Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review
Abstract
:1. Introduction
1.1. Neonatal Encephalopathy
1.2. Hypoxic-Ischemic Encephalopathy as an Example of Neonatal Encephalopathy
2. Features of Neonatal Hemodynamics
2.1. Cerebral Blood Flow in Normal Conditions and Hypoxic-Ischemic Injury
2.2. Diagnosis and Treatment of NE
3. Non-Invasive Assessment of Brain Perfusion
3.1. Ultrasound
3.2. Near-Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, A.C.C.; Kozuki, N.; Blencowe, H.; Vos, T.; Bahalim, A.; Darmstadt, G.L.; Niermeyer, S.; Ellis, M.; Robertson, N.J.; Cousens, S.; et al. Intrapartum-Related Neonatal Encephalopathy Incidence and Impairment at Regional and Global Levels for 2010 with Trends from 1990. Pediatr. Res. 2013, 74 (Suppl. S1), 50–72. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Strickland, T.; Molloy, E.J. Neonatal Encephalopathy: Need for Recognition of Multiple Etiologies for Optimal Management. Front. Pediatr. 2019, 7, 142. [Google Scholar] [CrossRef]
- Ferriero, D.M. Neonatal Brain Injury. N. Engl. J. Med. 2004, 351, 1985–1995. [Google Scholar] [CrossRef]
- Sandoval Karamian, A.G.; Mercimek-Andrews, S.; Mohammad, K.; Molloy, E.J.; Chang, T.; Chau, V.; Murray, D.M.; Wusthoff, C.J. Neonatal Encephalopathy: Etiologies Other than Hypoxic-Ischemic Encephalopathy. Semin. Fetal Neonatal Med. 2021, 26, 101272. [Google Scholar] [CrossRef] [PubMed]
- Lorek, A.; Takei, Y.; Cady, E.B.; Wyatt, J.S.; Penrice, J.; Edwards, A.D.; Peebles, D.; Wylezinska, M.; Owen-Reece, H.; Kirkbride, V.; et al. Delayed (“Secondary”) Cerebral Energy Failure after Acute Hypoxia-Ischemia in the Newborn Piglet: Continuous 48-Hour Studies by Phosphorus Magnetic Resonance Spectroscopy. Pediatr. Res. 1994, 36, 699–706. [Google Scholar] [CrossRef]
- Chalak, L.; Ferriero, D.M.; Gressens, P.; Molloy, E.; Bearer, C. A 20 Years Conundrum of Neonatal Encephalopathy and Hypoxic Ischemic Encephalopathy: Are We Closer to a Consensus Guideline? Pediatr. Res. 2019, 86, 548–549. [Google Scholar] [CrossRef]
- Dammann, O.; Ferriero, D.; Gressens, P. Neonatal Encephalopathy or Hypoxic-Ischemic Encephalopathy? Appropriate Terminology Matters. Pediatr. Res. 2011, 70, 1–2. [Google Scholar] [CrossRef]
- Executive Summary: Neonatal Encephalopathy and Neurologic Outcome, Second Edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Obstet. Gynecol. 2014, 123, 896–901. [CrossRef] [PubMed]
- Leon, R.L.; Mir, I.N.; Herrera, C.L.; Sharma, K.; Spong, C.Y.; Twickler, D.M.; Chalak, L.F. Neuroplacentology in Congenital Heart Disease: Placental Connections to Neurodevelopmental Outcomes. Pediatr. Res. 2022, 91, 787–794. [Google Scholar] [CrossRef]
- Roberts, D.J.; Polizzano, C. Atlas of Placental Pathology; American Registry of Pathology: Arlington, VA, USA, 2021; ISBN 978-1-933477-09-1. [Google Scholar]
- Mir, I.N.; Johnson-Welch, S.F.; Nelson, D.B.; Brown, L.S.; Rosenfeld, C.R.; Chalak, L.F. Placental Pathology Is Associated with Severity of Neonatal Encephalopathy and Adverse Developmental Outcomes Following Hypothermia. Am. J. Obstet. Gynecol. 2015, 213, 849.e1–849.e7. [Google Scholar] [CrossRef]
- Hirschel, J.; Barcos-Munoz, F.; Chalard, F.; Chiodini, F.; Epiney, M.; Fluss, J.; Rougemont, A.-L. Perinatal Arterial Ischemic Stroke: How Informative Is the Placenta? Virchows Arch. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pierrat, V.; Haouari, N.; Liska, A.; Thomas, D.; Subtil, D.; Truffert, P.; Groupe d’Etudes en Epidémiologie Périnatale. Prevalence, Causes, and Outcome at 2 Years of Age of Newborn Encephalopathy: Population Based Study. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F257–F261. [Google Scholar] [CrossRef] [PubMed]
- Greco, P.; Nencini, G.; Piva, I.; Scioscia, M.; Volta, C.A.; Spadaro, S.; Neri, M.; Bonaccorsi, G.; Greco, F.; Cocco, I.; et al. Pathophysiology of Hypoxic-Ischemic Encephalopathy: A Review of the Past and a View on the Future. Acta Neurol. Belg. 2020, 120, 277–288. [Google Scholar] [CrossRef]
- Korf, J.M.; McCullough, L.D.; Caretti, V. A Narrative Review on Treatment Strategies for Neonatal Hypoxic Ischemic Encephalopathy. Transl. Pediatr. 2023, 12, 1552–1571. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, L.; Allen, V.M.; Allen, A.C.; Vincer, M.; Baskett, T.F.; Woolcott, C.G. Incidence, Intrapartum Risk Factors, and Prognosis of Neonatal Hypoxic-Ischemic Encephalopathy Among Infants Born at 35 Weeks Gestation or More. J. Obstet. Gynaecol. Can. 2020, 42, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, L.; Brada, M.; Held, U.; Hagmann, C.; Bode, P.; Frontzek, K.; Frey, B.; Brotschi, B.; Grass, B. Association of Perinatal Sentinel Events, Placental Pathology and Cerebral MRI in Neonates with Hypoxic-Ischemic Encephalopathy Receiving Therapeutic Hypothermia. J. Perinatol. 2022, 42, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Sarnat, M.S. Neonatal Encephalopathy Following Fetal Distress. A Clinical and Electroencephalographic Study. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Tuiskula, A.; Metsäranta, M.; Toiviainen-Salo, S.; Vanhatalo, S.; Haataja, L. Profile of Minor Neurological Findings after Perinatal Asphyxia. Acta Paediatr. 2022, 111, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.L.; Kaur, N.; Dsouza, J.M. Therapeutic Hypothermia in Neonatal Hypoxic Encephalopathy: A Systematic Review and Meta-Analysis. J. Glob. Health 2022, 12, 04030. [Google Scholar] [CrossRef]
- Bhagwani, D.K. To Study the Correlation of Thompson Scoring in Predicting Early Neonatal Outcome in Post Asphyxiated Term Neonates. JCDR 2016, 10, SC16–SC19. [Google Scholar] [CrossRef]
- Thayyil, S.; Pant, S.; Montaldo, P.; Shukla, D.; Oliveira, V.; Ivain, P.; Bassett, P.; Swamy, R.; Mendoza, J.; Moreno-Morales, M. Hypothermia for Moderate or Severe Neonatal Encephalopathy in Low-Income and Middle-Income Countries (HE-LIX): A Randomised Controlled Trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 2021, 9, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Wladimiroff, J.W.; Tonge, H.M.; Stewart, P.A. Doppler Ultrasound Assessment of Cerebral Blood Flow in the Human Fetus. BJOG 1986, 93, 471–475. [Google Scholar] [CrossRef]
- Cheung, Y.F.; Lam, P.K.L.; Yeung, C.Y. Early Postnatal Cerebral Doppler Changes in Relation to Birth Weight. Early Hum. Dev. 1994, 37, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Wlodaver, A.; Gottipati, V.; McCoy, M.; Schultz, D.; Escobedo, M. Transitional Changes in Cardiac and Cerebral Hemodynamics in Term Neonates at Birth. J. Pediatr. 2012, 160, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Crockett, S.L.; Berger, C.D.; Shelton, E.L.; Reese, J. Molecular and Mechanical Factors Contributing to Ductus Arteriosus Patency and Closure. Congenit. Heart Dis. 2019, 14, 15–20. [Google Scholar] [CrossRef]
- De Vis, J.B.; Petersen, E.T.; De Vries, L.S.; Groenendaal, F.; Kersbergen, K.J.; Alderliesten, T.; Hendrikse, J.; Benders, M.J.N.L. Regional Changes in Brain Perfusion during Brain Maturation Measured Non-Invasively with Arterial Spin Labeling MRI in Neonates. Eur. J. Radiol. 2013, 82, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Meek, J.H.; Elwell, C.E.; McCormick, D.C.; Edwards, A.D.; Townsend, J.P.; Stewart, A.L.; Wyatt, J.S. Abnormal Cerebral Haemodynamics in Perinatally Asphyxiated Neonates Related to Outcome. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 81, F110–F115. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.W.; Lee, J.K.; Vezina, G.; Tekes, A.; Perin, J.; Li, R.; O’Kane, A.; McGowan, M.; Chang, T.; Parkinson, C.; et al. The Utility of Cerebral Autoregulation Indices in Detecting Severe Brain Injury Varies by Cooling Treatment Phase in Neonates with Hypoxic-Ischemic Encephalopathy. Dev. Neurosci. 2022, 44, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Poretti, A.; Perin, J.; Huisman, T.A.G.M.; Parkinson, C.; Chavez-Valdez, R.; O’Connor, M.; Reyes, M.; Armstrong, J.; Jennings, J.M.; et al. Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Dev. Neurosci. 2017, 39, 248–256. [Google Scholar] [CrossRef]
- Massaro, A.N.; Govindan, R.B.; Vezina, G.; Chang, T.; Andescavage, N.N.; Wang, Y.; Al-Shargabi, T.; Metzler, M.; Harris, K.; du Plessis, A.J. Impaired Cerebral Autoregulation and Brain Injury in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. J. Neurophysiol. 2015, 114, 818–824. [Google Scholar] [CrossRef]
- Carrasco, M.; Perin, J.; Jennings, J.M.; Parkinson, C.; Gilmore, M.M.; Chavez-Valdez, R.; Massaro, A.N.; Koehler, R.C.; Northington, F.J.; Tekes, A.; et al. Cerebral Autoregulation and Conventional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Pediatr. Neurol. 2018, 82, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Manole, M.D.; Foley, L.M.; Hitchens, T.K.; Kochanek, P.M.; Hickey, R.W.; Bayir, H.; Alexander, H.; Ho, C.; Clark, R.S. Magnetic Resonance Imaging Assessment of Regional Cerebral Blood Flow after Asphyxial Cardiac Arrest in Immature Rats. J. Cereb. Blood Flow. Metab. 2009, 29, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-D.; Liang, S.-Y.; Liao, X.-H.; Deng, X.-F.; Chen, Y.-Y.; Liao, C.-Y.; Wang, L.; Tang, S.; Li, Z.-X. Different Extent of Hypoxic-Ischemic Brain Damage in Newborn Rats: Histopathology, Hemodynamic, Virtual Touch Tissue Quantification and Neurobehavioral Observation. Int. J. Clin. Exp. Pathol. 2015, 8, 12177–12187. [Google Scholar] [PubMed]
- Rosenberg, A.A. Regulation of Cerebral Blood Flow after Asphyxia in Neonatal Lambs. Stroke 1988, 19, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.A. Cerebral Blood Flow and O2 Metabolism after Asphyxia in Neonatal Lambs. Pediatr. Res. 1986, 20, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Leffler, C.W.; Busija, D.W.; Mirro, R.; Armstead, W.M.; Beasley, D.G. Effects of Ischemia on Brain Blood Flow and Oxygen Consumption of Newborn Pigs. Am. J. Physiol. Heart Circ. Physiol. 1989, 257, H1917–H1926. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Jinnai, W.; Hamano, S.; Nakamura, S.; Koyano, K.; Chiba, Y.; Kanenishi, K.; Yasuda, S.; Ueno, M.; Miki, T.; et al. Cerebral Blood Volume Measurement Using Near-infrared Time-resolved Spectroscopy and Histopathological Evaluation after Hypoxic-ischemic Insult in Newborn Piglets. Int. J. Dev. Neurosci. 2015, 42, 1–9. [Google Scholar] [CrossRef]
- Wu, T.-W.; Tamrazi, B.; Soleymani, S.; Seri, I.; Noori, S. Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2018, 197, 68–74.e2. [Google Scholar] [CrossRef]
- Shaikh, H.; Lechpammer, M.; Jensen, F.E.; Warfield, S.K.; Hansen, A.H.; Kosaras, B.; Shevell, M.; Wintermark, P. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does It Reflect Activated Angiogenesis? Transl. Stroke Res. 2015, 6, 224–233. [Google Scholar] [CrossRef]
- De Vis, J.B.; Hendrikse, J.; Petersen, E.T.; De Vries, L.S.; Van Bel, F.; Alderliesten, T.; Negro, S.; Groenendaal, F.; Benders, M.J.N.L. Arterial Spin-Labelling Perfusion MRI and Outcome in Neonates with Hypoxic-Ischemic Encephalopathy. Eur. Radiol. 2015, 25, 113–121. [Google Scholar] [CrossRef]
- Wintermark, P.; Hansen, A.; Gregas, M.C.; Soul, J.; Labrecque, M.; Robertson, R.L.; Warfield, S.K. Brain Perfusion in Asphyxiated Newborns Treated with Therapeutic Hypothermia. Am. J. Neuroradiol. 2011, 32, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Perlman, J.M. Summary Proceedings from the Neurology Group on Hypoxic-Ischemic Encephalopathy. Pediatrics 2006, 117, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Kleuskens, D.G.; Gonçalves Costa, F.; Annink, K.V.; van den Hoogen, A.; Alderliesten, T.; Groenendaal, F.; Benders, M.J.N.; Dudink, J. Pathophysiology of Cerebral Hyperperfusion in Term Neonates With Hypoxic-Ischemic Encephalopathy: A Systematic Review for Future Research. Front. Pediatr. 2021, 9, 631258. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Bale, G.; Meek, J.; Tachtsidis, I.; Robertson, N.J. Cerebral Near Infrared Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathy-A Systematic Review. Front. Neurol. 2020, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H. Induced Hypothermia and Fever Control for Prevention and Treatment of Neurological Injuries. Lancet 2008, 371, 1955–1969. [Google Scholar] [CrossRef]
- Wintermark, P.; Hansen, A.; Soul, J.; Labrecque, M.; Robertson, R.L.; Warfield, S.K. Early versus Late MRI in Asphyxiated Newborns Treated with Hypothermia. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F36–F44. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Hatran, D.P.; Tomimatsu, T.; Peña, J.P.; McAuley, G.; Longo, L.D. Fetal Cerebral Blood Flow, Electrocorticographic Activity, and Oxygenation: Responses to Acute Hypoxia. J. Physiol. 2009, 587, 2033–2047. [Google Scholar] [CrossRef]
- Finer, N.N.; Robertson, C.M.; Richards, R.T.; Pinnell, L.E.; Peters, K.L. Hypoxic-Ischemic Encephalopathy in Term Neonates: Perinatal Factors and Outcome. J. Pediatr. 1981, 98, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Levene, M.I.; Grindulis, H.; Sands, C.; Moore, J.R. Comparison of Two Methods of Predicting Outcome in Perinatal Asphyxia. Lancet 1986, 327, 67–69. [Google Scholar] [CrossRef]
- Salhab, W.A.; Perlman, J.M.; Silver, L.; Sue Broyles, R. Necrotizing Enterocolitis and Neurodevelopmental Outcome in Extremely Low Birth Weight Infants < 1000 g. J. Perinatol. 2004, 24, 534–540. [Google Scholar] [CrossRef]
- Robertson, N.J.; Cowan, F.M.; Cox, I.J.; Edwards, A.D. Brain Alkaline Intracellular pH after Neonatal Encephalopathy. Ann. Neurol. 2002, 52, 732–742. [Google Scholar] [CrossRef]
- Horn, E.-P.; Bein, B.; Broch, O.; Iden, T.; Böhm, R.; Latz, S.-K.; Höcker, J. Warming before and after Epidural Block before General Anaesthesia for Major Abdominal Surgery Prevents Perioperative Hypothermia: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2016, 33, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Weeke, L.C.; Boylan, G.B.; Pressler, R.M.; Hallberg, B.; Blennow, M.; Toet, M.C.; Groenendaal, F.; De Vries, L.S. Role of EEG Background Activity, Seizure Burden and MRI in Predicting Neurodevelopmental Outcome in Full-Term Infants with Hypoxic-Ischaemic Encephalopathy in the Era of Therapeutic Hypothermia. Eur. J. Paediatr. Neurol. 2016, 20, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Nageotte, M.P. Fetal Heart Rate Monitoring. Semin. Fetal Neonatal Med. 2015, 20, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Dudink, J.; Jeanne Steggerda, S.; Horsch, S. State-of-the-Art Neonatal Cerebral Ultrasound: Technique and Reporting. Pediatr. Res. 2020, 87, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Childs, A.M.; Cornette, L.; Ramenghi, L.A.; Tanner, S.F.; Arthur, R.J.; Martinez, D.; Levene, M.I. Magnetic Resonance and Cranial Ultrasound Characteristics of Periventricular White Matter Abnormalities in Newborn Infants. Clin. Radiol. 2001, 56, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Sie, L.T.; van der Knaap, M.S.; van Wezel-Meijler, G.; Taets van Amerongen, A.H.; Lafeber, H.N.; Valk, J. Early MR Features of Hypoxic-Ischemic Brain Injury in Neonates with Periventricular Densities on Sonograms. Am. J. Neuroradiol. 2000, 21, 852–861. [Google Scholar] [PubMed]
- Simaeys, B.; Philips, W.; Lemahieu, I.; Govaert, P. Quantitative Analysis of the Neonatal Brain by Ultrasound. Comput. Med. Imaging Graph. 2000, 24, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.F.; Enriquez, G.; Jansson, T.; Gratacos, E.; Hernandez-Andrade, E. Quantitative Tissue Echogenicity of the Neonatal Brain Assessed by Ultrasound Imaging. Ultrasound Med. Biol. 2009, 35, 1421–1426. [Google Scholar] [CrossRef]
- Pellett, A.A.; Kerut, E.K. The Doppler Equation. Echocardiography 2004, 21, 197–198. [Google Scholar] [CrossRef]
- Ehehalt, S.; Kehrer, M.; Goelz, R.; Poets, C.; Schöning, M. Cerebral Blood Flow Volume Measurements with Ultrasound: Interobserver Reproducibility in Preterm and Term Neonates. Ultrasound Med. Biol. 2005, 31, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.M.; Adler, R.S.; Fowlkes, J.B.; Spratt, S.; Pallister, J.E.; Chen, J.F.; Carson, P.L. Fractional Moving Blood Volume: Estimation with Power Doppler US. Radiology 1995, 197, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Heck, S.; Schindler, T.; Smyth, J.; Lui, K.; Meriki, N.; Welsh, A. Evaluation of Neonatal Regional Cerebral Perfusion Using Power Doppler and the Index Fractional Moving Blood Volume. Neonatology 2012, 101, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Bardelli, M.; Jensen, G.; Volkmann, R.; Aurell, M. Non-Invasive Ultrasound Assessment of Renal Artery Stenosis by Means of the Gosling Pulsatility Index. J. Hypertens. 1992, 10, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Michel, E.; Zernikow, B. Gosling’s Doppler Pulsatility Index Revisited. Ultrasound Med. Biol. 1998, 24, 597–599. [Google Scholar] [CrossRef]
- Ciobanu, A.; Wright, A.; Syngelaki, A.; Wright, D.; Akolekar, R.; Nicolaides, K.H. Fetal Medicine Foundation Reference Ranges for Umbilical Artery and Middle Cerebral Artery Pulsatility Index and Cerebroplacental Ratio. Ultrasound Obstet. Gynecol. 2019, 53, 465–472. [Google Scholar] [CrossRef]
- Gosling, R.G.; Lo, P.T.S.; Taylor, M.G. Interpretation of Pulsatility Index in Feeder Arteries to Low-impedance Vascular Beds. Ultrasound Obstet. Gynecol. 1991, 1, 175–179. [Google Scholar] [CrossRef]
- Gómez, O.; Figueras, F.; Fernández, S.; Bennasar, M.; Martínez, J.M.; Puerto, B.; Gratacós, E. Reference Ranges for Uterine Artery Mean Pulsatility Index at 11–41 Weeks of Gestation. Ultrasound Obstet. Gynecol. 2008, 32, 128–132. [Google Scholar] [CrossRef]
- Liu, J.; Cao, H.-Y.; Huang, X.-H.; Wang, Q. The Pattern and Early Diagnostic Value of Doppler Ultrasound for Neonatal Hypoxic-Ischemic Encephalopathy. J. Trop. Pediatr. 2007, 53, 351–354. [Google Scholar] [CrossRef]
- Chao, C.P.; Zaleski, C.G.; Patton, A.C. Neonatal Hypoxic-Ischemic Encephalopathy: Multimodality Imaging Findings. Radiographics 2006, 26 (Suppl. S1), S159–S172. [Google Scholar] [CrossRef]
- Archer, L.N.; Levene, M.; Evans, D. Cerebral Artery Doppler Ultrasonography for Prediction of Outcome after Perinatal Asphyxia. Lancet 1986, 328, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Ilves, P.; Lintrop, M.; Talvik, I.; Muug, K.; Maipuu, L.; Metsvaht, T. Low Cerebral Blood Flow Velocity and Head Circumference in Infants with Severe Hypoxic Ischemic Encephalopathy and Poor Outcome. Acta Paediatr. 2009, 98, 459–465. [Google Scholar] [CrossRef]
- Gerner, G.J.; Burton, V.J.; Poretti, A.; Bosemani, T.; Cristofalo, E.; Tekes, A.; Seyfert, D.; Parkinson, C.; Leppert, M.; Allen, M.; et al. Transfontanellar Duplex Brain Ultrasonography Resistive Indices as a Prognostic Tool in Neonatal Hypoxic-Ischemic Encephalopathy before and after Treatment with Therapeutic Hypothermia. J. Perinatol. 2016, 36, 202–206. [Google Scholar] [CrossRef]
- Jongeling, B.R.; Badawi, N.; Kurinczuk, J.J.; Thonell, S.; Watson, L.; Dixon, G.; Stanley, F.J. Cranial Ultrasound as a Predictor of Outcome in Term Newborn Encephalopathy. Pediatr. Neurol. 2002, 26, 37–42. [Google Scholar] [CrossRef]
- Elstad, M.; Whitelaw, A.; Thoresen, M. Cerebral Resistance Index Is Less Predictive in Hypothermic Encephalopathic Newborns. Acta Paediatr. 2011, 100, 1344–1349. [Google Scholar] [CrossRef]
- Skranes, J.H.; Elstad, M.; Thoresen, M.; Cowan, F.M.; Stiris, T.; Fugelseth, D. Hypothermia Makes Cerebral Resistance Index a Poor Prognostic Tool in Encephalopathic Newborns. Neonatology 2014, 106, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Levene, M.I.; Evans, D.H.; Forde, A.; Archer, L.N. Value of Intracranial Pressure Monitoring of Asphyxiated Newborn Infants. Dev. Med. Child. Neurol. 1987, 29, 311–319. [Google Scholar] [CrossRef]
- Eken, P.; Toet, M.C.; Groenendaal, F.; de Vries, L.S. Predictive Value of Early Neuroimaging, Pulsed Doppler and Neurophysiology in Full Term Infants with Hypoxic-Ischaemic Encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 1995, 73, F75–F80. [Google Scholar] [CrossRef] [PubMed]
- Low, J.A. Cerebral Perfusion, Metabolism, and Outcome. Curr. Opin. Pediatr. 1995, 7, 132–139. [Google Scholar] [CrossRef]
- Stark, J.E.; Seibert, J.J. Cerebral Artery Doppler Ultrasonography for Prediction of Outcome after Perinatal Asphyxia. J. Ultrasound Med. 1994, 13, 595–600. [Google Scholar] [CrossRef]
- Liao, H.T.; Hung, K.L. Anterior Cerebral Artery Doppler Ultrasonography for Prediction of Outcome after Perinatal Asphyxia. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1997, 38, 208–212. [Google Scholar] [PubMed]
- Ilves, P.; Lintrop, M.; Talvik, I.; Muug, K.; Maipuu, L. Changes in Cerebral and Visceral Blood Flow Velocities in Asphyxiated Term Neonates with Hypoxic-Ischemic Encephalopathy. J. Ultrasound Med. 2009, 28, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.S.; Tekes, A.; Singhi, S.; Northington, F.J.; Parkinson, C.; Huisman, T.a.G.M. White-Gray Matter Echogenicity Ratio and Resistive Index: Sonographic Bedside Markers of Cerebral Hypoxic-Ischemic Injury/Edema? J. Perinatol. 2012, 32, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Epelman, M.; Daneman, A.; Kellenberger, C.J.; Aziz, A.; Konen, O.; Moineddin, R.; Whyte, H.; Blaser, S. Neonatal Encephalopathy: A Prospective Comparison of Head US and MRI. Pediatr. Radiol. 2010, 40, 1640–1650. [Google Scholar] [CrossRef]
- Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second Window for in Vivo Imaging. Nat. Nanotechnol. 2009, 4, 710–711. [Google Scholar] [CrossRef]
- Garvey, A.A.; Dempsey, E.M. Applications of near Infrared Spectroscopy in the Neonate. Curr. Opin. Pediatr. 2018, 30, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Claessens, N.H.P.; Jansen, N.J.G.; Breur, J.M.P.J.; Algra, S.O.; Stegeman, R.; Alderliesten, T.; Van Loon, K.; De Vries, L.S.; Haas, F.; Benders, M.J.N.L.; et al. Postoperative Cerebral Oxygenation Was Not Associated with New Brain Injury in Infants with Congenital Heart Disease. J. Thorac. Cardiovasc. Surg. 2019, 158, 867–877.e1. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.V.; Safaie, J.; Moghaddam, H.A.; Wallois, F.; Grebe, R. Experimental Investigation of NIRS Spatial Sensitivity. Biomed. Opt. Express 2011, 2, 1478. [Google Scholar] [CrossRef]
- Lin, N.; Flibotte, J.; Licht, D.J. Neuromonitoring in the Neonatal ECMO Patient. Semin. Perinatol. 2018, 42, 111–121. [Google Scholar] [CrossRef]
- El-Atawi, K.M.; Osman, M.F.; Hassan, M.; Siwji, Z.A.; Hassan, A.A.; Abed, M.Y.; Elsayed, Y. Predictive Utility of Near-Infrared Spectroscopy for the Outcomes of Hypoxic-Ischemic Encephalopathy: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e51162. [Google Scholar] [CrossRef]
- Tewari, V.V.; Kumar, A.; Kurup, A.; Daryani, H.; Saxena, A. Impact of Cerebral Oxygen Saturation Monitoring on Short-Term Neurodevelopmental Outcomes in Neonates with Encephalopathy—A Prospective Cohort Study. Curr. Pediatr. Rev. 2022, 18, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Pereira, C.; Dias, A.; Nunes Vicente, I.; Pinto, J.T.; Marques, C.; Dinis, A.; Pinto, C.; Carvalho, L. Prognostic value of near-infrared spectroscopy in hypoxic-ischaemic encephalopathy. An. Pediatría 2021, 94, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Ancora, G.; Maranella, E.; Grandi, S.; Sbravati, F.; Coccolini, E.; Savini, S.; Faldella, G. Early Predictors of Short Term Neurodevelopmental Outcome in Asphyxiated Cooled Infants. A Combined Brain Amplitude Integrated Electroencephalography and near Infrared Spectroscopy Study. Brain Dev. 2013, 35, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Variane, G.F.T.; Pietrobom, R.F.R.; Noh, C.Y.; Van Meurs, K.P.; Chock, V.Y. Newer Indications for Neuromonitoring in Critically Ill Neonates. Front. Pediatr. 2023, 11, 1111347. [Google Scholar] [CrossRef]
- Hakimi, N.; Shahbakhti, M.; Horschig, J.M.; Alderliesten, T.; Van Bel, F.; Colier, W.N.J.M.; Dudink, J. Respiratory Rate Extraction from Neonatal Near-Infrared Spectroscopy Signals. Sensors 2023, 23, 4487. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavrentev, S.N.; Petrova, A.S.; Serova, O.F.; Vishnyakova, P.; Kondratev, M.V.; Gryzunova, A.S.; Zakharova, N.I.; Zubkov, V.V.; Silachev, D.N. Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review. Children 2024, 11, 591. https://doi.org/10.3390/children11050591
Lavrentev SN, Petrova AS, Serova OF, Vishnyakova P, Kondratev MV, Gryzunova AS, Zakharova NI, Zubkov VV, Silachev DN. Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review. Children. 2024; 11(5):591. https://doi.org/10.3390/children11050591
Chicago/Turabian StyleLavrentev, Simeon N., Anastasia S. Petrova, Olga F. Serova, Polina Vishnyakova, Maxim V. Kondratev, Anastasia S. Gryzunova, Nina I. Zakharova, Victor V. Zubkov, and Denis N. Silachev. 2024. "Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review" Children 11, no. 5: 591. https://doi.org/10.3390/children11050591