SCFNet: Lightweight Steel Defect Detection Network Based on Spatial Channel Reorganization and Weighted Jump Fusion
Abstract
:1. Introduction
- We propose a lightweight and efficient steel defect detection network, namely SCFNet. This network utilizes an LEM to extract feature information. The LEM, based on Depth-Wise convolution and channel-weighted fusion, can better extract ambiguous features.
- Considering the low-contrast defects present in steel materials, we introduce the ScConv module into the LEM. By reconstructing the spatial information and channel features of the feature map, ScConv effectively reduces redundant features while enhancing key features in steel, thus making the defect area more clearly and accurately represented in the feature map.
- We introduce the BiFPN module for feature fusion, leveraging its unique skip connection structure to minimize feature information loss during the convolution process. BiFPN ensures the preservation of crucial texture features, making it easier for the network to identify low-contrast defects.
- We apply data augmentation techniques on the steel defect dataset and discuss the impact of different data augmentation methods on the detection accuracy. Ultimately, the proposed SCFNet demonstrates strong detection performance, outperforming state-of-the-art detectors in steel defect detection.
2. Materials and Methods
2.1. Lightweight and Efficient Feature Extraction Module
2.2. Spatial and Channel Reconstruction Convolution
2.3. Feature Pyramid Fusion with a Weighted Bidirectional Approach
2.4. Loss Function
3. Experiments
3.1. Datasets
3.2. Implementation Details
3.3. Evaluation Metrics
3.4. Comparison with State-of-the-Art Models
3.5. Data Augmentation Module Discussion
3.6. Ablation Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, B.; Wang, Y.; Zhen, S.; Yu, R.; Su, Z. SPEED: Semantic prior and extremely efficient dilated convolution network for real-time metal surface defects detection. IEEE Trans. Ind. Inform. 2023, 19, 11380–11390. [Google Scholar] [CrossRef]
- Su, J.; Luo, Q.; Yang, C.; Gui, W.; Silvén, O.; Liu, L. PMSA-DyTr: Prior-Modulated and Semantic-Aligned Dynamic Transformer for Strip Steel Defect Detection. IEEE Trans. Ind. Inform. 2024, 20, 6684–6695. [Google Scholar] [CrossRef]
- Luo, Q.; Fang, X.; Liu, L.; Yang, C.; Sun, Y. Automated visual defect detection for flat steel surface: A survey. IEEE Trans. Instrum. Meas. 2020, 69, 626–644. [Google Scholar] [CrossRef]
- Li, Z.; Wei, X.; Hassaballah, M.; Li, Y.; Jiang, X. A deep learning model for steel surface defect detection. Complex Intell. Syst. 2024, 10, 885–897. [Google Scholar] [CrossRef]
- Sampath, V.; Maurtua, I.; Martín, J.J.A.; Rivera, A.; Molina, J.; Gutierrez, A. Attention guided multi-task learning for surface defect identification. IEEE Trans. Ind. Inform. 2023, 19, 9713–9721. [Google Scholar] [CrossRef]
- Wen, L.; Wang, Y.; Li, X. A new cycle-consistent adversarial networks with attention mechanism for surface defect classification with small samples. IEEE Trans. Ind. Inform. 2022, 18, 8988–8998. [Google Scholar] [CrossRef]
- Lian, J.; Jia, W.; Zareapoor, M.; Zheng, Y.; Luo, R.; Jain, D.K.; Kumar, N. Deep-learning-based small surface defect detection via an exaggerated local variation-based generative adversarial network. IEEE Trans. Ind. Inform. 2019, 16, 1343–1351. [Google Scholar] [CrossRef]
- Zhang, D.; Song, K.; Wang, Q.; He, Y.; Wen, X.; Yan, Y. Two deep learning networks for rail surface defect inspection of limited samples with line-level label. IEEE Trans. Ind. Inform. 2020, 17, 6731–6741. [Google Scholar] [CrossRef]
- Shen, K.; Zhou, X.; Liu, Z. MINet: Multiscale Interactive Network for Real-Time Salient Object Detection of Strip Steel Surface Defects. IEEE Trans. Ind. Inform. 2024, 1–11. [Google Scholar] [CrossRef]
- Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 2013, 285, 858–864. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Luo, Q.; Su, J.; Yang, C.; Silven, O.; Liu, L. Scale-selective and noise-robust extended local binary pattern for texture classification. Pattern Recognit. 2022, 132, 108901. [Google Scholar] [CrossRef]
- Lu, H.-P.; Su, C.-T. CNNs combined with a conditional GAN for Mura defect classification in TFT-LCDs. IEEE Trans. Semicond. Manuf. 2021, 34, 25–33. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L. A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification. IEEE Trans. Ind. Electron. 2020, 68, 12890–12900. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Miao, Q.; Fang, R.; Xue, S.; Hu, Q.; Hu, J.; Chan, S. Surface defect detection of hot rolled steel based on multi-scale feature fusion and attention mechanism residual block. Sci. Rep. 2024, 14, 7671. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Shumin, D.; Zhoufeng, L.; Chunlei, L. AdaBoost learning for fabric defect detection based on HOG and SVM. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 2903–2906. [Google Scholar]
- Chondronasios, A.; Popov, I.; Jordanov, I. Feature selection for surface defect classification of extruded aluminum profiles. Int. J. Adv. Manuf. Technol. 2016, 83, 33–41. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, K.; Zhou, P. Mask gradient response-based threshold segmentation for surface defect detection of milled aluminum ingot. Sensors 2020, 20, 4519. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Xu, K.; Xu, J.-W. Application of undecimated wavelet transform to surface defect detection of hot rolled steel plates. In Proceedings of the 2008 Congress on Image and Signal Processing, Sanya, China, 27–30 May 2008; pp. 528–532. [Google Scholar]
- Zhao, T.; Chen, X.; Yang, L. IPCA-SVM based real-time wrinkling detection approaches for strip steel production process. Int. J. Wirel. Mob. Comput. 2019, 16, 160–165. [Google Scholar] [CrossRef]
- Gong, R.; Wu, C.; Chu, M. Steel surface defect classification using multiple hyper-spheres support vector machine with additional information. Chemom. Intell. Lab. Syst. 2018, 172, 109–117. [Google Scholar] [CrossRef]
- Chu, M.; Liu, X.; Gong, R.; Liu, L. Multi-class classification method using twin support vector machines with multi-information for steel surface defects. Chemom. Intell. Lab. Syst. 2018, 176, 108–118. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Tian, Y.; Liu, K. An accurate fuzzy measure-based detection method for various types of defects on strip steel surfaces. Comput. Ind. 2020, 122, 103231. [Google Scholar] [CrossRef]
- Mei, L.; Hu, X.; Ye, Z.; Tang, L.; Wang, Y.; Li, D.; Liu, Y.; Hao, X.; Lei, C.; Xu, C. GTMFuse: Group-Attention Transformer-Driven Multiscale Dense Feature-Enhanced Network for Infrared and Visible Image Fusion. Knowl. Based Syst. 2024; 293, 111658. [Google Scholar]
- Xu, C.; Ye, Z.; Mei, L.; Yu, H.; Liu, J.; Yalikun, Y.; Jin, S.; Liu, S.; Yang, W.; Lei, C. Hybrid Attention-Aware Transformer Network Collaborative Multiscale Feature Alignment for Building Change Detection. IEEE Trans. Instrum. Meas. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Yang, W.; Mei, L.; Ye, Z.; Wang, Y.; Hu, X.; Zhang, Y.; Yao, Y. Adjacent Self-Similarity Three-dimensional Convolution for Multi-modal Image Registration. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6002505. [Google Scholar] [CrossRef]
- Xu, C.; Ye, Z.; Mei, L.; Shen, S.; Sun, S.; Wang, Y.; Yang, W. Cross-Attention Guided Group Aggregation Network for Cropland Change Detection. IEEE Sens. J. 2023, 23, 13680–13691. [Google Scholar] [CrossRef]
- Yang, W.; Shen, P.; Ye, Z.; Zhu, Z.; Xu, C.; Liu, Y.; Mei, L. Adversarial Training Collaborating Multi-Path Context Feature Aggregation Network for Maize Disease Density Prediction. Processes 2023, 11, 1132. [Google Scholar] [CrossRef]
- Zhao, C.; Shu, X.; Yan, X.; Zuo, X.; Zhu, F. RDD-YOLO: A modified YOLO for detection of steel surface defects. Measurement 2023, 214, 112776. [Google Scholar] [CrossRef]
- Wang, R.; Liang, F.; Mou, X.; Chen, L.; Yu, X.; Peng, Z.; Chen, H. Development of an improved yolov7-based model for detecting defects on strip steel surfaces. Coatings 2023, 13, 536. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, Y.; Wei, B.; Ding, Z.; Luo, F. A lightweight and efficient model for surface tiny defect detection. Appl. Intell. 2023, 53, 6344–6353. [Google Scholar] [CrossRef]
- Liu, G.-H.; Chu, M.-X.; Gong, R.-F.; Zheng, Z.-H. DLF-YOLOF: An improved YOLOF-based surface defect detection for steel plate. J. Iron Steel Res. Int. 2023, 31, 442–451. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, S.; Sun, H.; Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L. Multi-Scale Lightweight Neural Network for Steel Surface Defect Detection. Coatings 2023, 13, 1202. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Li, J.; Wen, Y.; He, L. Scconv: Spatial and channel reconstruction convolution for feature redundancy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 6153–6162. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Ultralytics/Ultralytics. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 29 October 2023).
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Jocher, G. Stoken Yolov5. Available online: https://github.com/ultralytics/yolov5/releases/tag/v7.0 (accessed on 20 November 2023).
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Xia, K.; Lv, Z.; Zhou, C.; Gu, G.; Zhao, Z.; Liu, K.; Li, Z. Mixed receptive fields augmented YOLO with multi-path spatial pyramid pooling for steel surface defect detection. Sensors 2023, 23, 5114. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, C.; Xi, T.; Ju, H.; Qu, Y.; Kong, Y.; Chen, X. Development of an Algorithm for Detecting Real-Time Defects in Steel. Electronics 2023, 12, 4422. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, W.; Li, L.; Wu, L. WFRE-YOLOv8s: A New Type of Defect Detector for Steel Surfaces. Coatings 2023, 13, 2011. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Zhou, B.; Shi, Z.; Zhan, D.; Huang, R.; Lin, J.; Wu, Z.; Long, D. Strip surface defect detection algorithm based on YOLOV5. Materials 2023, 16, 2811. [Google Scholar] [CrossRef]
- Fan, J.; Wang, M.; Li, B.; Liu, M.; Shen, D. ACD-YOLO: Improved YOLOv5-based method for steel surface defects detection. IET Image Process. 2024, 18, 761–771. [Google Scholar] [CrossRef]
- Ren, F.; Fei, J.; Li, H.; Doma, B.T. Steel Surface Defect Detection Using Improved Deep Learning Algorithm: ECA-SimSPPF-SIoU-Yolov5. IEEE Access 2024, 12, 32545–32553. [Google Scholar] [CrossRef]
- Lv, X.; Duan, F.; Jiang, J.-J.; Fu, X.; Gan, L. Deep metallic surface defect detection: The new benchmark and detection network. Sensors 2020, 20, 1562. [Google Scholar] [CrossRef] [PubMed]
Methods | P | R | mAP50 | mAP50:95 | GFLOPs | Params/M |
---|---|---|---|---|---|---|
Faster R-CNN [18] | 0.615 | 0.865 | 0.76 | 0.377 | 135 | 41.75 |
CenterNet [50] | 0.712 | 0.749 | 0.764 | 0.412 | 123 | 32.12 |
YOLOv5n-7.0 [51] | 0.694 | 0.694 | 0.746 | 0.422 | 4.2 | 1.77 |
YOLOv5s-7.0 [51] | 0.745 | 0.719 | 0.761 | 0.429 | 15.8 | 7.03 |
YOLOv7-tiny [25] | 0.645 | 0.775 | 0.753 | 0.399 | 13.1 | 6.02 |
YOLOv8s [49] | 0.768 | 0.726 | 0.795 | 0.467 | 28.4 | 11.13 |
YOLOX-tiny [52] | 0.746 | 0.768 | 0.76 | 0.357 | 7.58 | 5.03 |
MRF-YOLO [53] | 0.761 | 0.707 | 0.768 | - | 29.7 | 14.9 |
YOLOv5s-FCC [54] | - | - | 0.795 | - | - | 13.35 |
WFRE-YOLOv8s [55] | 0.759 | 0.736 | 0.794 | 0.425 | 32.6 | 13.78 |
CG-Net [56] | 0.734 | 0.687 | 0.759 | 0.399 | 6.5 | 2.3 |
ACD-YOLO [57] | - | - | 0.793 | - | 21.3 | - |
YOLOv5-ESS [58] | - | 0.764 | 0.788 | - | - | 7.07 |
PMSA-DyTr [2] | - | - | 0.812 | - | - | - |
MED-YOLO [4] | - | - | 0.731 | 0.376 | 18 | 9.54 |
MAR-YOLO [15] | - | - | 0.785 | - | 20.1 | - |
SCFNet | 0.786 | 0.715 | 0.812 | 0.469 | 5.9 | 2 |
Methods | P | R | mAP50 | mAP50:95 | GFLOPs | Params/M |
---|---|---|---|---|---|---|
Faster R-CNN [18] | 0.579 | 0.656 | 0.652 | 0.293 | 135 | 41.75 |
YOLOv5n-7.0 [51] | 0.729 | 0.666 | 0.699 | 0.366 | 4.2 | 1.77 |
YOLOv7-tiny [25] | 0.707 | 0.657 | 0.697 | 0.344 | 13.1 | 6.02 |
CenterNet [50] | 0.726 | 0.619 | 0.665 | 0.308 | 78.66 | 32.12 |
YOLOv8n [49] | 0.704 | 0.65 | 0.684 | 0.365 | 8.1 | 3.01 |
YOLOX-tiny [52] | 0.659 | 0.546 | 0.611 | 0.259 | 7.58 | 5.03 |
MAR-YOLO [15] | - | - | 0.673 | - | 20.1 | - |
SCFNet | 0.713 | 0.68 | 0.704 | 0.366 | 5.9 | 2 |
Methods | Augment | mAP50 | mAP50:95 |
---|---|---|---|
SCFNet | Original | 0.778 | 0.448 |
SCFNet | Shift | 0.785 | 0.45 |
SCFNet | Noise | 0.781 | 0.441 |
SCFNet | Brightness | 0.785 | 0.45 |
SCFNet | Rotation | 0.767 | 0.454 |
SCFNet | Flip | 0.812 | 0.469 |
SCFNet | All | 0.797 | 0.458 |
Model | LEM | ScConv | BiFPN | mAP50 | mAP50:95 | GFLOPs | Params/M |
---|---|---|---|---|---|---|---|
Baseline | - | - | - | 0.773 | 0.444 | 8.1 | 3.01 |
Baseline | ✓ | - | - | 0.783 | 0.457 | 5.7 | 1.9 |
Baseline | ✓ | ✓ | - | 0.787 | 0.455 | 5.7 | 1.91 |
Baseline | ✓ | - | ✓ | 0.793 | 0.455 | 5.9 | 1.99 |
Baseline | ✓ | ✓ | ✓ | 0.8 | 0.456 | 5.9 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yi, Z.; Mei, L.; Duan, J.; Sun, K.; Li, M.; Yang, W.; Wang, Y. SCFNet: Lightweight Steel Defect Detection Network Based on Spatial Channel Reorganization and Weighted Jump Fusion. Processes 2024, 12, 931. https://doi.org/10.3390/pr12050931
Li H, Yi Z, Mei L, Duan J, Sun K, Li M, Yang W, Wang Y. SCFNet: Lightweight Steel Defect Detection Network Based on Spatial Channel Reorganization and Weighted Jump Fusion. Processes. 2024; 12(5):931. https://doi.org/10.3390/pr12050931
Chicago/Turabian StyleLi, Hongli, Zhiqi Yi, Liye Mei, Jia Duan, Kaimin Sun, Mengcheng Li, Wei Yang, and Ying Wang. 2024. "SCFNet: Lightweight Steel Defect Detection Network Based on Spatial Channel Reorganization and Weighted Jump Fusion" Processes 12, no. 5: 931. https://doi.org/10.3390/pr12050931