Next Issue
Volume 12, February
Previous Issue
Volume 11, December
 
 

Climate, Volume 12, Issue 1 (January 2024) – 12 articles

Cover Story (view full-size image): The WACCM Model simulated climate states under grand solar minimum forcing scenarios, involving a reduction in total solar radiance applied across the entire solar radiation spectrum (TOTC) or localized in the ultraviolet band (SCUV). These experiments were compared with a control simulation. Despite substantial differences in the stratospheric forcing, where strong differences were observed, similarities exist in surface patterns between the two experiments. A few feedback mechanisms, such as cloud and ice-albedo feedback, acted to modify absorbed solar radiation and outgoing long-wave radiation. Global surface cooling in the two experiments, compared to the control, was 0.55 ± 0.03 K in TOTC and 0.39 ± 0.03 K in SCUV. Cooling predominantly impacted North America and the Euro-Asian continent. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
29 pages, 7318 KiB  
Article
Development of Inherent Vulnerability Index within Jammu Municipal Limits, India
by Simran Bharti, Adyan Ul Haq, L. T. Sasang Guite, Shruti Kanga, Fayma Mushtaq, Majid Farooq, Suraj Kumar Singh, Pankaj Kumar and Gowhar Meraj
Climate 2024, 12(1), 12; https://doi.org/10.3390/cli12010012 - 22 Jan 2024
Viewed by 2067
Abstract
Evaluating inherent vulnerability, an intrinsic characteristic becomes imperative for the formulation of adaptation strategies, particularly in highly complex and vulnerable regions of Himalayas. Jammu City, situated in the north-western Himalayas within a transitional zone between the Himalayan range and the plains, is not [...] Read more.
Evaluating inherent vulnerability, an intrinsic characteristic becomes imperative for the formulation of adaptation strategies, particularly in highly complex and vulnerable regions of Himalayas. Jammu City, situated in the north-western Himalayas within a transitional zone between the Himalayan range and the plains, is not only susceptible to intense seismic activities but also faces multiple hazards, including floods, earthquakes, avalanches, and landslides. In recent years, the region has experienced growth in population with rapid progress in infrastructure development, encompassing the construction of highways, dams, and tunnels as integral components of urban development initiatives. Therefore, this study has been conducted to assess the inherent vulnerability index (VI) in Jammu City at ward level as a function of sensitivity, adaptive capacity, and exposure, using ecological and social indicators in GIS environment. The primary objective was to identify the most vulnerable area and ascertain the corresponding municipal ward, aiming to formulate a comprehensive ranking. The 22 indicators analysed were from four major components, namely social, infrastructure, technological, and ecological. The ecological indicators like Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Land use/Land cover were derived from Landsat 8 OLI satellite data. The results show that the majority of the area of the city falls into the moderate (20%), high (25.49%), and very high (25.17%) vulnerability categories, respectively, clustered in north-western and south-western transects with densely populated residential areas. The results can assist policymakers in identification of components of inherent vulnerability for focused resource management and formulating adaptation strategies to address the current stressors in the region. Full article
Show Figures

Figure 1

17 pages, 6180 KiB  
Article
Assessment of Changes in Agroclimatic Resources of the Republic of Bashkortostan (Russia) under the Context of Global Warming
by Rita Kamalova, Ekaterina Bogdan, Larisa Belan, Iren Tuktarova, Alexey Firstov, Ildar Vildanov and Irik Saifullin
Climate 2024, 12(1), 11; https://doi.org/10.3390/cli12010011 - 22 Jan 2024
Viewed by 1625
Abstract
The process of climate warming significantly affects agroclimatic resources and agricultural production. We study the agroclimatic resources and their variability on the territory of the Republic of Bashkortostan (Russia). The Bashkortostan has a high agricultural potential and holds a leading position in the [...] Read more.
The process of climate warming significantly affects agroclimatic resources and agricultural production. We study the agroclimatic resources and their variability on the territory of the Republic of Bashkortostan (Russia). The Bashkortostan has a high agricultural potential and holds a leading position in the country in the production of grain crops, potatoes, milk, and honey. Currently, no detailed studies have been conducted for this area to assess the effects of global climate change on agro-climatic resources. World experience shows such research becomes strategically important for regions with powerful agricultural production. We used the sums of average daily air temperatures above 0 and 10 °C, the G.T. Selyaninov hydrothermal coefficient, and the Ped aridity (humidification) index as agroclimatic indicators. We used data of long-term meteorological observations of 30 meteorological stations for the period of 1961–2020. We revealed the long-term dynamics of the agroclimatic indicators and the spatial and temporal regularities in their distribution on the territory of Bashkortostan. There is a steady increase in the sums of average daily air temperatures above 0 and 10 °C. Against this background, aridity increases, which is especially manifested in the southern parts of the Republic of Bashkortostan. We assessed the impact of agroclimatic indicators on the main types of agricultural crops in the republic. We revealed that the greatest positive impact on the yield of oilseeds, cereals, and industrial crops is made by precipitation at the beginning (r = 0.50, r = 0.44, and r = 0.52, respectively) and in the middle of the growing season (r = 0.55, r = 0.76, and r = 0.51, respectively). Temperature and precipitation during the growing season have a complex effect on cereals. This is proven by correlations with HCS and the Ped index (r = 0.45 and r = −0.56, respectively). Aridity at the beginning of the growing season affects the yield of oilseeds and potatoes. This is confirmed by correlations with the Ped index (r = −0.49 and r = −0.52, respectively). In general, the aridity of the growing season has a significant impact on the yield of cereals (r = −0.57). Negative relationships have been found between the air temperature growing season and the yield of potatoes (r = −0.50) and cereals (r = −0.53). The results of the study were compared with data from the Copernicus Climate Change Service database. We identified climate trends under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios. These scenarios should be taken into account when developing plans for the adaptation of agriculture in the Republic of Bashkortostan to changes in the regional climate. Maximum decrease in precipitation is established for the RCP 6.0 scenario. This can have an extremely negative impact on crop yields. This problem is especially relevant for the southern part of the Republic of Bashkortostan. The information presented in the study will allow for a more effective adaptation of the agricultural sector to current and future climate changes. Full article
Show Figures

Figure 1

16 pages, 703 KiB  
Article
Local Context Capacity Building Needs for Climate Change Adaptation among Smallholder Farmers in Uganda: Policy and Practice Implications
by David Mfitumukiza, Gordon Y. Mwesigwa, Ellen J. Kayendeke and Vincent B. Muwanika
Climate 2024, 12(1), 10; https://doi.org/10.3390/cli12010010 - 19 Jan 2024
Cited by 1 | Viewed by 1796
Abstract
Climate change impacts threaten sustainable development efforts. The magnitude of the impacts, however, varies with the socio-ecological characteristics of locations. This is the reason there is consensus on the necessity for climate change adaptive capacity building that is country driven, and based on, [...] Read more.
Climate change impacts threaten sustainable development efforts. The magnitude of the impacts, however, varies with the socio-ecological characteristics of locations. This is the reason there is consensus on the necessity for climate change adaptive capacity building that is country driven, and based on, and responsive to, local needs. However, information on context specific capacity building needs in developing countries is not readily available. The objective of this study was to establish location specific awareness, training, educational research and technology capacity building needs for climate change adaptation among smallholder farmers in Uganda. Semi-structured questionnaires were used with 465 households from five agro-ecological zones, selected based on the level of vulnerability of agricultural systems to the main climate variation and change hazards. Results reveal substantial capacity building needs in all the zones. The majority of the farmers needed capacity building for interventions on soil-water conservation practices for adapting to drought and unpredictable rainfall. For all zones, education, research, and technology were perceived as key needs. However, the needs varied among zones. These results demonstrate the importance of context specificity in adaptation efforts. The study provides agro-ecological and social system specific information for climate change adaptation planning and policy interventions for effective capacity building. Full article
(This article belongs to the Special Issue Climate Adaptation Ways for Smallholder Farmers)
Show Figures

Figure 1

19 pages, 9380 KiB  
Article
Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models
by Gamil Gamal, Pavol Nejedlik and Ahmed M. El Kenawy
Climate 2024, 12(1), 9; https://doi.org/10.3390/cli12010009 - 14 Jan 2024
Viewed by 1883
Abstract
Understanding long-term variations in precipitation is crucial for identifying the effects of climate change and addressing hydrological and water management issues. This study examined the trends of the mean and four extreme precipitation indices, which are the max 1-day precipitation amount, the max [...] Read more.
Understanding long-term variations in precipitation is crucial for identifying the effects of climate change and addressing hydrological and water management issues. This study examined the trends of the mean and four extreme precipitation indices, which are the max 1-day precipitation amount, the max 5-day precipitation amount, the consecutive wet days, and the consecutive dry days, for historical observations (1971–2000) and two future periods (2041–2060/2081–2100) under RCP2.6 and RCP8.5 emission scenarios over the Nile River Basin (NRB) at 11 major stations. Firstly, the empirical quantile mapping procedure significantly improved the performance of all RCMs, particularly those with lower performance, decreasing inter-model variability and enhanced seasonal precipitation variability. The Mann–Kendall test was used to detect the trends in climate extreme indices. This study reveals that precipitation changes vary across stations, scenarios, and time periods. Addis Ababa and Kigali anticipated a significant increase in precipitation across all periods and scenarios, ranging between 8–15% and 13–27%, respectively, while Cairo and Kinshasa exhibited a significant decrease in precipitation at around 90% and 38%, respectively. Wet (dry) spells were expected to significantly decrease (increase) over most parts of the NRB, especially during the second period (2081–2100). Thereby, the increase (decrease) in dry (wet) spells could have a direct impact on water resource availability in the NRB. This study also highlights that increased greenhouse gas emissions have a greater impact on precipitation patterns. This study’s findings might be useful to decision makers as they create NRB-wide mitigation and adaptation strategies to deal with the effects of climate change. Full article
Show Figures

Figure 1

18 pages, 10007 KiB  
Article
Climatology of Synoptic Non-Gaussian Meteorological Anomalies in the Northern Hemisphere during 1979–2018
by Sergey Loginov, Evgeniia Moraru, Elena Kharyutkina and Ivan Sudakow
Climate 2024, 12(1), 8; https://doi.org/10.3390/cli12010008 - 12 Jan 2024
Viewed by 1496
Abstract
The analysis of spatial and temporal variability in the number of non-Gaussian extreme anomalies of climatic parameters was carried out for both the initial time series and synoptic variability in the troposphere of the Northern Hemisphere over the period 1979–2018, based on ERA-Interim [...] Read more.
The analysis of spatial and temporal variability in the number of non-Gaussian extreme anomalies of climatic parameters was carried out for both the initial time series and synoptic variability in the troposphere of the Northern Hemisphere over the period 1979–2018, based on ERA-Interim reanalysis data. There are predominantly three types of empirical distribution densities at 850 hPa, each characterizing the processes of advective and convective heat transfer. At the beginning of the 21st century, compared to the end of the 20th century, there was an increase in the number of anomalies in vertical wind speed and specific humidity for the Northern Hemisphere. Additionally, there is an increase in the number of zonal wind speed anomalies in the low and middle latitudes. Regions with the maximum number of anomalies are primarily located over the continents, while for vertical wind speed anomalies, they are predominantly over the oceans. The application of R/S analysis and multifractal analysis has established that the identified tendencies (which are persistent processes) will continue in the identified regions. The time series of non-Gaussian anomalies (both initial and synoptic scales) exhibit a long-term memory of approximately four years, and synoptic extreme anomalies were found to be more predictable. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records)
Show Figures

Figure 1

22 pages, 18096 KiB  
Article
Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa
by Zolisanani Mpanyaro, Ahmed Mukalazi Kalumba, Leocadia Zhou and Gbenga Abayomi Afuye
Climate 2024, 12(1), 7; https://doi.org/10.3390/cli12010007 - 11 Jan 2024
Viewed by 2115
Abstract
The increasing drought frequency poses a significant threat to global and regional river systems and ecosystem functioning, especially in the complex topographical Buffalo River catchment area of the Eastern Cape Province, South Africa. This study explored the impact of drought on riparian vegetation [...] Read more.
The increasing drought frequency poses a significant threat to global and regional river systems and ecosystem functioning, especially in the complex topographical Buffalo River catchment area of the Eastern Cape Province, South Africa. This study explored the impact of drought on riparian vegetation dynamics using the Normalize Difference Vegetation Index (NDVI), Transformed Difference Vegetation Index (TDVI) and Modified Normalized Difference Water Index (MNDWI) from satellite-derived Landsat data from 1990 to 2020. The least-squares linear regression and Pearson’s correlation coefficient were used to evaluate the long-term drought in riparian vegetation cover and the role of precipitation and streamflow. The correlation results revealed a moderate positive correlation (r = 0.77) between precipitation and streamflow with a significant p-value of 0.04 suggesting consequences on riparian vegetation health. Concurrent with the precipitation, the vegetation trends showed that precipitation increased insignificantly with less of an influence while the reverse was the case with the streamflow in the long term. The results show that the NDVI and TDVI were significant indices for detecting water-stressed vegetation in river catchment dynamics. Much of these changes were reflected for MNDWI in dry areas with a higher accuracy (87.47%) and dense vegetation in the upper catchment areas. The standardized precipitation index (SPI) revealed the inter-annual and inter-seasonal variations in drought-stressed years between 1991–1996, 2000–2004, 2009–2010, 2015, and 2018–2019, while 2020 exhibited slight sensitivity to drought. The findings of this study underscore the need for heightened efforts on catchment-scale drought awareness for policy development, programs, and practices towards ecosystem-based adaptation. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

35 pages, 32978 KiB  
Article
Microclimate Analysis of Outdoor Showcases in Tropical Climate—Two Case Studies in Al Ain, Abu Dhabi, United Arab Emirates
by Dario Camuffo, Antonio della Valle, Roberta Giorio, Francesco Rizzi, Patrizia Barucco, Marivita Suma, Jalal Ahmed, Amel Chabbi, Ola Shaker and Peter Sheehan
Climate 2024, 12(1), 6; https://doi.org/10.3390/cli12010006 - 6 Jan 2024
Cited by 1 | Viewed by 1931
Abstract
Al Ain, near Abu Dhabi, United Arab Emirates, is characterized by hot desert climate with high temperatures, aridity, and almost no rain. Several truncated earthen walls were discovered at the historic house of Sheikh Mohammed Bin Khalifa, a component of the World Heritage [...] Read more.
Al Ain, near Abu Dhabi, United Arab Emirates, is characterized by hot desert climate with high temperatures, aridity, and almost no rain. Several truncated earthen walls were discovered at the historic house of Sheikh Mohammed Bin Khalifa, a component of the World Heritage Cultural Sites. These remains are preserved in situ, outdoors, protected in glass showcases for public display. As this situation is not documented in the literature, the local Authority has requested to study the showcase environment to optimize conservation. The solar radiation and the projected shades have been modeled over one year; the temperature and humidity inside and outside the showcases, as well as the moisture content, have been measured to assess the potential preservation risks. The paper presents the results, i.e., the direct solar radiation generates extreme conditions of greenhouse effect with extremely high temperatures and forces evaporation from the remains. During the night, the excess moisture condenses on the inner surface of the glass panes, forming large drops that affect viewing and are dangerous for conservation. The repetition of evaporation–condensation cycles accumulates soluble salts on the remains. The paper discusses mitigation strategies (e.g., shading, ventilation, and cooling, to reduce the greenhouse effect) to improve conservation and fruition. Full article
(This article belongs to the Special Issue Climate Variability in the Mediterranean Region)
Show Figures

Figure 1

17 pages, 2199 KiB  
Article
Assessment of Climate Risks, Vulnerability of Urban Health Systems, and Individual Adaptation Strategies in the City of N’Djaména (Chad)
by Ndonaye Allarané, Assouhan Jonas Atchadé, Vidjinnagni Vinasse Ametooyona Azagoun, Adanvo Isaac Houngnigbe, Romain Gouataine Seingue, Tob-Ro N’Dilbé and Follygan Hetcheli
Climate 2024, 12(1), 5; https://doi.org/10.3390/cli12010005 - 30 Dec 2023
Viewed by 2749
Abstract
Climate variability and change are already having a negative impact on the health of tens of millions of Africans through exposure to sub-optimal temperatures and extreme weather conditions as well as increasing the range and transmission of infectious diseases. This study aims to [...] Read more.
Climate variability and change are already having a negative impact on the health of tens of millions of Africans through exposure to sub-optimal temperatures and extreme weather conditions as well as increasing the range and transmission of infectious diseases. This study aims to identify climate risks and the vulnerability of health systems as well as individual coping strategies in the city of N’Djaména. To achieve this, we adopted a methodology combining both quantitative and qualitative approaches. Meteorological data on wind, temperature, and rainfall were collected at daily and monthly intervals from the National Meteorological Agency in N’Djaména. Qualitative data were collected via focus group discussions with targets of the city’s health system and quantitative data were collected from the population on the basis of oriented questionnaires. The results show that rising temperatures with heat waves, regular flooding, and strong winds are the major climate risks identified. These have numerous impacts and effects on the city’s health system due to the following vulnerability factors most recognized by city dwellers: insufficient medical equipment in health facilities (IEME), the fragile nature of people’s physiological state in the face of climatic risks (CFEP), and the failure of city sanitation strategies and policies (DSPA). This study proposes a set of recommendations for transformational adaptation of the healthcare sector, which remains vulnerable to climate risks. Full article
Show Figures

Figure 1

23 pages, 24014 KiB  
Article
Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas
by Karina Angélica García-Pardo, David Moreno-Rangel, Samuel Domínguez-Amarillo and José Roberto García-Chávez
Climate 2024, 12(1), 4; https://doi.org/10.3390/cli12010004 - 28 Dec 2023
Viewed by 1685
Abstract
The validated influence of urban biophysical structure on environmental processes within urban areas has heightened the emphasis on studies examining morphological patterns to determine precise locations and underlying causes of urban climate conditions. The present study aims to characterise morphological patterns describing the [...] Read more.
The validated influence of urban biophysical structure on environmental processes within urban areas has heightened the emphasis on studies examining morphological patterns to determine precise locations and underlying causes of urban climate conditions. The present study aims to characterise morphological patterns describing the distribution of Land Surface Temperature (LST) based on a prior classification of biophysical variables, including urban density (building intensity and average height), surface characteristics, shortwave solar radiation (broadband albedo), and seasonal variations in vegetation cover (high, medium, and low levels), retrieved from multisource datasets. To describe the distribution of LST, the variables were calculated, classified, and subsequently, analysed individually and collectively concerning winter and summer LST values applied in an urban neighbourhood in Madrid, Spain. The results from the analytical approaches (observation, correlations, and multiple regressions) were compared to define the morphological patterns. The selection of areas resulting from the morphological patterns with the most unfavourable LST values showed agreement of up to 89% in summer and up to 70% for winter, demonstrating the feasibility of the methods applied to identify priority areas for intervention by season. Notably, low and high vegetation levels emerged as pivotal biophysical characteristics influencing LST distribution compared to the other characteristics, emphasising the significance of integrating detailed seasonal vegetation variations in urban analyses. Full article
(This article belongs to the Section Climate Change and Urban Ecosystems)
Show Figures

Figure 1

35 pages, 4374 KiB  
Review
Climate Risks Resilience Development: A Bibliometric Analysis of Climate-Related Early Warning Systems in Southern Africa
by Israel Edem Agbehadji, Stefanie Schütte, Muthoni Masinde, Joel Botai and Tafadzwanashe Mabhaudhi
Climate 2024, 12(1), 3; https://doi.org/10.3390/cli12010003 - 26 Dec 2023
Viewed by 3271
Abstract
Early warning systems (EWS) facilitate societies’ preparedness and effective response capabilities to climate risks. Climate risks embody hazards, exposure, and vulnerability associated with a particular geographical area. Building an effective EWS requires consideration of the factors above to help people with coping mechanisms. [...] Read more.
Early warning systems (EWS) facilitate societies’ preparedness and effective response capabilities to climate risks. Climate risks embody hazards, exposure, and vulnerability associated with a particular geographical area. Building an effective EWS requires consideration of the factors above to help people with coping mechanisms. The objective of this paper is to propose an approach that can enhance EWSs and ensure an effective climate risk resilience development. The paper focuses on the Southern African Development Community (SADC) region and highlights the issues with EWS, identifying weaknesses and characteristics of EWS to help in climate risk adaptation strategies. The SADC region was chosen as the context because it is a climate variability and change hotspot with many vulnerable populations residing in rural communities. Trending themes on building climate risk resilience were uncovered through scientific mapping and network analysis of published articles from 2008 to 2022. This paper contributes to on-going research on building climate risks resilience through early warning systems to identify hidden trends and emerging technologies from articles in order to enhance the operationalization and design of EWS. This review provides insight into technological interventions for assessing climate risks to build preparedness and resilience. From the review analysis, it is determined that there exists a plethora of evidence to support the argument that involving communities in the co-designing of EWS would improve risk knowledge, anticipation, and preparedness. Additionally, Fourth Industrial Revolution (4IR) technologies provide effective tools to address existing EWS’ weaknesses, such as lack of real-time data collection and automation. However, 4IR technology is still at a nascent stage in EWS applications in Africa. Furthermore, policy across societies, institutions, and technology industries ought to be coordinated and integrated to develop a strategy toward implementing climate resilient-based EWS to facilitate the operations of disaster risk managers. The Social, Institutional, and Technology model can potentially increase communities’ resilience; therefore, it is recommended to develop EWS. Full article
(This article belongs to the Special Issue Hydroclimate Dynamics and Extreme Weather Events in Africa)
Show Figures

Figure 1

26 pages, 9189 KiB  
Article
Analysis of Climate Variability and Its Implications on Rangelands in the Limpopo Province
by Phumzile Maluleke, Mokhele E. Moeletsi and Mitsuru Tsubo
Climate 2024, 12(1), 2; https://doi.org/10.3390/cli12010002 - 24 Dec 2023
Cited by 1 | Viewed by 2015
Abstract
In recent decades, southern Africa has experienced a shift towards hotter and drier climate conditions, affecting vital sectors like agriculture, health, water, and energy. Scientific research has shown that the combination of high temperatures and unreliable rainfall can have detrimental effects on agricultural [...] Read more.
In recent decades, southern Africa has experienced a shift towards hotter and drier climate conditions, affecting vital sectors like agriculture, health, water, and energy. Scientific research has shown that the combination of high temperatures and unreliable rainfall can have detrimental effects on agricultural production. Thus, this study focused on assessing climate variability, with implications on rangelands in the Limpopo Province of South Africa over 38 years. Historical climate data from 15 stations, including rainfall and minimum and maximum temperatures from 1980 to 2018, were analysed. To achieve the main objective, various statistics including mean, standard deviation, and coefficient of variation (CV) were computed for all variables across four seasons. The results highlighted significant variability in rainfall, with Musina (71.2%) and Tshiombo (88.3%) stations displaying the highest variability during the September-to-April season. Both minimum and maximum temperatures displayed low variability. The Mann–Kendall test revealed both increasing and decreasing trends in minimum temperatures and rainfall across different stations. Notably, there was a significant increase in maximum temperatures. This study provides valuable climate information for decision makers, aiding in the planning and management of agricultural activities, particularly in understanding how climate variations affect forage availability in rangelands. Full article
Show Figures

Figure 1

21 pages, 4960 KiB  
Article
Equilibrium Climate after Spectral and Bolometric Irradiance Reduction in Grand Solar Minimum Simulations
by Nazario Tartaglione, Thomas Toniazzo, Odd Helge Otterå and Yvan Orsolini
Climate 2024, 12(1), 1; https://doi.org/10.3390/cli12010001 - 19 Dec 2023
Viewed by 2447
Abstract
In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions [...] Read more.
In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions that are either uniform (percentage-wise) across the total solar radiation spectrum (TOTC) or spectrally localized in the ultraviolet (UV) band (SCUV). We compare the equilibrium condition of these experiments with the equilibrium condition of a control simulation, forced by perpetual solar maximum conditions. In SCUV, we observe large stratospheric cooling due to ozone reduction. In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH), this is accompanied by a weakening of the polar night jet during the cold season. In TOTC, dynamically induced polar stratospheric cooling is observed in the transition seasons over the NH, without any ozone deficit. The global temperature cooling values, compared with the control climate, are 0.55±0.03 K in TOTC and 0.39±0.03 K in SCUV. The reductions in total meridional heat transport outside of the subtropics are similar in the two experiments, especially in the SH. Despite substantial differences in stratospheric forcing, similarities exist between the two experiments, such as cloudiness; meridional heating transport in the SH; and strong cooling in the NH during wintertime, although this cooling affects two different regions, namely, North America in TOTC and the Euro–Asian continent in SCUV. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop