Next Article in Journal
Robust μ-Controller for Automatic Glucose Regulation for Type I Diabetes Mellitus
Previous Article in Journal
Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exact Null Controllability of a One-Dimensional Wave Equation with a Mixed Boundary

College of Applied Mathematics, Jilin University of Finance and Economics, Changchun 130117, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(18), 3855; https://doi.org/10.3390/math11183855
Submission received: 19 May 2023 / Revised: 28 August 2023 / Accepted: 8 September 2023 / Published: 9 September 2023
(This article belongs to the Special Issue Advances in Partial Differential Equations: Methods and Applications)

Abstract

:
In this paper, exact null controllability of one-dimensional wave equations in non-cylindrical domains was discussed. It is different from past papers, as we consider boundary conditions for more complex cases. The wave equations have a mixed Dirichlet–Neumann boundary condition. The control is put on the fixed endpoint with a Neumann boundary condition. By using the Hilbert Uniqueness Method, exact null controllability can be obtained.

1. Introduction

Let  T > 0 . Define  Q ^ T k  as a non-cylindrical domain on  2 :
Q ^ T k = ( x , t ) 2 ; 0 < x < α k ( t )   f o r   a l l   t ( 0 , T ) ,
where
α k ( t ) = 1 + k t         k ( 0 , 1 ) .
In this paper, we set
V ( 0 , α k ( t ) ) = { φ H 1 ( 0 , α k ( t ) ) ; φ ( α k ( t ) ) = 0 } ,     t [ 0 , T ] .
We denote the conjugate space of  V ( 0 , α k ( t ) )  with  [ V ( 0 , α k ( t ) ) ] .
We study wave equation as follows:
u t t u x x = 0 i n   Q ^ T k , u x ( 0 , t ) = v , u ( α k ( t ) , t ) = 0 o n   ( 0 , T ) , u ( x , 0 ) = u 0 , u t ( x , 0 ) = u 1 i n   ( 0 , 1 ) ,
where  v [ H 1 ( 0 , T ) ]  is the control variable and  u  is the state variable.  ( u 0 , u 1 ) L 2 ( 0 , 1 ) × [ V ( 0 , 1 ) ]  is an any given initial value. The physical meaning of  k  is called the velocity of moving endpoint. By [1], we know that  ( 1 )  has a unique wake solution  u  in the transposed sense.
Applications of control problems can be found everywhere in life; for example, in engineering practice and in science and technology. In modern mathematics, the distributed parameter energy control theory is an important branch. Control can be divided into exact control, null control and approximate control. In wave equations, we know that exact controllability is equivalent to null controllability.
In cylindrical domains, there are many studies on controllability of wave equations. However, not much work was performed on the wave equations defined in non-cylindrical domains ([1,2,3,4,5,6,7,8,9,10,11,12,13,14]). In [4], exact controllability was studied where the control is put on moving endpoints. In [5], exact controllability was discussed, and the system is as follows:
u t t u y y = 0 i n   Q ^ T k , u ( 0 , t ) = v ( t ) u ( α k ( t ) , t ) = 0 o n   ( 0 , T ) , u ( y , 0 ) = u 0 ( y ) u t ( y , 0 ) = u 1 ( y ) i n   ( 0 , 1 ) .
In [6,7], exact internal controllability was reviewed. We discuss one-dimensional wave equations with the Dirichlet–Neumann boundaries and the control is put on a fixed endpoint with the Neumann boundary condition. By performing the calculation directly in non-cylindrical domains, we obtain exact null controllability by using the Hilbert Uniqueness Method.
In Section 2, the definition of exact null controllability and some main theorems is provided. In Section 3, the dual system of system  ( 1 )  by proving Theorem 2 can be obtained. In Section 4, by the nature of Hilbert’s Uniqueness Method, we prove controllability of system  ( 1 )  (Proof of Theorem 1).

2. Main Results and Preliminary Work

Definition 1. 
Equation  ( 1 )  is called null controllable at the time  T ,  if for any given initial value
( u 0 , u 1 ) L 2 ( 0 , 1 ) × [ V ( 0 , 1 ) ] ,
one can always find a control  v [ H 1 ( 0 , T ) ]  such that solution  u  of  ( 1 )  satisfies
u ( T ) = 0   ,   u t ( T ) = 0
in the transposed sense.
Remark 1. If  α k ( t )  is a more general function that satisfies  0 < α k ( t ) < 1 ; then, it leads to the same conclusion as in this paper.
We set controllability time as follows:
T k * = 1 + e 2 k ( 1 + k ) ( 1 k ) 3 k .
The next theorem, Theorem 1, is the main proof of this paper (controllability).
Theorem 1. 
In the sense of Definition 1,  ( 1 )  is called exactly controllable at time  T  for any given  T > T k * .
In order to prove controllability, we prove observability of its dual system. The dual system of system  ( 1 )  is as follows:
z t t z x x = 0 i n   Q ^ T k , z x ( 0 , t ) = 0 ,   z ( α k ( t ) , t ) = 0 o n   ( 0 , T ) , z ( x , 0 ) = z 0 ,   z t ( x , 0 ) = z 1 i n   ( 0 , 1 ) ,
where  ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 )  is any given initial values. System  ( 2 )  has a unique weak solution (for details refer to [1]):
z C ( [ 0 , T ] , L 2 ( 0 , α k ( t ) ) ) C 1 ( [ 0 , T ] , V ( 0 , α k ( t ) ) ) .
Remark 2.  C  is a positive constant. Its value may vary from position to position.
Next, we give two important inequalities (observability).
Theorem 2. 
When  T > T k * , for any  ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 ) , there exists a constant  C > 0  such that the solution of  ( 2 )  satisfies
C ( | z 1 | L 2 ( 0 , 1 ) 2 + | z 0 | V ( 0 , 1 ) 2 ) 0 T α k ( t ) | z t ( 0 , t ) | 2 d t C ( | z 1 | L 2 ( 0 , 1 ) 2 + | z 0 | V ( 0 , 1 ) 2 )

