systems measure instantaneous time/level differences between acoustic signals received at the ears to determine angles λ between the auditory axis and directions to acoustic sources. An angle λ locates a source on a small circle of colatitude (a lamda circle) on a
[...] Read more.
Binaural systems measure instantaneous time/level differences between acoustic signals received at the ears to determine angles λ between the auditory axis and directions to acoustic sources. An angle λ locates a source on a small circle of colatitude (a lamda circle) on a sphere symmetric about the auditory axis. As the head is turned while listening to a sound, acoustic energy over successive instantaneous lamda circles is integrated in a virtual/subconscious field of audition. The directions in azimuth and elevation to maxima in integrated acoustic energy, or to points of intersection of lamda circles, are the directions to acoustic sources. This process in a robotic system, or in nature in a neural implementation equivalent to it, delivers its solutions to the aurally informed worldview. The process is analogous to migration applied to seismic profiler data, and to that in synthetic aperture radar/sonar systems. A slanting auditory axis, e.g., possessed by species of owl, leads to the auditory axis sweeping the surface of a cone as the head is turned about a single axis. Thus, the plane in which the auditory axis turns continuously changes, enabling robustly unambiguous directions to acoustic sources to be determined. Full article
Figures

Figure 1

Open AccessArticle Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing
Robotics 2017, 6(1), 5; doi:10.3390/robotics6010005
Received: 30 November 2016 / Revised: 7 March 2017 / Accepted: 14 March 2017 / Published: 17 March 2017
PDF Full-text (7162 KB) | HTML Full-text | XML Full-text
Abstract
Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture) and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation
[...] Read more.
Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture) and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object. Full article
(This article belongs to the Special Issue Robotics and 3D Vision)
Figures

Figure 1

Journal Contact

MDPI AG
Robotics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Robotics Edit a special issue Review for Robotics
loading...
Back to Top