Credibility Measure for Intuitionistic Fuzzy Variables
Abstract
:1. Introduction
2. Preliminaries
3. Credibility Measures in Intuitionistic Fuzzy Environment
3.1. Axioms of a Possibility-Determinacy Space
3.2. Necessity Measure of an Intuitionistic Fuzzy Set
3.3. Credibility Measure in Intuitionistic Fuzzy Environment
- (i)
- (ii)
- (iii)
- for
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy set. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 33, 37–46. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 21, 379–423. [Google Scholar] [CrossRef]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar] [CrossRef]
- De Luca, A.; Termini, S. A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inf. Control 1972, 20, 301–312. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Huang, L.; He, D.; Yang, S.X. Segmentation on Ripe Fuji Apple with Fuzzy 2D Entropy based on 2D histogram and GA Optimization. Intell. Autom. Soft Comput. 2013, 19, 239–251. [Google Scholar] [CrossRef]
- Rahimi, M.; Kumar, P.; Yari, G. Portfolio Selection Using Ant Colony Algorithm And Entropy Optimization. Pak. J. Stat. 2017, 33, 441–448. [Google Scholar]
- Yari, G.; Rahimi, M.; Moomivand, B.; Kumar, P. Credibility Based Fuzzy Entropy Measure. Aust. J. Math. Anal. Appl. 2016, 13, 1–7. [Google Scholar]
- Song, H.S.; Rhee, H.K.; Kim, J.H.; Lee, J.H. Reading Children’s Emotions based on the Fuzzy Inference and Theories of Chromotherapy. Information 2016, 19, 735–742. [Google Scholar]
- Farnoosh, R.; Rahimi, M.; Kumar, P. Removing noise in a digital image using a new entropy method based on intuitionistic fuzzy sets. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
- Markechová, D. Kullback-Leibler Divergence and Mutual Information of Experiments in the Fuzzy Case. Axioms 2017, 6, 5. [Google Scholar] [CrossRef]
- Markechová, D.; Riečan, B. Logical Entropy of Fuzzy Dynamical Systems. Entropy 2016, 18, 157. [Google Scholar] [CrossRef]
- Markechová, D.; Riečan, B. Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy 2016, 18, 19. [Google Scholar] [CrossRef]
- Yari, G.; Rahimi, M.; Kumar, P. Multi-period Multi-criteria (MPMC) Valuation of American Options Based on Entropy Optimization Principles. Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 81–86. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.K. Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 2002, 10, 445–450. [Google Scholar]
- Li, X.; Liu, B. A sufficient and necessary condition for credibility measures. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2006, 14, 527–535. [Google Scholar] [CrossRef]
- Li, P.; Liu, B. Entropy of Credibility Distributions for Fuzzy Variables. IEEE Trans. Fuzzy Syst. 2008, 16, 123–129. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets as the basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Mandal, S.; Maitya, K.; Mondal, S.; Maiti, M. Optimal production inventory policy for defective items with fuzzy time period. Appl. Math. Model. 2010, 34, 810–822. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic Press: New York, NY, USA, 1980. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, M.; Kumar, P.; Yari, G. Credibility Measure for Intuitionistic Fuzzy Variables. Mathematics 2018, 6, 50. https://doi.org/10.3390/math6040050
Rahimi M, Kumar P, Yari G. Credibility Measure for Intuitionistic Fuzzy Variables. Mathematics. 2018; 6(4):50. https://doi.org/10.3390/math6040050
Chicago/Turabian StyleRahimi, Mohamadtaghi, Pranesh Kumar, and Gholamhossein Yari. 2018. "Credibility Measure for Intuitionistic Fuzzy Variables" Mathematics 6, no. 4: 50. https://doi.org/10.3390/math6040050
APA StyleRahimi, M., Kumar, P., & Yari, G. (2018). Credibility Measure for Intuitionistic Fuzzy Variables. Mathematics, 6(4), 50. https://doi.org/10.3390/math6040050