3. Observability: Proof of Theorem 2

For  t 0 , we give the definition of the energy equation of  ( 2 )  as follows:
E ( t ) = 1 2 0 α k ( t ) [ z t ( x , t ) 2 + z x ( x , t ) 2 ] d x .
Meanwhile, we define
E 0 E ( 0 ) = 1 2 0 1 [ z x 0 ( x ) 2 + z 1 ( x ) 2 ] d x .
Lemma 1
When  t [ 0 , T ] , for any  ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 ) , the solution  z  of  ( 2 )  satisfies
E ( 0 ) E ( t ) = k ( 1 k 2 ) 2 0 t | z x ( α k ( s ) , s ) | 2 d s .
Proof. 
For any  0 < t T ,  multiplying  z t t z x x = 0  by  z s ( x , s )  and integrating on  ( 0 , t ) × ( 0 , α k ( s ) ) , we obtain
0 = 0 t 0 α k ( s ) z s ( x , s ) [ z s s ( x , s ) z x x ( x , s ) ] d x d s  = 1 2 0 t 0 α k ( s ) [ | z s ( x , s ) | 2 + | z x ( x , s ) | 2 ] s d x d s   − 0 t 0 α k ( s ) [ z x ( x , s ) z s ( x , s ) ] x d x d s .
Since
α k ( s ) = 1 + k s .
it is easy to check
α k , s ( s ) = k .
It follows from  ( 7 )  that
0 = 1 2 0 α k ( t ) [ | z x ( x , t ) | 2 + | z t ( x , t ) | 2 ] d x  − 1 2 0 1 [ | z t ( x , 0 ) | 2 + | z x ( x , 0 ) | 2 ] d x  − k 2 0 t [ | | z x ( α k ( s ) , s ) | 2 + z s ( α k ( s ) , s ) | 2 ] d s  − 0 t z s ( α k ( s ) , s ) z x ( α k ( s ) , s ) d s  + 0 t z s ( 0 , s ) z x ( 0 , s ) d s .
Taking  z x ( 0 , t ) = 0   f o r   a n y   t [ 0 , T ] , it holds that
z x ( 0 , s ) = 0   f o r   a n y   s [ 0 , t ] .
Therefore, we can conclude that
0 = 1 2 0 α k ( t ) [ | z t ( x , t ) | 2 + | z x ( x , t ) | 2 ] d x  − 1 2 0 1 [ | z t ( x , 0 ) | 2 + | z x ( x , 0 ) | 2 ] d x  − k 2 0 t [ | z s ( α k ( s ) , s ) | 2 + | z x ( α k ( s ) , s ) | 2 ] d s  − 0 t z x ( α k ( s ) , s ) z s ( α k ( s ) , s ) d s .
Due to  ( 8 )  and  z ( α k ( s ) , s ) = 0 ,  we have
k z x ( α k ( s ) , s ) = z s ( α k ( s ) , s ) .
Therefore, with  ( 4 ) ( 5 ) ( 12 )  and  ( 13 ) , we obtain
E ( 0 ) E ( t ) = k ( 1 k 2 ) 2 0 t | z x ( α k ( s ) , s ) | 2 d s .
Lemma 2. 
When   t [ 0 , T ] , for any   ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 ) , the solution   z of   ( 2 ) satisfies
( 1 k 2 ) 0 t α k ( s ) | z x ( α k ( s ) , s ) | 2 d s = 2 0 α k ( t ) x z t ( x , t ) z x ( x , t ) d x 2 0 1 x z t ( x , 0 ) z x ( x , 0 ) d x + 2 0 t E ( s ) d s .
Proof. 
For any  0 < t T , multiplying  z t t z x x = 0  by  2 x z x ( x , s )  and integrating on  ( 0 , t ) × ( 0 , α k ( s ) ) , we can deduce that
0 = 2 0 t 0 α k ( s ) x z x ( x , s ) [ z s s ( x , s ) z x x ( x , s ) ] d x d s  = 0 t 0 α k ( s ) [ x | z s ( x , s ) | 2 + x | z x ( x , s ) | 2 ] x d x d s  + 2 0 t 0 α k ( s ) [ x z s ( x , s ) z x ( x , s ) ] s d x d s  + 0 t 0 α k ( s ) [ | z s ( x , s ) | 2 + | z x ( x , s ) | 2 ] d x d s .
Considering  ( 4 )  and  ( 9 ) , it follows from  ( 15 )  that
0 = 2 0 t s 0 α k ( s ) x z s ( x , s ) z x ( x , s ) d x d s  − 2 k 0 t z s ( α k ( s ) , s ) α k ( s ) z x ( α k ( s ) , s ) d s  − 0 t [ x | z s ( x , s ) | 2 + x | z x ( x , s ) | 2 ] 0 α k ( s ) d s + 2 0 t E ( s ) d s .
Further, we can derive
  0 = 2 0 α k ( t ) z t ( x , t ) x z x ( x , t ) d x 2 0 1 z t ( x , 0 ) x z x ( x , 0 ) d x  − 2 k 0 t z s ( α k ( s ) , s ) α k ( s ) z x ( α k ( s ) , s ) d s  − 0 t α k ( s ) [ | z s ( α k ( s ) , s ) | 2 + | z x ( α k ( s ) , s ) | 2 ] d s  + 2 0 t E ( s ) d s .
Combining  ( 13 ) , we see
( 1 k 2 ) 0 t | z x ( α k ( s ) , s ) | 2 α k ( s ) d s = 2 0 α k ( t ) z t ( x , t ) x z x ( x , t ) d x 2 0 1 z t ( x , 0 ) x z x ( x , 0 ) d x + 2 0 t E ( s ) d s .
Lemma 3
When  t [ 0 , T ] , for any  ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 ) , the solution  z  of  ( 2 )  satisfies
k ( 1 k 2 ) 0 t s | z x ( α k ( s ) , s ) | 2 d s = 2 t E ( t ) + 2 0 t E ( s ) d s .
Proof. 
For any  0 < t T , multiplying  z t t z x x = 0  by  2 s z s ( x , s )  and integrating on  ( 0 , t ) × ( 0 , α k ( s ) ) , we get
0 = 2 0 t 0 α k ( s ) s z s ( x , s ) [ z t t ( x , s ) z x x ( x , s ) ] d x d s  = 2 0 t 0 α k ( s ) [ z s ( x , s ) s z x ( x , s ) ] x d x d s  − 0 t 0 α k ( s ) [ s | z s ( x , s ) | 2 + s | z x ( x , s ) | 2 ] s d x d s  + 0 t 0 α k ( s ) [ | z s ( x , s ) | 2 + | z x ( x , s ) | 2 ] d x d s .
Considering  ( 4 )  and  ( 9 ) , it is follows that
  0 = 2 0 t s z x ( α k ( s ) , s ) z s ( α k ( s ) , s ) d s 2 0 t s z x ( 0 , s ) z s ( 0 , s ) d s  − 2 t E ( t ) + k 0 t s [ | z s ( α k ( s ) , s ) | 2 + | z x ( α k ( s ) , s ) | 2 ] d s + 2 0 t E ( s ) d s .
With  ( 11 )  and  ( 13 ) , we have
k ( 1 k 2 ) 0 t s | z x ( α k ( s ) , s ) | 2 d s = 2 t E ( t ) + 2 0 t E ( s ) d s .
Lemma 4. 
When   t [ 0 , T ] , for any   ( z 0 , z 1 ) L 2 ( 0 , 1 ) × V ( 0 , 1 ) , the solution   z of   ( 2 ) satisfies
1 k ( 1 + k ) ( 1 + k t ) E ( 0 ) E ( t ) 1 + k ( 1 k ) ( 1 + k t ) E ( 0 ) .
Proof. 
According to Lemmas 2 and 3, we can conclude that
( 1 k 2 ) 0 t | z x ( α k ( s ) , s ) | 2 d s = 2 0 α k ( t ) x z x ( x , t ) z t ( x , t ) d x 2 0 1 x z x ( x , 0 ) z t ( x , 0 ) d x + 2 t E ( t ) .
Combining Lemma 1, we have
2 k E ( 0 ) + 2 0 1 x z x ( x , 0 ) z t ( x , 0 ) d x = 2 0 α k ( t ) z t ( x , t ) x z x ( x , t ) d x + 2 k E ( t ) + 2 t E ( t ) .
This follows from Cauchy’s inequality:
0 α k ( t ) 2 z t ( x , t ) x z x ( x , t ) d x 2 α k ( t ) E ( t ) ,
0 1 2 x z t ( x , 0 ) z x ( x , 0 ) d x 2 E ( 0 ) .
From  ( 25 )  and  ( 26 ) , it follows from  ( 24 )  that
2 E ( 0 ) + 2 k E ( 0 ) 2 t E ( t ) + 2 α k ( t ) E ( t ) + 2 k E ( t ) ,
and
2 E ( 0 ) + 2 k E ( 0 ) 2 α k ( t ) E ( t ) + 2 t E ( t ) + 2 k E ( t ) .
Therefore, we have
E ( 0 ) 1 + k 1 k α k ( t ) E ( t ) ,
E ( 0 ) 1 k 1 + k α k ( t ) E ( t ) .
Hence, we see that  ( 22 )  follows. □
Remark 3. 
Lemma 4 implies that
1 k 1 + k ( 1 + k T ) E ( 0 ) E ( T ) 1 + k 1 k ( 1 + k T ) E ( 0 ) .
We will give the proof of Theorem 2, which has three steps.
Proof of Theorem 2. 
 
Step 1. Multiplying  z t t z x x = 0  by  x α k ( t ) z x ( x , t )  and integrating on  Q ^ T k , it follows that
0 = 0 T 0 α k ( t ) x α k ( t ) z x ( x , t ) z t t ( x , t ) d x d t  − 0 T 0 α k ( t ) x α k ( t ) z x ( x , t ) z x x ( x , t ) d x d t    J 1 J 2 .
Next, we calculate  J i ( i = 1 , 2 ) :
J 1 = 0 T 0 α k ( t ) t [ z t ( x , t ) x α k ( t ) z x ( x , t ) ] d x d t + k 0 T 0 α k ( t ) z x ( x , t ) z t ( x , t ) d x d t 0 T 0 α k ( t ) ( x α k ( t ) ) z x t ( x , t ) z t ( x , t ) d x d t .  
Combining  α k , t ( t ) = k , it follows that
J 1 = [ 0 α k ( t ) z t ( x , t ) z x ( x , t ) x α k ( t ) d x ] 0 T + k 0 T 0 α k ( t ) z t ( x , t ) z x ( x , t ) d x d t 1 2 0 T 0 α k ( t ) ( x α k ( t ) ) x ( | z t ( x , t ) | 2 ) d x d t = [ 0 α k ( t ) z t ( x , t ) x α k ( t ) z x ( x , t ) d x ] 0 T + 0 T 0 α k ( t ) k z x ( x , t ) z t ( x , t ) d x d t  − 1 2 0 T α k ( t ) | z t ( 0 , t ) | 2 d t + 1 2 0 T 0 α k ( t ) | z t ( x , t ) | 2 d x d t .
Calculating  J 2 , we get
J 2 = 0 T 0 α k ( t ) ( x α k ( t ) ) x ( 1 2 | z x ( x , t ) | 2 ) d x d t = 1 2 0 T α k ( t ) | z x ( 0 , t ) | 2 d t 1 2 0 T 0 α k ( t ) | z x ( x , t ) | 2 d x d t .
With  z x ( 0 , t ) = 0   o n   ( 0 , T ) , it is obvious that
J 2 = 1 2 0 T 0 α k ( t ) | z x ( x , t ) | 2 d x d t .
Therefore, with  ( 34 )  and  ( 36 ) , we obtain
J 1 J 2 = [ 0 α k ( t ) x α k ( t ) z t ( x , t ) z x ( x , t ) d x ] 0 T + k 0 T 0 α k ( t ) z x ( x , t ) z t ( x , t ) d x d t 1 2 0 T α k ( t ) | z t ( 0 , t ) | 2 d t + 1 2 0 T 0 α k ( t ) | z t ( x , t ) | 2 d x d t + 1 2 0 T 0 α k ( t ) | z x ( x , t ) | 2 d x d t = 0 .
Considering  ( 4 ) , it follows from  ( 37 )  that
1 2 0 T α k ( t ) | z t ( 0 , t ) | 2 d t = [ 0 α k ( t ) z x ( x , t ) ( x α k ( t ) ) z t ( x , t ) d x ] 0 T + k 0 T 0 α k ( t ) z x ( x , t ) z t ( x , t ) d x d t + 0 T E ( t ) d t .
We have
0 α k ( t ) z x ( x , t ) ( x α k ( t ) ) z t ( x , t ) d x 1 2 0 α k ( t ) [ | z t ( x , t ) | 2 + | z x ( x , t ) | 2 ] ( α k ( t ) x ) d x α k ( t ) E ( t ) .
This inequality implies that
[ 0 α k ( t ) z x ( x , t ) x α k ( t ) z t ( x , t ) d x ] 0 T α k ( T ) E ( T ) + E ( 0 ) ,
k 0 T 0 α k ( t ) z t ( x , t ) z x ( x , t ) d x d t k 0 T E ( t ) d t .
Step 2. From  22 31 40  and  41 , it follows from  38  that
1 2 0 T | z t ( 0 , t ) | 2 α k ( t ) d t 0 T E ( t ) d t E ( 0 ) k 0 T E ( t ) d t α k ( T ) E ( T ) [ 1 + k 1 k 1 + ( 1 k ) 2 ( 1 + k ) k ln ( 1 + k T ) ] E ( 0 ) .
If  T > T k * = 1 + e 2 k ( 1 + k ) ( 1 k ) 3 k , we have
1 + k 1 k 1 + ( 1 k ) 2 ( 1 + k ) k ln ( 1 + k T ) > 0 .
This implies that one can find a positive constant  C  to satisfy
0 T | z t ( 0 , t ) | 2 α k ( t ) d t C [ ln ( 1 + k T ) ( 1 k ) 2 k ( 1 + k ) 1 1 + k 1 k ] ( | z 0 | V ( 0 , α k ( t ) ) 2 + | z 1 | L 2 ( 0 , α k ( t ) ) 2 ) .
Step 3. From  22 31 40  and  41 , one concludes from  38  that
1 2 0 T α k ( t ) | z t ( 0 , t ) | 2 d t α k ( T ) E ( T ) + E ( 0 ) + k 0 T E ( t ) d t + 0 T E ( t ) d t 1 + k 1 k E ( 0 ) + E ( 0 ) + ( 1 + k ) E ( 0 ) 0 T 1 + k ( 1 k ) ( 1 + k t ) d t C [ 1 + k + 1 k + 1 + ( k + 1 ) 2 k ( k + 1 ) ln ( 1 + k T ) ] ( | z 0 | V ( 0 , 1 ) 2 + | z 1 | L 2 ( 0 , 1 ) 2 ) .
With  42  and  43 , we get the desired result in Theorem 2. □
Remark 4. 
T 0 lim k 0 T k * = lim k 0 1 + e 2 k ( k + 1 ) ( k + 1 ) 3 k = lim k 0 2 k ( k + 1 ) ( k + 1 ) 3 k = 2 .
In the non-cylindrical domain  Q ^ T k , for any time  T > T 0 , it is well known that  1  is controllable. However,  T k *  is not sharp.

4. Controllability: Proof of Theorem 1

We use Hilbert’s Uniqueness Method to prove controllability. The specific proof is divided into three steps.
Step 1. Define linear operator  Γ : V ( 0 , 1 ) × L 2 ( 0 , 1 ) [ V ( 0 , 1 ) ] × L 2 ( 0 , 1 ) .  We consider
ξ t t ξ x x = 0 i n   Q ^ T k , ξ x ( 0 , t ) = G z t ( 0 , t ) , ξ ( α k ( t ) , t ) = 0 o n   ( 0 , T ) , ξ ( T ) = ξ t ( T ) = 0 i n   ( 0 , 1 ) .
For any  ϕ H 1 ( 0 , T ) G z t ( 0 , t )  is defined as:
G z t ( 0 , t ) , ϕ ( ( H 1 ( 0 , T ) ) , H 1 ( 0 , T ) ) = 0 T z t ( 0 , t ) ϕ t ( t ) d t .
We set
( ξ 0 , ξ 1 ) ( ξ ( x , 0 ) ,   ξ t ( x , 0 ) ) L 2 ( 0 , 1 ) × [ V ( 0 , 1 ) ] .
We can conclude that
( z 0 , z 1 ) ( ξ 0 , ξ 1 ) .
Therefore,
Γ ( z 0 , z 1 ) , ( z 0 , z 1 ) = 0 1 ( ξ t 1 z 0 ξ 0 z 1 ) d x .
Step 2. Multiplying  ξ t t ξ x x = 0    by  z ( x , t )  and integrating on  Q ^ T k , we can derive
0 = 0 T 0 α k ( t ) z ( x , t ) [ ξ x x ( x , t ) + ξ t t ( x , t ) ] d x d t  = 0 T 0 α k ( t ) [ z ( x , t ) ξ x ( x , t ) z x ( x , t ) ξ ( x , t ) ] x d x d t   + 0 T 0 α k ( t ) [ z ( x , t ) ξ t ( x , t ) z t ( x , t ) ξ ( x , t ) ] t d x d t .
From  α k , t ( t ) = k , we get
0 = 0 T [ z ( α k ( t ) , t ) ξ x ( α k ( t ) , t ) z x ( α k ( t ) , t ) ξ ( α k ( t ) , t ) ] d t k 0 T [ z ( α k ( t ) , t ) ξ t ( α k ( t ) , t ) z t ( α k ( t ) , t ) ξ ( α k ( t ) , t ) ] d t + 0 T [ z ( 0 , t ) ξ x ( 0 , t ) z x ( 0 , t ) ξ ( 0 , t ) ] d t 0 1 z ( x , 0 ) ξ t ( x , 0 ) z t ( x , 0 ) ξ ( x , 0 ) d x + 0 α k ( T ) z ( x , T ) ξ t ( x , T ) z t ( x , T ) ξ ( x , T ) d x .
Based on the conditions:
ξ t ( T ) = z x ( 0 , t ) = ξ ( T ) = z ( α k ( t ) , t ) = ξ ( α k ( t ) , t ) = 0 .
Part  46  can conclude that
0 T G z t ( 0 , t ) z ( 0 , t ) d t = 0 1 z ( x , 0 ) ξ t ( x , 0 ) z t ( x , 0 ) ξ ( x , 0 ) d t .
Combining  45 , we derive
0 T | z t ( 0 , t ) | 2 d t = 0 1 [ z ( x , 0 ) ξ t ( x , 0 ) z t ( x , 0 ) ξ ( x , 0 ) ] d t .
With Theorem 2,  Γ  is proved to be coercive and bounded. Further, combining with the definition of the Lax–Milgram Theorem, we are able to obtain that  Γ  is an isomorphic mapping.
Step 3. For any given initial value
( u 0 , u 1 ) L 2 ( 0 , 1 ) × [ V ( 0 , 1 ) ] ,
we can define
v ( ) = G z t ( 0 , · ) ( H 1 ( 0 , T ) ) ,
where  z  is the solution of  ( 2 ) . There exists  z 0 , z 1  satisfying
( z 0 , z 1 ) = Γ 1 ( u 0 , u 1 ) .
By combining the definitions of  Γ  we get
Γ ( z 0 , z 1 ) = ( ξ 0 , ξ 1 ) ,
where  ξ  is the solution of  ( 44 ) .
Therefore, the following equation holds:
( ξ 0 , ξ 1 ) = ( u 0 , u 1 ) .
Due to the uniqueness of  ( 44 )  we can obtain
( u ( x , T ) , u t ( x , T ) ) = ( 0 , 0 ) .
Therefore, we complete the proof of exact null controllability of  1 .

Author Contributions

Conceptualization, L.C. and J.L.; methodology, L.C.; software, J.L.; validation, L.C. and J.L.; writing—original draft preparation, J.L.; writing—review and editing, L.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Miranda, M.M. Exact controllability for the wave equation in domains with variable boundary. Rev. Mat. Univ. Complut. Madr. 1996, 9, 435–457. [Google Scholar] [CrossRef]
  2. FAraruna, D.; Antunes, G.O.; Mederios, L.A. Exact controllability for the semilinear string equation in the non cylindrical domains. Control Cybern. 2004, 33, 237–257. [Google Scholar]
  3. Bardos, C.; Chen, G. Control and stabilization for the wave equation, Domain with moving boundary. SIAM J. Control Optim. 1981, 19, 123–138. [Google Scholar] [CrossRef]
  4. Sun, H.; Li, H.; Lu, L. Exact controllability for a string equation in domains with moving boundary in one dimension. Electron. J. Differ. Equ. 2015, 98, 1–7. [Google Scholar]
  5. Cui, L.; Jiang, Y.; Wang, Y. Exact controllability for a one-dimensional wave equation with fixed endpoint control. Bound. Value Probl. 2015, 2015, 208. [Google Scholar] [CrossRef]
  6. Cui, L. The wave equation with locally distributed control in non-cylindrical domain. Bound. Value Problems. 2019, 2019, 72. [Google Scholar] [CrossRef]
  7. Cui, L. Exact controllability of wave equations with locally distributed control in non-cylindrical domain. J. Math. Anal. Appl. 2020, 482, 123532. [Google Scholar] [CrossRef]
  8. Miranda, M.M. HUM and the wave equation with variable coefficients. Asymptot. Anal. 1995, 11, 317–341. [Google Scholar] [CrossRef]
  9. Wang, H.; He, Y.; Li, S. Exact controllability problem of a wave equation in non-cylindrical domains. Electron. J. Differ. Equ. 2015, 2015, 1–13. [Google Scholar]
  10. Lu, L.; Li, H.; Sun, H. Exact Controllability for a Wave Equation in Non-cylindrical Domains. J. Shanxi Univ. (Nat. Sci. Ed.) 2015, 38, 632–637. [Google Scholar]
  11. Sengouga, A. Observability of the 1-D Wave Equation with Mixed Boundary Conditions in a Non-cylindrical Domain. Mediterr. J. Math. 2018, 15, 62. [Google Scholar] [CrossRef]
  12. Bottois, A.; Cindea, N.; Munch, A. Uniform observability of the one-dimensional wave equation for non-cylindrical domains. Application to the control’s support optimization. arXiv 2019, arXiv:1911.01284. [Google Scholar] [CrossRef]
  13. Munch, A.; Cindea, N.; Bottois, A. Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation. ESAIM Control Optim. Calc. Var. 2021, 27, 13. [Google Scholar] [CrossRef]
  14. Yacine, M. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evol. Equ. Control Theory 2022, 11, 373–397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cui, L.; Lu, J. Exact Null Controllability of a One-Dimensional Wave Equation with a Mixed Boundary. Mathematics 2023, 11, 3855. https://doi.org/10.3390/math11183855

AMA Style

Cui L, Lu J. Exact Null Controllability of a One-Dimensional Wave Equation with a Mixed Boundary. Mathematics. 2023; 11(18):3855. https://doi.org/10.3390/math11183855

Chicago/Turabian Style

Cui, Lizhi, and Jing Lu. 2023. "Exact Null Controllability of a One-Dimensional Wave Equation with a Mixed Boundary" Mathematics 11, no. 18: 3855. https://doi.org/10.3390/math11183855

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop