Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Bigel-Based Vegetable Oil Spreads
2.2.2. Texture
2.2.3. Colour
2.2.4. Rheological Properties
2.2.5. Oil and Water Binding Capacity
2.2.6. Oxidative Stability
2.2.7. Antioxidant Capacity
2.2.8. Statistical Analysis
3. Results and Discussions
3.1. Effect of Lecithin Amount on the Properties of Bigel-Based Vegetable Oil Spreads with Lingonberry Pomace, Structured with Gelatin or Gelatin and Collagen Mixture
3.2. Effect of Lecithin Amount on the Properties of Bigel-Based Vegetable Oil Spreads with Lingonberry Pomace, Structured with Agar or Agar and Collagen Mixture
3.3. Oxidative Stability of Bigel-Based Vegetable Oil Spreads with Lingonberry Pomace, Structured with Gelatin or Agar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. JAOCS 2012, 89, 749–780. [Google Scholar] [CrossRef]
- Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Jeong, S.; Oh, I.K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT 2017, 84, 788–794. [Google Scholar] [CrossRef]
- Bascuas, S.; Espert, M.; Llorca, E.; Quiles, A.; Salvador, A.; Hernando, I. Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. LWT 2021, 135, 110228. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M.; Valoppi, F.; Barba, L.; Calligaris, S.; Nicoli, M.C. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 2017, 86, 523–529. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, H.S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT 2022, 155, 112972. [Google Scholar] [CrossRef]
- Patel, A.R.; Cludts, N.; Bin Sintang, M.D.; Lesaffer, A.; Dewettinck, K. Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food Funct. 2014, 5, 2833–2841. [Google Scholar] [CrossRef] [Green Version]
- Bascuas, S.; Morell, P.; Hernando, I.; Quiles, A. Recent trends in oil structuring using hydrocolloids. Food Hydrocoll. 2021, 43, 114–119. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency. Polym. Plast. Technol. Eng. 2015, 54, 837–850. [Google Scholar] [CrossRef]
- Rehman, K.; Amin, M.C.I.M.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo Sci. 2014, 63, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.; Singh, V.K.; Kulanthaivel, S.; Bhattacharya, M.K.; Paramanik, K.; Banerjee, I. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic-A therapeutic approach for controlled drug delivery. Eur. Polym. J. 2015, 64, 253–264. [Google Scholar] [CrossRef]
- Cui, H.; Tang, C.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Fabrication of chitosan cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chem. 2022, 384, 132589. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.M.; Magalhaes, W.V.; da Silva Sufi, B.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; da Silva Lannes, C.S.; Baby, A.R. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloids Surf. B Biointerfaces 2021, 201, 111651. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll. 2020, 105, 105855. [Google Scholar] [CrossRef]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. Food Biosci. 2021, 39, 100813. [Google Scholar] [CrossRef]
- Qiu, R.; Wang, K.; Tian, H.; Liu, X.; Liu, G.; Hu, Z.; Zhao, L. Analysis on the printability and rheological characteristics of bigel inks: Potential in 3D food printing. Food Hydrocoll. 2022, 129, 107675. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) fruit as a source of bioactive compounds promoting effects—a review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef]
- Bujor, O.C.; Ginies, C.; Popa, V.I.; Dufour, C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chem. 2018, 252, 356–365. [Google Scholar] [CrossRef]
- Kivimäki, A.S.; Ehlers, P.I.; Siltari, A.; Turpeinen, A.M.; Vapaatalo, H.; Korpela, R. Lingonberry, cranberry and blackcurrant juices affect mRNA expressions of inflammatory and atherothrombotic markers of SHR in a long-term treatment. J. Funct. Foods 2012, 4, 496–503. [Google Scholar] [CrossRef]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Mykkänen, H.; Niskanen, L. Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. AJCN 2012, 96, 527–533. [Google Scholar] [CrossRef]
- Salaheen, S.; Nguyen, C.; Hewes, D.; Biswas, D. Cheap extraction of antibacterial compounds of berry pomace and their mode of action against the pathogen Campylobacter jejuni. Food Control 2014, 46, 174–181. [Google Scholar] [CrossRef]
- Alfawaz, H.; Khan, N.; Alhuthayli, H.; Wani, K.; Aljumah, M.A.; Khattak, M.N.K.; Al-Daghri, N.M. Awareness and Knowledge Regarding the Consumption of Dietary Fiber and Its Relation to Self-Reported Health Status in an Adult Arab Population: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 4226. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.D.; To, C.M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Patel, A.R. Chemical profiling of the major components innatural waxes to elucidate their role in liquid oil structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, Y.; Du, L.; Li, S.; Liu, Y.; Meng, Z. Catastrophic phase inversion of bigels characterized by fluorescence intensity-based 3D modeling and the formability for decorating and 3D printing. Food Hydrocoll. 2022, 126, 107461. [Google Scholar] [CrossRef]
- Singh, V.K.; Ramesh, S.; Pal, K.; Anis, A.; Pradhan, D.K.; Pramanik, K. Olive oil based novel thermo-reversible emulsion hydrogels for controlled delivery applications. J. Mater. Sci. Mater. Med. 2014, 25, 703–721. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Tu, Z.; Zhang, L.; Wang, H.; Tian, M.; Zhang, N. Influence of soy lecithin concentration on the physical properties of whey protein isolate- stabilized emulsion and microcapsule formation. J. Food Eng. 2017, 207, 73–80. [Google Scholar] [CrossRef]
- Okuro, P.K.; Gomes, A.; Cunha, R.L. Hybrid oil-in-water emulsions applying wax(lecithin)-based structured oils: Tailoring interface properties. Food Res. Int. 2020, 138, 109798. [Google Scholar] [CrossRef]
- Kelley, D.; McClements, D.J. Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocoll. 2003, 17, 73–85. [Google Scholar] [CrossRef]
- Kwak, M.S.; Ahn, H.J.; Song, K.W. Rheological investigation of body cream and body lotion in actual application conditions. Korea Aust. Rheol. J. 2015, 27, 241–251. [Google Scholar] [CrossRef]
- Ghiasi, F.; Golmakani, M.T. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system. IFSET 2022, 78, 103028. [Google Scholar] [CrossRef]
- Patel, A.R.; Dumlu, P.; Vermeir, L.; Lewille, B.; Lesaffer, A.; Dewettinck, K. Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocoll. 2015, 46, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Palla, C.; Giacomozzi, A.; Genovese, D.B.; Carrín, M.E. Multi–objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Toczek, K.; Glibowski, P.; Kordowska-Wiater, M.; Iłowiecka, K. Rheological and textural properties of emulsion spreads based on milk fat and inulin with the addition of probiotic bacteria. Int. Dairy J. 2022, 124, 105217. [Google Scholar] [CrossRef]
- Polat, T.G.; Duman, O.; Tunç, S. Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 124987. [Google Scholar] [CrossRef]
- Saqib, N.; Khaled, B.M.; Liu, F.; Zhong, F. Hydrogel beads for designing future foods: Structures, mechanisms, applications, and challenges. Food Hydrocoll. Health 2022, 2, 100073. [Google Scholar] [CrossRef]
- Wakhet, S.; Singh, V.K.; Sahoo, S. Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: A comparative study. J. Mater. Sci. Mater. Med. 2015, 26, 118. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Saleh, A.S.M. Functional Characteristics of Oleogel Prepared from Sunflower Oil with β-Sitosterol and Stearic Acid. J. Am. Oil. Chem. Soc. 2017, 94, 1153–1164. [Google Scholar] [CrossRef]
- Glibowski, P. Effect of thermal and mechanical factors on rheological properties of high performance inulin gels and spreads. J. Food Eng. 2010, 99, 106–113. [Google Scholar] [CrossRef]
- Fasolin, L.H.; Martins, A.J.; Cerqueira, M.A.; Vicente, A.A. Modulating process parameters to change physical properties of bigels for food applications. Food Struct. 2021, 28, 10017. [Google Scholar] [CrossRef]
- Park, C.; Bemer, H.L.; Maleky, F. Oxidative Stability of Rice Bran Wax Oleogels and an Oleogel Cream Cheese Product. JAOCS 2018, 95, 1267–1275. [Google Scholar] [CrossRef]
- Lim, J.; Hwang, H.S.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Appl. Biol. Chem. 2016, 60, 17–22. [Google Scholar] [CrossRef]
- Hwang, H.S.; Fhaner, M.; Winkler-Moser, J.K.; Liu, S.X. Oxidation of fish oil oleogels formed by natural waxes in comparison with bulk oil. Eur. J. Lipid Sci. Technol. 2018, 120, 1700378. [Google Scholar] [CrossRef]
- Gao, Y.; Qiu, Y.; Nan, H.; Wang, L.; Yang, D.; Zhang, L.; Yu, Q. Ultra-high pressure-assisted preparation of cowhide gelatin as a promising fat substitute: Improve the nutrition ratio and antioxidant capacity of beef patties. Food. Res. Int. 2022, 157, 111260. [Google Scholar] [CrossRef]
- Adilah, Z.M.; Jamilah, B.; Hanani, Z.N. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Argyropoulos, D.; Busarakorn, M.; Sajid, L.; Sajid, M. Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chem. 2016, 196, 712–719. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Martín-Esparza, M.E.; Martínez-Navarrete, N. Effect of processing on the drying kinetics and functional value of dried apricot. Food Res. Int. 2012, 47, 284–290. [Google Scholar] [CrossRef]
Structured with Gelatin | Structured with Gelatin and Collagen | |||||
---|---|---|---|---|---|---|
Carnauba wax | 3.60 | 3.60 | ||||
Lecithin | 0.3 | 0.6 | 0.9 | 0.3 | 0.6 | 0.9 |
Oil | 56.10 | 55.80 | 55.50 | 56.10 | 55.80 | 55.50 |
Water | 22.8 | 16.55 | ||||
Gelatin | 2.0 | 2.0 | ||||
Collagen | - | 6.25 | ||||
Lingonberry pomace | 15.0 | 15.0 | ||||
Stevia sweetener | 0.2 | 0.2 |
Structured with Agar | Structured with Agar and Collagen | |||||
---|---|---|---|---|---|---|
Carnauba wax | 3.60 | 3.60 | ||||
Lecithin | 0.3 | 0.6 | 0.9 | 0.3 | 0.6 | 0.9 |
Oil | 56.10 | 55.80 | 55.50 | 56.10 | 55.80 | 55.50 |
Water | 23.8 | 17.55 | ||||
Agar | 1.0 | 1.0 | ||||
Collagen | - | 6.25 | ||||
Lingonberry pomace | 15.0 | 15.0 | ||||
Stevia sweetener | 0.2 | 0.2 |
Structured with Gelatin | Structured with Gelatin and Collagen | |||||
---|---|---|---|---|---|---|
Lecithin Amount in Oleogel Fraction,% | ||||||
0.5 | 1.0 | 1.5 | 0.5 | 1.0 | 1.5 | |
L* | 31.49 ± 0.44 c | 29.68 ± 0.06 b | 28.28 ± 0.22 a | 27.71 ± 0.33 c | 25.01 ± 0.06 b | 24.35 ± 0.04 a |
a* | 17.66 ± 0.40 a | 18.01 ± 0.15 a | 19.99 ± 0.25 b | 5.63 ± 0.08 a | 9.34 ± 0.12 b | 9.60 ± 0.06 c |
b* | 3.42 ± 0.04 a | 3.62 ± 0.04 b | 4.52 ± 0.06 c | 0.56 ± 0.06 a | 1.13 ± 0.03 b | 1.44 ± 0.02 c |
TFR (%) | 16.11 ± 1.29 a | 19.52 ± 2.16 b | 21.82 ± 1.52 c | 17.75 ± 0.87 a | 24.50 ± 2.95 c | 25.93 ± 1.88 c |
VR (%) | 0.25 ± 0.03 a | 0.20 ± 0.02 a | 0.47 ± 0.02 b | 0.17 ± 0.02 b | 1.30 ± 0.01 c | 0.08 ± 0.0 a |
FR (%) | 99.75 ± 1.32 ab | 99.80 ± 2.16 b | 99.45 ± 1.50 ab | 99.83 ± 0.88 ab | 98.69 ± 1.87 ab | 99.92 ± 1.89 b |
with Agar | with Agar and Collagen | |||||
---|---|---|---|---|---|---|
Lecithin Amount in Oleogel Fraction,% | ||||||
0.5 | 1.0 | 1.5 | 0.5 | 1.0 | 1.5 | |
L* | 27.19 ± 0.04 b | 29.59 ± 0.58 ab | 31.35 ± 0.35 ab | 25.64 ± 0.02 a | 26.21 ± 0.23 b | 26.17 ± 0.38 b |
a* | 16.48 ± 0.15 b | 14.76 ± 0.40 a | 16.02 ± 0.22 b | 11.22 ± 0.03 b | 9.93 ± 0.02 a | 10.06 ± 0.13 a |
b* | 3.06 ± 0.04 b | 2.60 ± 0.18 a | 3.00 ± 0.04 b | 1.54 ± 0.02 b | 1.38 ± 0.06 a | 1.51 ± 0.02 b |
TFR (%) | 18.88 ± 0.47 a | 23.75 ± 0.45 b | 25.68 ± 1.67 c | 10.04 ± 1.90 a | 11.77 ± 2.05 b | 14.50 ± 1.55 c |
VR (%) | 0.21 ± 0.03 a | 0.29 ± 0.02 b | 0.27 ± 0.01 b | 0.40 ± 0.02 a | 0.59 ± 0.01 b | 0.55 ± 0.02 b |
FR (%) | 99.84 ± 0.44 b | 99.71 ± 0.41 ab | 99.73 ± 1.68 ab | 99.60 ± 1.90 ab | 99.83 ± 2.84 b | 99.45 ± 1.57 ab |
Bigel Sample | Fresh | After 30 Days | ||||
---|---|---|---|---|---|---|
IP (h) | PF | DPPH• Inhibition (mg TE/g) | IP (h) | PF | DPPH• Inhibition (mg TE/g) | |
with gelatin | 1.75 ± 0.10 a | 1.0 | 0.26 ± 0.01 a | 1.77 ± 0.07 b | 1.0 | 0.21 ± 0.06 a |
with gelatin + pomace | 4.22 ± 0.01 b | 2.4 | 1.61 ± 0.12 b | 4.14 ± 0.01 d | 2.3 | 1.14 ± 0.09 b |
with agar | 1.95 ± 0.11 a | 1.0 | 0.28 ± 0.02 a | 1.40 ± 0.02 a | 1.0 | 0.23 ± 0.01 a |
with agar + pomace | 4.03 ± 0.12 b | 2.1 | 2.03 ± 0.01 c | 3.98 ± 0.03 c | 2.8 | 1.43 ± 0.15 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltuonytė, G.; Eisinaitė, V.; Kazernavičiūtė, R.; Vinauskienė, R.; Jasutienė, I.; Leskauskaitė, D. Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace. Foods 2022, 11, 2213. https://doi.org/10.3390/foods11152213
Baltuonytė G, Eisinaitė V, Kazernavičiūtė R, Vinauskienė R, Jasutienė I, Leskauskaitė D. Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace. Foods. 2022; 11(15):2213. https://doi.org/10.3390/foods11152213
Chicago/Turabian StyleBaltuonytė, Gintarė, Viktorija Eisinaitė, Rita Kazernavičiūtė, Rimantė Vinauskienė, Ina Jasutienė, and Daiva Leskauskaitė. 2022. "Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace" Foods 11, no. 15: 2213. https://doi.org/10.3390/foods11152213