Next Article in Journal
Challenges Regarding Scientific Transcription in Virtual Office Hours
Previous Article in Journal
Splitting of Framelets and Framelet Packets
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus

by
Fongchan Wannalookkhee
1,
Kamsing Nonlaopon
1,*,
Jessada Tariboon
2 and
Sotiris K. Ntouyas
3,4
1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
3
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
4
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(7), 698; https://doi.org/10.3390/math9070698
Submission received: 9 March 2021 / Revised: 22 March 2021 / Accepted: 23 March 2021 / Published: 24 March 2021

Abstract

:
In this paper, we define ( p , q ) -integrals for continuous functions of two variables. Then, we prove the Hermite-Hadamard type inequalities for coordinated convex functions by using ( p , q ) -integrals. Many results obtained in this paper provide significant extensions of other related results given in the literature. Finally, we give some examples of our results.

1. Introduction

Quantum calculus or q-calculus is the modern name of the study of calculus without limits. It has been studied since the early eighteenth century. The famous mathematician, Euler, established q-calculus and, in 1910, F. H. Jackson [1] determined the definite q-integral known as the q-Jackson integral. Quantum calculus has many applications in mathematics and physics such as combinatorics, orthogonal polynomials, number theory, basic hypergeometric functions, quantum theory, mechanics, and theory of relativity, see for instance [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and the references therein. The book by V. Kac and P. Cheung [24] covers the fundamental knowledge and also the basic theoretical concepts of quantum calculus.
In 2013, J. Tariboon and S. K. Ntouyas [25] defined the q-derivative and q-integral of a continuous function on finite intervals and proved some of its significant properties. In addition, they firstly extended Hölder, Hermite-Hadamard, trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss and Grüss-Čebyšev inequalities to q-calculus by using such the definitions, see [26] for more details. Based on these results, there are many publications about q-calculus, see [27,28,29,30,31,32,33,34,35,36,37] and the references cited therein. The further generalization of quantum calculus is post-quantum calculus, denoted by ( p , q ) -calculus, which was first considered by R. Chakrabati and R. Jagannathan [38].
In 2016, M. Tunç and E. Göv [39,40] introduced the ( p , q ) -derivative and ( p , q ) -integral on finite intervals, proved some of its properties and gave many integral inequalities via ( p , q ) -calculus. Recently, according to works of M. Tunç and E. Göv, many researchers started working in this direction, some more results on the study of ( p , q ) -calculus can be found in [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55].
The Hermite-Hadamard inequality is a classical inequality that has fascinated many researchers, stated as: If f : [ a , b ] R is a convex function, then
f a + b 2 1 b a a b f ( x ) d x f ( a ) + f ( b ) 2 .
Inequality (1) was introduced by C. Hermite [56] in 1883 and was investigated by J. Hadamard [57] in 1893. If f : [ a , b ] × [ c , d ] R is a convex function for coordinates, then S. Dragomir [58] stated the Hermite-Hadamard type inequalities in 2001 as follows:
f a + b 2 , c + d 2 1 2 1 b a a b f x , c + d 2 d x + 1 d c c d f a + b 2 , y d y 1 ( b a ) ( d c ) a b c d f ( x , y ) d y d x 1 2 1 b a a b f x , c d x + a b f x , d d x + 1 d c c d f a , y d y + c d f b , y d y 1 4 f ( a , c ) + f ( b , c ) + f ( a , d ) + f ( b , d ) .
In 2019, the Hermite-Hadamard type inequalities for coordinates via q-calculus was presented by M. Kunt et al. [27]:
f q 1 a + b 1 + q 1 , q 2 c + d 1 + q 2 1 2 1 b a a b f x , q 2 c + d 1 + q 2 a d q 1 x + 1 d c c d f q 1 a + b 1 + q 1 , y c d q 2 y 1 ( b a ) ( d c ) a b c d f ( x , y ) c d q 2 y a d q 1 x q 1 2 ( 1 + q 1 ) ( d c ) c d f a , y c d q 2 y + q 1 2 ( 1 + q 1 ) ( d c ) c d f b , y c d q 2 y + q 2 2 ( 1 + q 2 ) ( b a ) a b f x , c a d q 1 x + q 2 2 ( 1 + q 2 ) ( b a ) a b f x , d a d q 1 x q 1 q 2 f ( a , c ) + q 1 f ( b , c ) + q 2 f ( a , d ) + f ( b , d ) ( 1 + q 1 ) ( 1 + q 2 ) ,
for all q 1 , q 2 ( 0 , 1 ) .
Recently, S. Bermudo, P. Korus and J. E. N. Valdes [28] defined new b q -derivative, b q -integral and also gave the Hermite-Hadamard inequality via q-calculus by using such the definitions. Consequently, H. Budak, M. A. Ali and M. Tarhanachi [29] defined some new b q -integrals for coordinates and gave the following inequalities
f q 1 a + b 1 + q 1 , c + q 2 d 1 + q 2 1 2 1 b a a b f x , c + q 2 d 1 + q 2 a d q 1 x + 1 d c c d f q 1 a + b 1 + q 1 , y d d q 2 y 1 ( b a ) ( d c ) a b c d f ( x , y ) d d q 2 y a d q 1 x q 1 2 ( 1 + q 1 ) ( d c ) c d f a , y d d q 2 y + 1 2 ( 1 + q 1 ) ( d c ) c d f b , y d d q 2 y + 1 2 ( 1 + q 2 ) ( b a ) a b f x , c a d q 1 x + q 2 2 ( 1 + q 2 ) ( b a ) a b f x , d a d q 1 x q 1 f ( a , c ) + q 1 q 2 f ( a , d ) + f ( b , c ) + q 2 f ( b , d ) ( 1 + q 1 ) ( 1 + q 2 ) ,
f a + q 1 b 1 + q 1 , q 2 c + d 1 + q 2 1 2 1 b a a b f x , q 2 c + d 1 + q 2 b d q 1 x + 1 d c c d f a + q 1 b 1 + q 1 , y c d q 2 y 1 ( b a ) ( d c ) a b c d f ( x , y ) c d q 2 y b d q 1 x 1 2 ( 1 + q 1 ) ( d c ) c d f a , y c d q 2 y + q 1 2 ( 1 + q 1 ) ( d c ) c d f b , y c d q 2 y + q 2 2 ( 1 + q 2 ) ( b a ) a b f x , c b d q 1 x + 1 2 ( 1 + q 2 ) ( b a ) a b f x , d b d q 1 x q 2 f ( a , c ) + f ( a , d ) + q 1 q 2 f ( b , c ) + q 1 f ( b , d ) ( 1 + q 1 ) ( 1 + q 2 )
and
f a + q 1 b 1 + q 1 , c + q 2 d 1 + q 2 1 2 1 b a a b f x , q 2 c + d 1 + q 2 b d q 1 x + 1 d c c d f a + q 1 b 1 + q 1 , y d d q 2 y 1 ( b a ) ( d c ) a b c d f ( x , y ) d d q 2 y b d q 1 x 1 2 ( 1 + q 1 ) ( d c ) c d f a , y d d q 2 y + q 1 2 ( 1 + q 1 ) ( d c ) c d f b , y d d q 2 y + 1 2 ( 1 + q 2 ) ( b a ) a b f x , c b d q 1 x + q 2 2 ( 1 + q 2 ) ( b a ) a b f x , d b d q 1 x f ( a , c ) + q 2 f ( a , d ) + q 1 f ( b , c ) + q 1 q 2 f ( b , d ) ( 1 + q 1 ) ( 1 + q 2 ) ,
for all q 1 , q 2 ( 0 , 1 ) . Moreover, Yu-Ming Chu et al. [51] presented the definitions for new b ( p , q ) -derivatives, b ( p , q ) -integrals and gave the Hermite-Hadamard type inequality for convex functions by using ( p , q ) -calculus. Our present work was motivated by the above mentioned literatures, we propose to define new b ( p , q ) -integrals for coordinates and then extend the Hermite-Hadamard type inequality in q-calculus for coordinated convex functions to ( p , q ) -calculus for coordinated convex functions.

2. Preliminaries

Throughout this paper, we let [ a , b ] , [ c , d ] R , 0 < q < p 1 , 0 < q i < p i 1 for i = 1 , 2 . The definitions of coordinated functions, ( p , q ) -calculus, q-calculus and ( p , q ) -calculus for coordinates are given in [27,29,39,42,51,53,54].
Definition 1.
[39] Let f : [ a , b ] R be a continuous function. Then the a ( p , q ) -derivative a D p , q f ( x ) of f at x ( a , b ] is defined by
a D p , q f ( x ) = f p x + ( 1 p ) a f q x + ( 1 q ) a ( p q ) ( x a ) , x a .
The a ( p , q ) -integral a x f ( t ) a d p , q t is defined by
a x f ( t ) a d p , q t = ( p q ) ( x a ) n = 0 q n p n + 1 f q n p n + 1 x + 1 q n p n + 1 a .
Definition 2.
[51] Let f : [ a , b ] R be a continuous function. Then the b ( p , q ) -derivative b D p , q f ( x ) of f at x [ a , b ) is defined by
b D p , q f ( x ) = f p x + ( 1 p ) b f q x + ( 1 q ) b ( p q ) ( b x ) , x b .
The b ( p , q ) -integral x b f ( t ) b d p , q t is defined by
x b f ( t ) b d p , q t = ( p q ) ( b x ) n = 0 q n p n + 1 f q n p n + 1 x + 1 q n p n + 1 b .
Definition 3.
[58] A function f : [ a , b ] × [ c , d ] R is said to be convex on coordinates, if the partial mappings
f x : [ c , d ] v f ( x , v ) R a n d f y : [ a , b ] u f ( u , y ) R
are convex for all x ( a , b ) and y ( c , d ) .
A formal definition for coordinated convex functions may be stated as follows:
Definition 4.
A function f : [ a , b ] × [ c , d ] R is said to be convex on coordinates, if
f ( t x + ( 1 t ) z , λ y + ( 1 λ ) w ) t λ f ( x , y ) + t ( 1 λ ) f ( x , w ) + ( 1 t ) λ f ( z , y ) + ( 1 t ) λ ( 1 ] ) f ( z , w )
holds for all t , λ [ 0 , 1 ] , ( x , y ) , ( z , w ) [ a , b ] × [ c , d ] .
Definition 5.
[30] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the derivatives are given by
a q 1 f ( x , y ) a q 1 x = f q 1 x + ( 1 q 1 ) a , y f x , y ( 1 q 1 ) ( x a ) , x a , c q 2 f ( x , y ) c q 2 x = f x , q 2 y + ( 1 q 2 ) c , y f x , y ( 1 q 2 ) ( y c ) , y c ,
and
a , c 2 q 1 , q 2 f ( x , y ) a q 1 x c q 2 y = f q 1 x + ( 1 q 1 ) a , q 2 y + ( 1 q 2 ) c f q 1 x + ( 1 q 1 ) a , y f x , q 2 y + ( 1 q 2 ) c + f ( x , y ) ( 1 q 1 ) ( 1 q 2 ) ( x a ) ( y c ) ,
for x a , y c .
Definition 6.
[30] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the definite integral is given by
a x c y f ( t , s ) c d q 2 s a d q 1 t = ( 1 q 1 ) ( 1 q 2 ) ( x a ) ( y c ) n = 0 m = 0 q 1 n q 2 m f ( q 1 n x + ( 1 q 1 n ) a , q 2 m y + ( 1 q 2 m ) c ) .
Definition 7.
[29] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the definite integrals are given by
a x y d f ( t , s ) d d q 2 s a d q 1 t = ( 1 q 1 ) ( 1 q 2 ) ( x a ) ( d y ) n = 0 m = 0 q 1 n q 2 m f ( q 1 n x + ( 1 q 1 n ) a , q 2 m y + ( 1 q 2 m ) d ) ,
x b c y f ( t , s ) c d q 2 s b d q 1 t = ( 1 q 1 ) ( 1 q 2 ) ( b x ) ( y c ) n = 0 m = 0 q 1 n q 2 m f ( q 1 n x + ( 1 q 1 n ) b , q 2 m y + ( 1 q 2 m ) c )
and
x b y d f ( t , s ) d d q 2 s b d q 1 t = ( 1 q 1 ) ( 1 q 2 ) ( b x ) ( d y ) n = 0 m = 0 q 1 n q 2 m f ( q 1 n x + ( 1 q 1 n ) b , q 2 m y + ( 1 q 2 m ) d ) .
Definition 8.
[52] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the derivatives are given by
a p 1 , q 1 f ( x , y ) a p 1 , q 1 x = f p 1 x + ( 1 p 1 ) a , y f q 1 x + ( 1 q 1 ) a , y ( p 1 q 1 ) ( x a ) , x a , c p 2 , q 2 f ( x , y ) c p 2 , q 2 x = f x , p 2 y + ( 1 p 2 ) c , y f x , q 2 y + ( 1 q 2 ) c , y ( p 2 q 2 ) ( y c ) , y c ,
and
a , c 2 p 1 , p 2 , q 1 , q 2 f ( x , y ) a p 1 , q 1 x c p 2 , q 2 y = f q 1 x + ( 1 q 1 ) a , q 2 y + ( 1 q 2 ) c f q 1 x + ( 1 q 1 ) a , p 2 y + ( 1 p 2 ) c ( p 1 q 1 ) ( p 2 q 2 ) ( x a ) ( y c ) f p 1 x + ( 1 p 1 ) a , q 2 y + ( 1 q 2 ) c + f p 1 x + ( 1 p 1 ) a , p 2 y + ( 1 p 2 ) c ( p 1 q 1 ) ( p 2 q 2 ) ( x a ) ( y c ) ,
for x a , y c .
Definition 9.
[52] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the definite integral is given by
a x c y f ( t , s ) c d p 2 , q 2 s a d p 1 , q 1 t = ( p 1 q 1 ) ( p 2 q 2 ) ( x a ) ( y c ) × n = 0 m = 0 q 1 n p 1 n + 1 q 2 m p 2 m + 1 f q 1 n p 1 n + 1 x + 1 q 1 n p 1 n + 1 a , q 2 m p 2 m + 1 y + 1 q 2 m p 2 m + 1 c .
For convenience, we call the integral defined in Definition 10 as L-L (Left-Left) integral. Next, we define another integrals for continuous functions of two variables.
Definition 10.
Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the L-R integral, R-L integral and R-R integral are given by
a x y d f ( t , s ) d d p 2 , q 2 s a d p 1 , q 1 t = ( p 1 q 1 ) ( p 2 q 2 ) ( x a ) ( d y ) × n = 0 m = 0 q 1 n p 1 n + 1 q 2 m p 2 m + 1 f q 1 n p 1 n + 1 x + 1 q 1 n p 1 n + 1 a , q 2 m p 2 m + 1 y + 1 q 2 m p 2 m + 1 d , x b c y f ( t , s ) c d p 2 , q 2 s b d p 1 , q 1 t = ( p 1 q 1 ) ( p 2 q 2 ) ( b x ) ( y c ) × n = 0 m = 0 q 1 n p 1 n + 1 q 2 m p 2 m + 1 f q 1 n p 1 n + 1 x + 1 q 1 n p 1 n + 1 b , q 2 m p 2 m + 1 y + 1 q 2 m p 2 m + 1 c
and
x b y d f ( t , s ) d d p 2 , q 2 s b d p 1 , q 1 t = ( p 1 q 1 ) ( p 2 q 2 ) ( b x ) ( d y ) × n = 0 m = 0 q 1 n p 1 n + 1 q 2 m p 2 m + 1 f q 1 n p 1 n + 1 x + 1 q 1 n p 1 n + 1 b , q 2 m p 2 m + 1 y + 1 q 2 m p 2 m + 1 d .
Obviously, if p 1 = p 2 = 1 , then Definition 10 reduces to Definition 7.
Example 1.
Define a function f : [ 0 , 1 ] × [ 0 , 1 ] R by f ( x y ) = x y , which is a continuous function of two variables. Then by Definitions 9 and 10, for p 1 = p 2 = 3 4 and q 1 = q 2 = 2 4 , we obtain
0 1 0 1 x y 0 d 3 4 , 2 4 y 0 d 3 4 , 2 4 x = 1 4 1 4 ( 1 ) ( 1 ) n = 0 m = 0 2 4 n 3 4 n + 1 2 4 m 3 4 m + 1 2 4 n 3 4 n + 1 2 4 m 3 4 m + 1 = 16 25 , 0 1 0 1 x y 1 d 3 4 , 2 4 y 0 d 3 4 , 2 4 x = 1 4 1 4 ( 1 ) ( 1 ) n = 0 m = 0 2 4 n 3 4 n + 1 2 4 m 3 4 m + 1 2 4 n 3 4 n + 1 1 2 4 m 3 4 m + 1 = 4 25 , 0 1 0 1 x y 0 d 3 4 , 2 4 y 1 d 3 4 , 2 4 x = 1 4 1 4 ( 1 ) ( 1 ) n = 0 m = 0 1 4 n 3 4 n + 1 2 4 m 3 4 m + 1 1 2 4 n 3 4 n + 1 2 4 m 3 4 m + 1 = 4 25
and
0 1 0 1 x y 1 d 3 4 , 2 4 y 1 d 3 4 , 2 4 x = 1 4 1 4 ( 1 ) ( 1 ) n = 0 m = 0 2 4 n 3 4 n + 1 2 4 m 3 4 m + 1 1 2 4 n 3 4 n + 1 1 2 4 m 3 4 m + 1 = 1 25 .
At the end of this section, we give some known theorems needed to prove our main results.
Theorem 1.
[53] Suppose that f : [ a , b ] R is a convex differentiable function on [ a , b ] . Then we have
f q a + p b p + q 1 p ( b a ) a p b + ( 1 p ) a f ( x ) a d p , q x q f ( a ) + p f ( b ) p + q .
Theorem 2.
[42] Suppose that f : [ a , b ] × [ c , d ] R is a continuous function of two variables. Then the following inequalities hold:
f q 1 a + p 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 1 2 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , q 2 c + p 2 d p 2 + q 2 a d p 1 , q 1 x + 1 2 p 2 ( b a ) c p 2 d + ( 1 p 2 ) c f q 1 a + p 1 b p 1 + q 1 , y c d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) a p 1 b + ( 1 p 1 ) a c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y a d p 1 , q 1 x q 2 2 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x + p 2 2 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x + q 1 2 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y + p 1 2 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y q 1 q 2 f ( a , c ) + q 1 p 2 f ( a , d ) + p 1 q 2 f ( b , c ) + p 1 p 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Theorem 3.
[54] Suppose that f : [ a , b ] R is a convex differentiable function on [ a , b ] . Then we have
f p a + q b p + q 1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x p f ( a ) + q f ( b ) p + q .

3. Main Results

In this section, we give new ( p , q ) -Hermite-Hadamard type inequalities for coordinated convex functions and verify them.
Theorem 4.
Let f : [ a , b ] × [ c , d ] R be a convex differentiable function of two variables. Then the following inequalities hold:
f q 1 a + p 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 2 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , p 2 c + q 2 d p 2 + q 2 a d p 1 , q 1 x + 1 2 p 2 ( b a ) p 2 c + ( 1 p 2 ) d d f q 1 a + p 1 b p 1 + q 1 , y d d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) a p 1 b + ( 1 p 1 ) a p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y a d p 1 , q 1 x q 1 2 p 2 ( p 1 + q 1 ) ( d c ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y + p 1 2 p 2 ( p 1 + q 1 ) ( d c ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y + p 2 2 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x + q 2 2 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x q 1 p 2 f ( a , c ) + q 1 q 2 f ( a , d ) + p 1 p 2 f ( b , c ) + p 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Proof. 
Let h x : [ c , d ] R defined by h x ( y ) = f ( x , y ) be a convex differentiable function on [ c , d ] . Using the inequality (8) on [ c , d ] , we have
h x p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d h x ( y ) d d p 2 , q 2 y p 2 h x ( c ) + q 2 h x ( d ) p 2 + q 2 ,
i.e.,
f x , p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 ,
for all x [ a , b ] .
By ( p 1 , q 1 ) a -integrating both sides of (10) on [ a , p 1 a + ( 1 p 1 ) b ] , we have
1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , p 2 c + q 2 d p 2 + q 2 a d p 1 , q 1 x 1 p 1 p 2 ( b a ) ( d c ) a p 1 b + ( 1 p 1 ) a p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y a d p 1 , q 1 x 1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 a d p 1 , q 1 x .
Similarly, let h y : [ a , b ] R defined by h y ( x ) = f ( x , y ) be a convex function on [ a , b ] . Using the inequality (6) on [ a , b ] , we have
h y q 1 a + p 1 b p 1 + q 1 1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a h y ( x ) a d p 1 , q 1 x q 1 h y ( a ) + p 1 h y ( b ) p 1 + q 1 ,
i.e.,
f q 1 a + p 1 b p 1 + q 1 , y 1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , y ) a d p 1 , q 1 x q 1 f ( a , y ) + p 1 f ( b , y ) p 1 + q 1 ,
for all y [ a , b ] .
By ( p 2 , q 2 ) d -integrating both sides of (12) on [ p 2 c + ( 1 p 2 ) d , d ] , we have
1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f q 1 a + p 1 b p 1 + q 1 , y d d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) p 2 c + ( 1 p 2 ) d d a p 1 b + ( 1 p 1 ) a f ( x , y ) a d p 1 , q 1 x d d p 2 , q 2 y 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d q 1 f ( a , y ) + p 1 f ( b , y ) p 1 + q 1 d d p 2 , q 2 y .
Adding (11) and (13), we obtain
1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , p 2 c + q 2 d p 2 + q 2 a d p 1 , q 1 x + 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f q 1 a + p 1 b p 1 + q 1 , y d d p 2 , q 2 y 2 p 1 p 2 ( b a ) ( d c ) a p 1 b + ( 1 p 1 ) a p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y a d p 1 , q 1 x 1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 a d p 1 , q 1 x + 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d q 1 f ( a , y ) + p 1 f ( b , y ) p 1 + q 1 d d p 2 , q 2 y = p 2 p 1 ( b a ) ( p 2 + q 2 ) a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x + q 2 p 1 ( b a ) ( p 2 + q 2 ) a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x + q 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y + p 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y ,
which proves the second and the third inequalities of the theorem.
Since q 1 a + p 1 b p 1 + q 1 [ a , b ] , it follows from the first inequality of (10) that
f q 1 a + p 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f q 1 a + p 1 b p 1 + q 1 , y d d p 2 , q 2 y .
Since p 2 c + q 2 d p 2 + q 2 [ c , d ] , it follows from the first inequality of (12) that
f q 1 a + p 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , p 2 c + q 2 d p 2 + q 2 a d p 1 , q 1 x .
Adding two inequalities above, we obtain the first inequality in the theorem.
Finally, using the second inequality of (10) and (12), we have
q 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y q 1 p 2 f ( a , c ) + q 1 q 2 f ( a , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , p 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y p 1 p 2 f ( b , c ) + p 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , q 2 p 1 ( b a ) ( p 2 + q 2 ) a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x q 1 q 2 f ( a , d ) + p 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) ,
p 2 p 1 ( b a ) ( p 2 + q 2 ) a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x q 1 p 2 f ( a , c ) + p 1 p 2 f ( b , c ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Combining the inequalities above, we get the last inequality in the theorem. This completes the proof.  □
Remark 1.
If p 1 = p 2 = 1 , then (9) reduces to (3), which was appeared in [29].
Remark 2.
If p 1 = p 2 = 1 , q 1 and q 2 tend to 1, then (9) reduces to (2), which was appeared in [58].
Theorem 5.
Let f : [ a , b ] × [ c , d ] R be a convex differentiable function of two variables. Then the following inequalities hold:
f p 1 a + q 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 1 2 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , q 2 c + p 2 d p 2 + q 2 b d p 1 , q 1 x + 1 2 p 2 ( b a ) c p 2 d + ( 1 p 2 ) c f p 1 a + q 1 b p 1 + q 1 , y c d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y b d p 1 , q 1 x p 1 2 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y + q 1 2 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y + q 2 2 p 1 ( p 2 + q 2 ) ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + p 2 2 p 1 ( p 2 + q 2 ) ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x p 1 q 2 f ( a , c ) + p 1 p 2 f ( a , d ) + q 1 q 2 f ( b , c ) + q 1 p 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Proof. 
Let h x : [ c , d ] R defined by h x ( y ) = f ( x , y ) be a convex differentiable function on [ c , d ] . Using the inequality (6) on [ c , d ] , we have
h x q 2 c + p 2 d p 2 + q 2 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c h x ( y ) c d p 2 , q 2 y q 2 h x ( c ) + p 2 h x ( d ) p 2 + q 2 ,
i.e.,
f x , q 2 c + p 2 d p 2 + q 2 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y q 2 f ( x , c ) + p 2 f ( x , d ) p 2 + q 2 ,
for all x [ a , b ] .
By ( p 1 , q 1 ) b -integrating both sides of (15) on [ p 1 a + ( 1 p 1 ) b , b ] , we have
1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , q 2 c + p 2 d p 2 + q 2 b d p 1 , q 1 x 1 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y b d p 1 , q 1 x 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b q 2 f ( x , c ) + p 2 f ( x , d ) p 2 + q 2 b d p 1 , q 1 x .
Similarly, let h y : [ a , b ] R defined by h y ( x ) = f ( x , y ) be a convex function on [ a , b ] . Using the inequality (8) on [ a , b ] , we have
h y p 1 a + q 1 b p 1 + q 1 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b h y ( x ) b d p 1 , q 1 x p 1 h y ( a ) + q 1 h y ( b ) p 1 + q 1 ,
i.e.,
f p 1 a + q 1 b p 1 + q 1 , y 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , y ) b d p 1 , q 1 x p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 ,
for all y [ a , b ] .
By ( p 2 , q 2 ) c -integrating both sides of (17) on [ c , p 2 d + ( 1 p 2 ) c ] , we have
1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c f p 1 a + q 1 b p 1 + q 1 , y c d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) c p 2 d + ( 1 p 2 ) c p 1 a + ( 1 p 1 ) b b f ( x , y ) b d p 1 , q 1 x c d p 2 , q 2 y 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 c d p 2 , q 2 y .
Adding (16) and (18), we obtain
1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , q 2 c + p 2 d p 2 + q 2 b d p 1 , q 1 x + 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c f p 1 a + q 1 b p 1 + q 1 , y c d p 2 , q 2 y 2 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y b d p 1 , q 1 x 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b q 2 f ( x , c ) + p 2 f ( x , d ) p 2 + q 2 b d p 1 , q 1 x + 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 c d p 2 , q 2 y = q 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + p 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x + p 1 p 2 ( d c ) ( p 1 + q 1 ) c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y + q 1 p 2 ( d c ) ( p 1 + q 1 ) c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y ,
which proves the second and the third inequalities of the theorem.
Since p 1 a + q 1 b p 1 + q 1 [ a , b ] , it follows from the first inequality of (15) that
f p 1 a + q 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 1 p 2 ( d c ) c p 2 d + ( 1 p 2 ) c f p 1 a + q 1 b p 1 + q 1 , y c d p 2 , q 2 y .
Since q 2 c + p 2 d p 2 + q 2 [ c , d ] , it follows from the first inequality of (17) that
f p 1 a + q 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , q 2 c + p 2 d p 2 + q 2 b d p 1 , q 1 x .
Adding the two inequalities above, we obtain the first inequality in the theorem.
Finally, using the second inequality of (15) and (17), we have
p 1 p 2 ( d c ) ( p 1 + q 1 ) c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y p 1 q 2 f ( a , c ) + p 1 p 2 f ( a , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , q 1 p 2 ( d c ) ( p 1 + q 1 ) c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y q 1 q 2 f ( b , c ) + q 1 p 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , p 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x p 1 p 2 f ( a , d ) + q 1 p 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) ,
q 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x p 1 q 2 f ( a , c ) + q 1 q 2 f ( b , c ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Combining inequalities above, we get the last inequality in the theorem. This completes the proof.  □
Remark 3.
If p 1 = p 2 = 1 , then (14) reduces to (4), which was appeared in [29].
Remark 4.
If p 1 = p 2 = 1 , q 1 and q 2 tend to 1, then (14) reduces to (2), which was appeared in [58].
Theorem 6.
Let f : [ a , b ] × [ c , d ] R be a convex differentiable function of two variables. Then the following inequalities hold:
f p 1 a + q 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 2 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , p 2 c + q 2 d p 2 + q 2 b d p 1 , q 1 x + 1 2 p 2 ( b a ) p 2 c + ( 1 p 2 ) d d f p 1 a + q 1 b p 1 + q 1 , y d d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y b d p 1 , q 1 x p 1 2 p 2 ( p 1 + q 1 ) ( d c ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y + q 1 2 p 2 ( p 1 + q 1 ) ( d c ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y + p 2 2 p 1 ( p 2 + q 2 ) ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + q 2 2 p 1 ( p 2 + q 2 ) ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x p 1 p 2 f ( a , c ) + p 1 q 2 f ( a , d ) + q 1 p 2 f ( b , c ) + q 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Proof. 
Let h x : [ c , d ] R defined by h x ( y ) = f ( x , y ) be a convex differentiable function on [ c , d ] . Using the inequality (8) on [ c , d ] , we have
h x p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d h x ( y ) d d p 2 , q 2 y p 2 h x ( c ) + q 2 h x ( d ) p 2 + q 2 ,
i.e.,
f x , p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 ,
for all x [ a , b ] .
By ( p 1 , q 1 ) b -integrating both sides of (20) on [ p 1 a + ( 1 p 1 ) b , b ] , we have
1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , p 2 c + q 2 d p 2 + q 2 b d p 1 , q 1 x 1 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y b d p 1 , q 1 x 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 b d p 1 , q 1 x .
Similarly, let h y : [ a , b ] R defined by h y ( x ) = f ( x , y ) be a convex function on [ a , b ] . Using the inequality (8) on [ a , b ] , we have
h y p 1 a + q 1 b p 1 + q 1 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b h y ( x ) b d p 1 , q 1 x p 1 h y ( a ) + q 1 h y ( b ) p 1 + q 1 ,
i.e.,
f p 1 a + q 1 b p 1 + q 1 , y 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f ( x , y ) b d p 1 , q 1 x p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 ,
for all y [ a , b ] .
By ( p 2 , q 2 ) d -integrating both sides of (22) on [ p 2 c + ( 1 p 2 ) d , d ] , we have
1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f p 1 a + q 1 b p 1 + q 1 , y d d p 2 , q 2 y 1 p 1 p 2 ( b a ) ( d c ) p 2 c + ( 1 p 2 ) d d p 1 a + ( 1 p 1 ) b b f ( x , y ) b d p 1 , q 1 x d d p 2 , q 2 y 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 d d p 2 , q 2 y .
Adding (21) and (23), we obtain
1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , p 2 c + q 2 d p 2 + q 2 b d p 1 , q 1 x + 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f p 1 a + q 1 b p 1 + q 1 , y d d p 2 , q 2 y 2 p 1 p 2 ( b a ) ( d c ) p 1 a + ( 1 p 1 ) b b p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y b d p 1 , q 1 x 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b p 2 f ( x , c ) + q 2 f ( x , d ) p 2 + q 2 b d p 1 , q 1 x + 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d p 1 f ( a , y ) + q 1 f ( b , y ) p 1 + q 1 d d p 2 , q 2 y = p 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + q 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x + p 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y + q 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y ,
which proves the second and the third inequalities of the theorem.
Since p 1 a + q 1 b p 1 + q 1 [ a , b ] , it follows from the first inequality of (20) that
f p 1 a + q 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 p 2 ( d c ) p 2 c + ( 1 p 2 ) d d f p 1 a + q 1 b p 1 + q 1 , y d d p 2 , q 2 y .
Since p 2 c + q 2 d p 2 + q 2 [ c , d ] , it follows from the first inequality of (22) that
f p 1 a + q 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , p 2 c + q 2 d p 2 + q 2 b d p 1 , q 1 x .
Adding two inequalities above, we obtain the first inequality in the theorem.
Finally, using the second inequality of (20) and ((22), we have
p 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y p 1 p 2 f ( a , c ) + p 1 q 2 f ( a , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , q 1 p 2 ( d c ) ( p 1 + q 1 ) p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y q 1 p 2 f ( b , c ) + q 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , q 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x p 1 q 2 f ( a , d ) + q 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) , p 2 p 1 ( b a ) ( p 2 + q 2 ) p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x p 1 p 2 f ( a , c ) + q 1 p 2 f ( b , c ) ( p 1 + q 1 ) ( p 2 + q 2 ) .
Combining inequalities above, we get the last inequality in the theorem. This completes the proof.  □
Remark 5.
If p 1 = p 2 = 1 , then (19) reduces to (5), which was appeared in [29].
Remark 6.
If p 1 = p 2 = 1 , q 1 and q 2 tend to 1, then (19) reduces to (2), which was appeared in [58].
Corollary 1.
Let f : [ a , b ] × [ c , d ] R be a convex differentiable function of two variables. Then we have the inequalities
1 4 f q 1 a + p 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 + f q 1 a + p 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 + f p 1 a + q 1 b p 1 + q 1 , q 2 c + p 2 d p 2 + q 2 + f p 1 a + q 1 b p 1 + q 1 , p 2 c + q 2 d p 2 + q 2 1 8 p 1 ( b a ) a p 1 b + ( 1 p 1 ) a f x , q 2 c + p 2 d p 2 + q 2 + f x , p 2 c + q 2 d p 2 + q 2 a d p 1 , q 1 x + 1 8 p 1 ( b a ) p 1 a + ( 1 p 1 ) b b f x , q 2 c + p 2 d p 2 + q 2 + f x , p 2 c + q 2 d p 2 + q 2 b d p 1 , q 1 x + 1 8 p 2 ( b a ) c p 2 d + ( 1 p 2 ) c f q 1 a + p 1 b p 1 + q 1 , y + f p 1 a + q 1 b p 1 + q 1 , y c d p 2 , q 2 y + 1 8 p 2 ( b a ) p 2 c + ( 1 p 2 ) d d f q 1 a + p 1 b p 1 + q 1 , y + f p 1 a + q 1 b p 1 + q 1 , y d d p 2 , q 2 y 1 4 p 1 p 2 ( b a ) ( d c ) a p 1 b + ( 1 p 1 ) a c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y a d p 1 , q 1 x + a p 1 b + ( 1 p 1 ) a p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y a d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b c p 2 d + ( 1 p 2 ) c f ( x , y ) c d p 2 , q 2 y b d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b p 2 c + ( 1 p 2 ) d d f ( x , y ) d d p 2 , q 2 y b d p 1 , q 1 x q 2 8 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x + a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x + p 2 8 p 1 ( p 2 + q 2 ) ( b a ) a p 1 b + ( 1 p 1 ) a f ( x , d ) a d p 1 , q 1 x + a p 1 b + ( 1 p 1 ) a f ( x , c ) a d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b f ( x , d ) b d p 1 , q 1 x + p 1 a + ( 1 p 1 ) b b f ( x , c ) b d p 1 , q 1 x + q 1 8 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y + p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y + c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y + p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y + p 1 8 p 2 ( p 1 + q 1 ) ( d c ) c p 2 d + ( 1 p 2 ) c f ( b , y ) c d p 2 , q 2 y + p 2 c + ( 1 p 2 ) d d f ( b , y ) d d p 2 , q 2 y + c p 2 d + ( 1 p 2 ) c f ( a , y ) c d p 2 , q 2 y + p 2 c + ( 1 p 2 ) d d f ( a , y ) d d p 2 , q 2 y 1 4 ( p 1 + q 1 ) ( p 2 + q 2 ) ( q 1 q 2 + q 1 p 2 + p 1 q 2 + p 1 p 2 ) f ( a , c ) + ( q 1 p 2 + q 1 q 2 + p 1 p 2 + p 1 q 2 ) f ( a , d ) + ( p 1 q 2 + p 1 p 2 + q 1 q 2 + q 1 p 2 ) f ( b , c ) + ( p 1 p 2 + p 1 q 2 + q 1 p 2 + q 1 q 2 ) f ( b , d ) .
Remark 7.
If p 1 = p 2 = 1 , then (24) reduces to
1 4 f q 1 a + b 1 + q 1 , q 2 c + d 1 + q 2 + f q 1 a + b 1 + q 1 , c + q 2 d 1 + q 2 + f a + q 1 b 1 + q 1 , q 2 c + d 1 + q 2 + f a + q 1 b 1 + q 1 , c + q 2 d 1 + q 2 1 8 ( b a ) a b f x , q 2 c + d 1 + q 2 + f x , c + q 2 d 1 + q 2 a d q 1 x + 1 8 ( b a ) a b f x , q 2 c + d 1 + q 2 + f x , c + q 2 d 1 + q 2 b d q 1 x + 1 8 ( b a ) c d f q 1 a + b 1 + q 1 , y + f a + q 1 b 1 + q 1 , y c d q 2 y + 1 8 ( b a ) c d f q 1 a + b 1 + q 1 , y + f a + q 1 b 1 + q 1 , y d d q 2 y 1 4 ( b a ) ( d c ) a b c d f ( x , y ) c d q 2 y a d q 1 x + a b c d f ( x , y ) d d q 2 y a d q 1 x + a b c d f ( x , y ) c d q 2 y b d q 1 x + a b c d f ( x , y ) d d q 2 y b d q 1 x 1 8 ( b a ) a b f ( x , c ) a d q 1 x + a b f ( x , d ) a d q 1 x + a b f ( x , c ) b d q 1 x + a b f ( x , d ) b d q 1 x + 1 8 ( d c ) c d f ( a , y ) c d q 2 y + c d f ( a , y ) d d q 2 y + c d f ( b , y ) c d q 2 y + c d f ( b , y ) d d q 2 y f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 ,
which was appeared in [29].

4. Examples

In this section, we give some examples of our main theorems.
Example 2.
Define a function f : [ 0 , 1 ] × [ 0 , 1 ] R by f ( x , y ) = x 2 y 2 . Then f ( x , y ) is a convex differentiable function of two variables on [ 0 , 1 ] × [ 0 , 1 ] . By applying Theorem 4 with p 1 = p 2 = 3 4 and q 1 = q 2 = 1 4 , the first inequality of (9) becomes
9 256 = f 3 4 , 1 4 = f 1 4 · 0 + 3 4 · 1 3 4 + 1 4 , 3 4 · 0 + 1 4 · 1 3 4 + 1 4 1 2 · 3 4 · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f x , 3 4 · 0 + 1 4 · 1 3 4 + 1 4 0 d 3 4 , 1 4 x + 1 2 · 3 4 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f 1 4 · 0 + 3 4 · 1 3 4 + 1 4 , y 1 d 3 4 , 1 4 y = 2 3 0 3 4 f x , 1 4 0 d 3 4 , 1 4 x + 2 3 1 4 1 f 3 4 , y 1 d 3 4 , 1 4 y = 93 832 .
The third inequality of (9) becomes
45 338 = 16 9 0 3 4 1 4 1 f x , y 1 d 3 4 , 1 4 y 0 d 3 4 , 1 4 x = 1 3 4 · 3 4 · 1 · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , y ) 1 d 3 4 , 1 4 y 0 d 3 4 , 1 4 x 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( 0 , y ) 1 d 3 4 , 1 4 y + 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( 1 , y ) 1 d 3 4 , 1 4 y + 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f ( x , 0 ) 0 d 3 4 , 1 4 x + 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f ( x , 1 ) 0 d 3 4 , 1 4 x = 0 + 1 2 1 4 1 f 1 , y 1 d 3 4 , 1 4 y + 0 + 1 6 0 3 4 f x , 1 0 d 3 4 , 1 4 x = 156 832 .
We also have
q 1 p 2 f ( a , c ) + q 1 q 2 f ( a , d ) + p 1 p 2 f ( b , c ) + p 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) = 1 ( 3 4 + 1 4 ) ( 3 4 + 1 4 ) 1 4 · 3 4 · f ( 0 , 0 ) + 1 4 · 1 4 · f ( 0 , 1 ) + 3 4 · 3 4 · f ( 1 , 0 ) + 3 4 · 1 4 · f ( 1 , 1 ) = 0 + 0 + 0 + 3 4 · 1 4 = 3 16 .
It is clear that
9 256 93 832 45 338 156 832 3 16 ,
which demonstrates the result described in Theorem 4.
Example 3.
Define a function f : [ 0 , 1 ] × [ 0 , 1 ] R by f ( x , y ) = x 2 y 2 . Then f ( x , y ) is a convex differentiable function of two variables on [ 0 , 1 ] × [ 0 , 1 ] . By applying Theorem 5 with p 1 = p 2 = 3 4 and q 1 = q 2 = 1 4 , the first inequality of (14) becomes
9 256 = f 1 4 , 3 4 = f 3 4 · 0 + 1 4 · 1 3 4 + 1 4 , 1 4 · 0 + 3 4 · 1 3 4 + 1 4 1 2 · 3 4 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f x , 1 4 · 0 + 3 4 · 1 3 4 + 1 4 1 d 3 4 , 1 4 x + 1 2 · 3 4 · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f 3 4 · 0 + 1 4 · 1 3 4 + 1 4 , y 0 d 3 4 , 1 4 y = 2 3 1 4 1 f x , 3 4 1 d 3 4 , 1 4 x + 2 3 0 3 4 f 1 4 , y 0 d 3 4 , 1 4 y = 93 832 .
The third inequality of (14) becomes
45 338 = 16 9 1 4 1 0 3 4 f x , y 0 d 3 4 , 1 4 y 1 d 3 4 , 1 4 x = 1 3 4 · 3 4 · 1 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f ( x , y ) 0 d 3 4 , 1 4 y 1 d 3 4 , 1 4 x 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f ( 0 , y ) 0 d 3 4 , 1 4 y + 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 0 3 4 · 1 + ( 1 3 4 ) · 0 f ( 1 , y ) 0 d 3 4 , 1 4 y + 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , 0 ) 1 d 3 4 , 1 4 x + 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , 1 ) 1 d 3 4 , 1 4 x = 0 + 1 6 0 3 4 f 1 , y 0 d 3 4 , 1 4 y + 0 + 1 2 1 4 1 f x , 1 1 d 3 4 , 1 4 x = 156 832 .
We also have
q 1 p 2 f ( a , c ) + q 1 q 2 f ( a , d ) + p 1 p 2 f ( b , c ) + p 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) = 1 ( 3 4 + 1 4 ) ( 3 4 + 1 4 ) 3 4 · 1 4 · f ( 0 , 0 ) + 3 4 · 3 4 · f ( 0 , 1 ) + 1 4 · 1 4 · f ( 1 , 0 ) + 1 4 · 3 4 · f ( 1 , 1 ) = 0 + 0 + 0 + 1 4 · 3 4 = 3 16 .
It is clear that
9 256 93 832 45 338 156 832 3 16 ,
which demonstrates the result described in Theorem 5.
Example 4.
Define a function f : [ 0 , 1 ] × [ 0 , 1 ] R by f ( x , y ) = x 2 y 2 . Then f ( x , y ) is a convex differentiable function of two variables on [ 0 , 1 ] × [ 0 , 1 ] . By applying Theorem 6 with p 1 = p 2 = 3 4 and q 1 = q 2 = 1 4 , the first inequality of (19) becomes
1 256 = f 1 4 , 1 4 = f 3 4 · 0 + 1 4 · 1 3 4 + 1 4 , 3 4 · 0 + 1 4 · 1 3 4 + 1 4 1 2 · 3 4 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f x , 3 4 · 0 + 1 4 · 1 3 4 + 1 4 1 d 3 4 , 1 4 x + 1 2 · 3 4 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f 3 4 · 0 + 1 4 · 1 3 4 + 1 4 , y 1 d 3 4 , 1 4 y = 2 3 1 4 1 f x , 1 4 1 d 3 4 , 1 4 x + 2 3 1 4 1 f 1 4 , y 1 d 3 4 , 1 4 y = 10 832 .
The third inequality of (19) becomes
25 676 = 16 9 1 4 1 1 4 1 f x , y 1 d 3 4 , 1 4 y 1 d 3 4 , 1 4 x = 1 3 4 · 3 4 · 1 · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , y ) 1 d 3 4 , 1 4 y 1 d 3 4 , 1 4 x 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( 0 , y ) 1 d 3 4 , 1 4 y + 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( 1 , y ) 1 d 3 4 , 1 4 y + 1 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , 0 ) 1 d 3 4 , 1 4 x + 3 4 2 · 3 4 · ( 3 4 + 1 4 ) · 1 3 4 · 0 + ( 1 3 4 ) · 1 1 f ( x , 1 ) 1 d 3 4 , 1 4 x = 0 + 1 6 1 4 1 f 1 , y 1 d 3 4 , 1 4 y + 0 + 1 6 1 4 1 f x , 1 1 d 3 4 , 1 4 x = 40 832 .
We also have
p 1 p 2 f ( a , c ) + p 1 q 2 f ( a , d ) + q 1 p 2 f ( b , c ) + q 1 q 2 f ( b , d ) ( p 1 + q 1 ) ( p 2 + q 2 ) = 1 ( 3 4 + 1 4 ) ( 3 4 + 1 4 ) 3 4 · 3 4 · f ( 0 , 0 ) + 3 4 · 1 4 · f ( 0 , 1 ) + 1 4 · 3 4 · f ( 1 , 0 ) + 1 4 · 1 4 · f ( 1 , 1 ) = 0 + 0 + 0 + 1 4 · 1 4 = 1 16 .
It is clear that
1 256 10 832 25 676 40 832 1 16 ,
which demonstrates the result described in Theorem 6.

5. Conclusions

We define ( p , q ) -integrals for continuous functions of two variables. Moreover, we prove the Hermite-Hadamard type inequalities for coordinated convex functions by using ( p , q ) -integrals. Some previously published results of other researchers are deduced as special cases of our results for p = 1 and q 1 . Finally, some examples are given to illustrate the result obtained in this paper. For further research, we will study some more refinements of the Hermite-Hadamard inequality and study other famous mathematical inequalities by using ( p , q ) -integrals.

Author Contributions

Conceptualization, K.N.; Investigation, F.W. and K.N.; Methodology, F.W.; Supervision, J.T. and S.K.N.; Validation, F.W., K.N., J.T. and S.K.N.; Visualization, K.N., J.T. and S.K.N.; Writing—original draft, F.W.; Writing—review and editing, K.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank anonymous referees for comments which are helpful for improvement in this paper. The first author is supported by the Development and Promotion of Science and Technology talents project (DPST), Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Jackson, F.H. On a q-definite integrals. Quart. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
  2. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  3. Bangerezaka, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
  4. Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.; Tariboon, J. Some results on quantum Hanh integral inequalities. J. Inequal. Appl. 2019, 2019, 154. [Google Scholar] [CrossRef] [Green Version]
  5. Bangerezako, G. Variational calculus on q-nonuniform. J. Math. Anal. Appl. 2005, 306, 161–179. [Google Scholar] [CrossRef] [Green Version]
  6. Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
  7. Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Helidelberg, Germany, 2012. [Google Scholar]
  8. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
  9. Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
  10. Rui, A.C.F. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 2010, 1–10. [Google Scholar]
  11. Aslam, M.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar]
  12. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
  13. Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
  14. Dobrogowska, A.; Odzijewicz, A. A second order q-difference equation solvable by factorization method. J. Comput. Appl. Math. 2006, 193, 319–346. [Google Scholar] [CrossRef] [Green Version]
  15. Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef] [Green Version]
  16. Ismail, M.E.H.; Simeonov, P. q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef] [Green Version]
  17. Bohner, M.; Guseinov, G.S. The h-Laplace and q-Laplace transforms. J. Comput. Appl. Math. 2010, 365, 75–92. [Google Scholar] [CrossRef] [Green Version]
  18. El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Amer. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
  19. Ahmad, B. Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94, 1–7. [Google Scholar] [CrossRef] [Green Version]
  20. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef] [Green Version]
  21. Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Comm. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
  22. Ahmad, B.; Nieto, J.J. On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 2012, 81. [Google Scholar] [CrossRef] [Green Version]
  23. Bukweli-Kyemba, J.D.; Hounkonnou, M.N. Quantum deformed algebra: Coherent states and special functions. arXiv 2013, arXiv:1301.0116v1. [Google Scholar]
  24. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  25. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
  26. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
  27. Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
  28. Bermudo, S.; Korus, P.; Valdes, J.E.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
  29. Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
  30. Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
  31. Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
  32. Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
  33. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  34. Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
  35. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  36. Yang, W. Some new Fejér type inequalities via quantum calculus on finite intervals. Sci. Asia 2017, 43, 123–134. [Google Scholar] [CrossRef] [Green Version]
  37. Prabseang, J.; Nonlaopon, K.; Ntouyas, S.K. On refinement of quantum Hermite-Hadamard inequalities for convex functions. J. Math. Inequal. 2020, 14, 875–885. [Google Scholar] [CrossRef]
  38. Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
  39. Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar]
  40. Tunç, M.; Göv, E. (p,q)-integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 1–13. [Google Scholar]
  41. Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions. Axioms 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
  42. Kalsoom, H.; Amer, M.; Junjua, M.D.; Hassain, S.; Shahxadi, G. (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
  43. Burban, I. Two-parameter deformation of the oscillator algebra and (p,q)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 1995, 2, 384–391. [Google Scholar] [CrossRef] [Green Version]
  44. Burban, I.M.; Klimyk, A.U. (p,q)-differentiation, (p,q)-integration and (p,q)-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
  45. Hounkonnou, M.N.; Désiré, J.; Kyemba, B. R(p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
  46. Aral, A.; Gupta, V. Applications of (p,q)-gamma function to Szász durrmeyer operators. Publ. Inst. Math. 2017, 102, 211–220. [Google Scholar] [CrossRef]
  47. Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and (p,q)-special functions. J. Math. Anal. Appl. 2007, 335, 268–279. [Google Scholar] [CrossRef]
  48. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
  49. Sadjang, P.N. On the (p,q)-gamma and the (p,q)-beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
  50. Sadjang, P.N. On two (p,q)-analogues of the laplace transform. J. Differ. Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
  51. Chu, Y.M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p,q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
  52. Kalsoom, H.; Rashid, S.; Tdrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum inequalities of Hermite-Hadamard-type associated with co-ordinated higher-order generalized strongly pre-index and quasi-pre-index mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
  53. Kunt, M.; Iscan, I.; Alp, N.; Sarikaya, M.Z. (p,q)-Hermite-Hadamard and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions. RACSAM 2018, 112, 969–992. [Google Scholar] [CrossRef]
  54. Ali, M.A.; Budak, H.; Kalsoom, H.; Chu, Y.M. Post-quantum Hermite-Hadamard inequalities involving newly defined (p,q)-integral. Authorea 2020. [Google Scholar] [CrossRef]
  55. Thongjob, S.; Nonlaopon, K.; Ntouyas, S.K. Some (p,q)-Hardy type inequalities for (p,q)-integrable functions. AMIS Math. 2020, 6, 77–89. [Google Scholar] [CrossRef]
  56. Hermite, C. Sur deux limites d’une integrale de finie. Mathesis 1883, 3, 82. [Google Scholar]
  57. Hadamard, J. Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  58. Dragomir, S.S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wannalookkhee, F.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus. Mathematics 2021, 9, 698. https://doi.org/10.3390/math9070698

AMA Style

Wannalookkhee F, Nonlaopon K, Tariboon J, Ntouyas SK. On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus. Mathematics. 2021; 9(7):698. https://doi.org/10.3390/math9070698

Chicago/Turabian Style

Wannalookkhee, Fongchan, Kamsing Nonlaopon, Jessada Tariboon, and Sotiris K. Ntouyas. 2021. "On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus" Mathematics 9, no. 7: 698. https://doi.org/10.3390/math9070698

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop