Three Identities of the Catalan-Qi Numbers
Abstract
:1. Introduction
2. Proofs
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stanley, R.; Weisstein, E.W. Catalan Number. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/CatalanNumber.html (accessed on 11 September 2015).
- Mansour, T.; Shattuck, M. Restricted partitions and generalized Catalan numbers. Pure Math. Appl. 2011, 22, 239–251. [Google Scholar]
- Mansour, T.; Sun, Y. Identities involving Narayana polynomials and Catalan numbers. Discret. Math. 2009, 309, 4079–4088. [Google Scholar] [CrossRef]
- Hilton, P.; Pedersen, J. Catalan numbers, their generalization, and their uses. Math. Intell. 1991, 13, 64–75. [Google Scholar] [CrossRef]
- Klarner, D.A. Correspondences between plane trees and binary sequences. J. Comb. Theory 1970, 9, 401–411. [Google Scholar] [CrossRef]
- McCarthy, J. Catalan numbers. Letter to the editor: “Catalan numbers, their generalization, and their uses” by P. Hilton and J. Pedersen. Math. Intell. 1992, 14, 5. [Google Scholar]
- Fuss, N.I. Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat. Nova Acta Acad. Sci. Petropolitanae 1791, 9, 243–251. [Google Scholar]
- Fuss-Catalan Number. Available online: https://en.wikipedia.org/wiki/Fuss-Catalan_number (accessed on 11 September 2015).
- Alexeev, N.; Götze, F.; Tikhomirov, A. Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 2010, 50, 121–132. [Google Scholar] [CrossRef]
- Aval, J.-C. Multivariate Fuss-Catalan numbers. Discret. Math. 2008, 308, 4660–4669. [Google Scholar] [CrossRef]
- Bisch, D.; Jones, V. Algebras associated to intermediate subfactors. Invent. Math. 1997, 128, 89–157. [Google Scholar]
- Gordon, I.G.; Griffeth, S. Catalan numbers for complex reflection groups. Am. J. Math. 2012, 134, 1491–1502. [Google Scholar] [CrossRef]
- Lin, C.H. Some combinatorial interpretations and applications of Fuss-Catalan numbers. ISRN Discret. Math. 2011. [Google Scholar] [CrossRef]
- Liu, D.Z.; Song, C.W.; Wang, Z.D. On explicit probability densities associated with Fuss-Catalan numbers. Proc. Am. Math. Soc. 2011, 139, 3735–3738. [Google Scholar] [CrossRef]
- Młotkowski, W. Fuss-Catalan numbers in noncommutative probability. Doc. Math. 2010, 15, 939–955. [Google Scholar]
- Młotkowski, W.; Penson, K.A.; Życzkowski, K. Densities of the Raney distributions. Doc. Math. 2013, 18, 1573–1596. [Google Scholar]
- Pak, I. Catalan Numbers Page. Available online: http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm (accessed on 11 September 2015).
- Przytycki, J.H.; Sikora, A.S. Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J. Combin. Theory Ser. A 2000, 92, 68–76. [Google Scholar] [CrossRef]
- Stump, C. q,t-Fuß-Catalan Numbers for Complex Reflection Groups. In Proceedings of the 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Viña del Mar, Chile, 23–27 June 2008; pp. 295–306.
- Stump, C. q,t-Fuß-Catalan numbers for finite reflection groups. J. Algebraic Combin. 2010, 32, 67–97. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.T.; Liu, F.F. An Exponential Representation for a Function Involving the Gamma Function and Originating From the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.1086.4486 (accessed on 3 August 2015).
- Qi, F. Two Product Representations and Several Properties of the Fuss-Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.1655.6004 (accessed on 8 September 2015).
- Liu, F.F.; Shi, X.T.; Qi, F. A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 2015, 3, 140–144. [Google Scholar] [CrossRef]
- Qi, F. Asymptotic Expansions, Complete Monotonicity, and Inequalities of the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.4371.6321 (accessed on 22 August 2015).
- Qi, F.; Guo, B.N. Logarithmically complete monotonicity of a function related to the Catalan-Qi function. Acta Univ. Sapientiae Math. 2016, in press. [Google Scholar]
- Qi, F.; Guo, B.N. Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers. Cogent Math. 2016, 3, 1179379. [Google Scholar] [CrossRef]
- Qi, F.; Mahmoud, M.; Shi, X.T.; Liu, F.F. Some Properties of the Catalan-Qi Function Related to the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.3810.7369 (accessed on 3 September 2015).
- Qi, F.; Shi, X.T.; Liu, F.F. An Integral Representation, Complete Monotonicity, and Inequalities of the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.3754.4806 (accessed on 12 August 2015).
- Qi, F.; Shi, X.T.; Liu, F.F. Several Formulas for Special Values of the Bell Polynomials of the Second Kind and Applications. Available online: http://dx.doi.org/10.13140/RG.2.1.3230.1927 (accessed on 12 August 2015).
- Qi, F.; Shi, X.T.; Mahmoud, M.; Liu, F.F. Schur-Convexity of the Catalan-Qi Function. Available online: http://dx.doi.org/10.13140/RG.2.1.2434.4802 (accessed on 3 September 2015).
- Shi, X.T.; Liu, F.F.; Qi, F. An integral representation of the Catalan numbers. Glob. J. Math. Anal. 2015, 3, 130–133. [Google Scholar] [CrossRef]
- Touchard, J. Sur Certaines équations Fonctionnelles. In Proceedings of the International Mathematical Congress, Toronto, ON, Canada, 11–16 August 1924; Volume 1, pp. 465–472.
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Hilton, P.; Pedersen, J. The ballot problem and Catalan numbers. Nieuw Arch. Voor Wiskd. 1990, 8, 209–216. [Google Scholar]
- Simsek, Y. Analysis of the Bernstein basis functions: An approach to combinatorial sums involving binomial coefficients and Catalan numbers. Math. Methods Appl. Sci. 2015, 38, 3007–3021. [Google Scholar] [CrossRef]
- Mahmoud, M.; Qi, F. Three Identities of Catalan-Qi Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.3462.9607 (accessed on 12 September 2015).
- Qi, F. Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.1778.3128 (accessed on 24 November 2015).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Qi, F. Three Identities of the Catalan-Qi Numbers. Mathematics 2016, 4, 35. https://doi.org/10.3390/math4020035
Mahmoud M, Qi F. Three Identities of the Catalan-Qi Numbers. Mathematics. 2016; 4(2):35. https://doi.org/10.3390/math4020035
Chicago/Turabian StyleMahmoud, Mansour, and Feng Qi. 2016. "Three Identities of the Catalan-Qi Numbers" Mathematics 4, no. 2: 35. https://doi.org/10.3390/math4020035
APA StyleMahmoud, M., & Qi, F. (2016). Three Identities of the Catalan-Qi Numbers. Mathematics, 4(2), 35. https://doi.org/10.3390/math4020035