Previous Issue
Volume 12, May
 
 

Climate, Volume 12, Issue 6 (June 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 3957 KiB  
Article
Assessment of the Vulnerability of Households Led by Men and Women to the Impacts of Climate-Related Natural Disasters in the Coastal Areas of Myanmar and Vietnam
by Aung Tun Oo, Ame Cho and Dao Duy Minh
Climate 2024, 12(6), 82; https://doi.org/10.3390/cli12060082 (registering DOI) - 2 Jun 2024
Abstract
Farm households along the coastlines of Myanmar and Vietnam are becoming increasingly vulnerable to flooding, saltwater intrusion, and rising sea levels. There is little information available on the relative vulnerability of men- and women-headed households, and the governments of Myanmar and Vietnam have [...] Read more.
Farm households along the coastlines of Myanmar and Vietnam are becoming increasingly vulnerable to flooding, saltwater intrusion, and rising sea levels. There is little information available on the relative vulnerability of men- and women-headed households, and the governments of Myanmar and Vietnam have not identified or implemented any adaptive measures aimed specifically at vulnerable peoples. This study aims to fill these gaps and assess the relative climate change vulnerability of men- and women-headed farm households. This study considers 599 farm households from two regions of Myanmar and 300 households from Thua Thien Hue province of Vietnam for the period 2021–2022. We offer a livelihood vulnerability index (LVI) analysis of men- and women-headed farm households using 46 indicators arranged into seven major components. The aggregate LVI scores indicate that farm households in Myanmar are more vulnerable (scores of 0.459 for men and 0.476 for women) to climate-related natural disasters than farm households in Vietnam (scores of 0.288 for men and 0.292 for women), regardless of the gender of the head of household. Total vulnerability indexing scores indicate that women-headed households are more vulnerable than men-headed households in both countries. Poor adaptive capacity and highly sensitive LVI dimensional scores explain the greater vulnerability of women-headed farm households. The findings also highlight the importance of the adaptive capacity components reflected in the LVI analysis in reducing farm households’ vulnerability. Full article
Show Figures

Figure 1

29 pages, 29753 KiB  
Review
Beyond the First Tipping Points of Southern Hemisphere Climate
by Terence J. O’Kane, Jorgen S. Frederiksen, Carsten S. Frederiksen and Illia Horenko
Climate 2024, 12(6), 81; https://doi.org/10.3390/cli12060081 (registering DOI) - 31 May 2024
Abstract
Analysis of observations, reanalysis, and model simulations, including those using machine learning methods specifically designed for regime identification, has revealed changes in aspects of the Southern Hemisphere (SH) circulation and Australian climate and extremes over the last half-century that indicate transitions to new [...] Read more.
Analysis of observations, reanalysis, and model simulations, including those using machine learning methods specifically designed for regime identification, has revealed changes in aspects of the Southern Hemisphere (SH) circulation and Australian climate and extremes over the last half-century that indicate transitions to new states. In particular, our analysis shows a dramatic shift in the metastability of the SH climate that occurred in the late 1970s, associated with a large-scale regime transition in the SH atmospheric circulation, with systematic changes in the subtropical jet, blocking, zonal winds, and storm tracks. Analysis via nonstationary clustering reveals a regime shift coincident with a sharp transition to warmer oceanic sea surface temperatures and increased baroclinicity in the large scales of the Antarctic Circumpolar Circulation (ACC), extending across the whole hemisphere. At the same time, the background state of the tropical Pacific thermocline shoaled, leading to an increased likelihood of El Niño events. The SH climate shift in the late 1970s is the first hemispheric regime shift that can be directly attributed to anthropogenic climate change. These changes in dynamics are associated with additional regional tipping points, including reductions in mean and extreme rainfall in south-west Western Australia (SWWA) and streamflow into Perth dams, and also with increases in mean and extreme rainfall over northern Australia since the late 1970s. The drying of south-eastern Australia (SEA) occurred against a background of accelerating increases in average and extreme temperatures across the whole continent since the 1990s, implying further inflection points may have occurred. Analysis of climate model simulations capturing the essence of these observed shifts indicates that these systematic changes will continue into the late 21st century under high greenhouse gas emission scenarios. Here, we review two decades of work, revealing for the first time that tipping points characteristic of regime transitions are inferred to have already occurred in the SH climate system. Full article
22 pages, 5818 KiB  
Article
Assessment of Rural Flood Risk and Factors Influencing Household Flood Risk Perception in the Haut-Bassins Region of Burkina Faso, West Africa
by Madou Sougué, Bruno Merz, Amadé Nacanabo, Gnibga Issoufou Yangouliba, Ibrahima Pouye, Jean Mianikpo Sogbedji and François Zougmoré
Climate 2024, 12(6), 80; https://doi.org/10.3390/cli12060080 (registering DOI) - 31 May 2024
Abstract
In the past two decades, several floods have affected people and their properties in Burkina Faso, with unprecedented flooding occurring in Ouagadougou in September 2009. So far, most studies have focused on Ouagadougou and surrounding localities and have paid little attention to other [...] Read more.
In the past two decades, several floods have affected people and their properties in Burkina Faso, with unprecedented flooding occurring in Ouagadougou in September 2009. So far, most studies have focused on Ouagadougou and surrounding localities and have paid little attention to other flood-prone regions in Burkina Faso. Consequently, there is a data and knowledge gap regarding flood risk in the Haut-Bassins region, which in turn hinders the development of mitigation strategies and risk reduction measures in affected communities. This study demonstrates how data collected at the household level can be used to understand flood risk and its components at the village level in this data-scarce region. Using an indicator-based method, we analyzed both flood risk and flood risk perception at the village level. Moreover, we determined the factors influencing flood risk perception at the household level using an ordered logit model. We found that 12 out of the 14 villages in our sample group had experienced high levels of flood risk. The management of runoff from the nearest urban areas as well as poorly designed civil engineering infrastructures, such as roads, were highlighted by households as significant factors that increased their vulnerability. Additionally, we found that the perceived flood risk consistently exceeds the estimated flood risk, with an insignificant positive correlation between both risk indices. Regression results indicate that flood risk perception is mainly influenced by informational and behavioral factors of households. The findings of this study can provide valuable information to municipal and regional authorities involved in disaster risk management within the study area. Moreover, our/this method is transferable to other data-scarce regions. Full article
Show Figures

Figure 1

30 pages, 25427 KiB  
Article
Numerical Modeling of Atmospheric Temperature and Stratospheric Ozone Sensitivity to Sea Surface Temperature Variability
by Sergei P. Smyshlyaev, Andrew R. Jakovlev and Vener Ya Galin
Climate 2024, 12(6), 79; https://doi.org/10.3390/cli12060079 - 27 May 2024
Viewed by 382
Abstract
The results of numerical experiments with a chemistry–climate model of the lower and middle atmosphere are presented to study the sensitivity of the polar stratosphere of the Northern and Southern Hemispheres to sea surface temperature (SST) variability, both as a result of interannual [...] Read more.
The results of numerical experiments with a chemistry–climate model of the lower and middle atmosphere are presented to study the sensitivity of the polar stratosphere of the Northern and Southern Hemispheres to sea surface temperature (SST) variability, both as a result of interannual variability associated with the Southern Oscillation, and because of long-term increases in SST under global warming. An analysis of the results of model experiments showed that for both scenarios of SST changes, the response of the polar stratosphere for the Northern and Southern Hemispheres is very different. In the Arctic, during the El Niño phase, conditions are created for the polar vortex to become less stable, and in the Antarctic, on the contrary, for it to become more stable, which is expressed in a weakening of the zonal wind in the winter in the Arctic and its increase in the Antarctic, followed by a spring decrease in temperature and concentration of ozone in the Antarctic and their increase in the Arctic. Global warming creates a tendency for the polar vortex to weaken in winter in the Arctic and strengthen it in the Antarctic. As a result, in the Antarctic, the concentration of ozone in the polar stratosphere decreases both in winter (June–August) and, especially, in spring (September–November). Global warming may hinder ozone recovery which is expected as a result of the reduced emissions of ozone-depleting substances. The model results demonstrate the dominant influence of Brewer–Dobson circulation variability on temperature and ozone in the polar stratosphere compared with changes in wave activity, both with changes in SST in the Southern Oscillation and with increases in SST due to global warming. Full article
Show Figures

Figure 1

20 pages, 2914 KiB  
Review
Applying Machine Learning in Numerical Weather and Climate Modeling Systems
by Vladimir Krasnopolsky
Climate 2024, 12(6), 78; https://doi.org/10.3390/cli12060078 - 26 May 2024
Viewed by 262
Abstract
In this paper major machine learning (ML) tools and the most important applications developed elsewhere for numerical weather and climate modeling systems (NWCMS) are reviewed. NWCMSs are briefly introduced. The most important papers published in this field in recent years are reviewed. The [...] Read more.
In this paper major machine learning (ML) tools and the most important applications developed elsewhere for numerical weather and climate modeling systems (NWCMS) are reviewed. NWCMSs are briefly introduced. The most important papers published in this field in recent years are reviewed. The advantages and limitations of the ML approach in applications to NWCMS are briefly discussed. Currently, this field is experiencing explosive growth. Several important papers are published every week. Thus, this paper should be considered as a simple introduction to the problem. Full article
(This article belongs to the Special Issue Addressing Climate Change with Artificial Intelligence Methods)
Show Figures

Figure 1

13 pages, 7992 KiB  
Article
Precipitation Extremes and Trends over the Uruguay River Basin in Southern South America
by Vanessa Ferreira, Osmar Toledo Bonfim, Rafael Maroneze, Luca Mortarini, Roilan Hernandez Valdes and Felipe Denardin Costa
Climate 2024, 12(6), 77; https://doi.org/10.3390/cli12060077 - 22 May 2024
Viewed by 432
Abstract
This study analyzes the spatial distribution and trends in five extreme daily rainfall indices in the Uruguay River Basin (URB) from 1993 to 2022 using the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset. The main findings reveal a predominantly positive trend [...] Read more.
This study analyzes the spatial distribution and trends in five extreme daily rainfall indices in the Uruguay River Basin (URB) from 1993 to 2022 using the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset. The main findings reveal a predominantly positive trend in heavy precipitation (R95p) and extreme precipitation (R99p) events over the mid URB, while a negative trend is observed in the upper and low URB. Significant trends in the frequency of heavy and extreme rainfall were observed during autumn (MAM), with positive trends across most of the mid and upper URB and negative trends in the low URB. In the upper URB, negative trends in the frequency of extremes were also found during spring (SON) and summer (DJF). Overall, there was a reduction in the number of consecutive wet days (CWD), particularly significant in the upper URB and the northern half of the mid URB. Additionally, the upper URB experienced an overall increase in the duration of consecutive dry days (CDD). Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop