Flavor Characteristics of Ten Peanut Varieties from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Physicochemical Properties of Peanuts
2.3. Determination of Non-Volatile and Volatile Components
2.4. Determination of Taste and Smell Characteristics via Electronic Tongue and Nose
2.5. Statistical Analyses
3. Results
3.1. Physicochemical Properties of Ten Peanut Varieties
3.2. Free Amino Acid Contents of Ten Peanut Varieties
3.3. 5′-Nucleotide Contents of Ten Peanut Varieties
3.4. Volatile Aroma Components of Ten Peanut Varieties
3.5. Electronic Tongue for the Taste Characteristics of Peanuts
3.6. Electronic Nose for the Smell Characteristics of Peanuts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Yoo, E.; Lee, S.; Sung, J.; Noh, H.J.; Hwang, S.J.; Desta, K.T.; Lee, G.-A. Seed Weight and Genotype Influence the Total Oil Content and Fatty Acid Composition of Peanut Seeds. Foods 2022, 11, 3463. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.J. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. Int. J. Food Sci. Nutr. 2014, 65, 781–790. [Google Scholar] [CrossRef]
- Nawade, B.; Mishra, G.P.; Radhakrishnan, T.; Dodia, S.M.; Ahmad, S.; Kumar, A.; Kumar, A.; Kundu, R. High oleic peanut breeding: Achievements, perspectives, and prospects. Trends Food Sci. Technol. 2018, 78, 107–119. [Google Scholar] [CrossRef]
- Nepote, V.; Mestrallet, M.G.; Grosso, N.R. Oxidative stability in fried-salted peanuts elaborated with high-oleic and regular peanuts from Argentina. Int. J. Food Sci. Technol. 2006, 41, 900–909. [Google Scholar] [CrossRef]
- Sithole, T.R.; Ma, Y.-X.; Qin, Z.; Liu, H.-M.; Wang, X.-D. Influence of Peanut Varieties on the Sensory Quality of Peanut Butter. Foods 2022, 11, 3499. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.S.; Chidley, H.G.; Kulkarni, R.S.; Pujari, K.H.; Giri, A.P.; Gupta, V.S. Cultivar relationships in mango based on fruit volatile profiles. Food Chem. 2009, 114, 363–372. [Google Scholar] [CrossRef]
- Kelebek, H.; Canbas, A.; Jourdes, M.; Teissedre, P.-L. HPLC-DAD-MS Determination of Colored and Colorless Phenolic Compounds in Kalecik Karasi Wines: Effect of Different Vineyard Locations. Anal. Lett. 2011, 44, 991–1008. [Google Scholar] [CrossRef]
- Hegmann, E.; Niether, W.; Phillips, W.; Rohsius, C.; Lieberei, R. Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). J. Appl. Bot. Food Qual. 2020, 93, 266. [Google Scholar]
- Fritz, K.R.; Dean, L.L.; Hendrix, K.W.; Andres, R.J.; Newman, C.S.; Oakley, A.T.; Clevenger, J.P.; Dunne, J.C. Flavor quality and composition of accession resources in the North Carolina State University peanut breeding program. Crop Sci. 2022, 62, 1880–1890. [Google Scholar] [CrossRef]
- Pattee, H.E.; Isleib, T.G.; Giesbrecht, F.G.; McFeeters, R.F. Investigation into genotypic variations of peanut carbohydrates. J. Agric. Food Chem. 2000, 48, 750–756. [Google Scholar] [CrossRef]
- Pattee, H.E.; Isleib, T.G.; Gorbet, D.W.; Giesbrecht, F.G.; Cui, Z. Parent selection in breeding for roasted peanut flavor quality1. Peanut Sci. 2001, 28, 51–58. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, L.; Chen, Y.; Wang, X.; Huai, D.; Kang, Y.; Jiang, H.; Liu, K.; Lei, Y.; Liao, B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor. Appl. Genet. 2022, 135, 1779–1795. [Google Scholar] [CrossRef]
- Dhamsaniya, N.K.; Patel, N.C.; Dabhi, M.N. Selection of groundnut variety for making a good quality peanut butter. J. Food Sci. Technol. 2012, 49, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.L.; Jiang, Y.Y.; Sun, Y.; Yin, X.D.; Zhang, M.; Kan, J.; Liu, J.; Xiao, L.X.; Jin, C.H.; Qi, X.; et al. Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods. Foods 2023, 12, 2012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cheng, J.H.; Hong, Q.D.; Dong, W.J.; Chen, X.A.; Wu, G.P.; Zhang, Z.Z. Identification of changes in the volatile substances of robusta coffee beans during drying based on HS—SPME/GC—MS and E—Nose analyses with the aid of chemometrics. LWT Food Sci. Technol. 2022, 161, 113317. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zang, M.W.; Zhang, K.H.; Wang, S.W.; Li, D.; Li, X.M. Effect of two types of thermal processing methods on the aroma and taste profile of three commercial plant—Based beef analogues and beef by GC—MS, E—Nose, E—Tongue, and sensory evaluation. Food Control 2023, 146, 109551. [Google Scholar] [CrossRef]
- Singh, S.K.; Castell-Perez, M.E.; Moreira, R. Viscosity and Textural Attributes of Reduced-fat Peanut Pastes. J. Food Sci. 2000, 65, 849–853. [Google Scholar] [CrossRef]
- Akhtar, S.; Khalid, N.; Ahmed, I.; Shahzad, A.; Suleria, H.A.R. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1562–1575. [Google Scholar] [CrossRef]
- Wang, M.L.; Chen, C.Y.; Tonnis, B.; Pinnow, D.; Davis, J.; An, Y.Q.C.; Dang, P. Changes of seed weight, fatty acid composition, and oil and protein contents from different peanut FAD2 genotypes at different seed developmental and maturation stages. J. Agric. Food Chem. 2018, 66, 3658–3665. [Google Scholar] [CrossRef]
- Du, L.; Ye, Y.; Lin, T.; Li, M.; Bi, Y.; Li, Q.; Liu, H. The evaluation of the nutritional quality of common wild edible fungi in Yunnan Province. J. Food Sci. 2023, 88, 1879–1889. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, L.; Sun, Y.; Zhang, Y.; Sun, B.; Chen, H. Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars. J. Food Sci. 2017, 82, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Kopper, R.; Van, T.; Kim, A.; Helm, R. Release of Soluble Protein from Peanut (Arachis hypogaea, Leguminosae) and Its Adsorption by Activated Charcoal. J. Agric. Food Chem. 2011, 59, 236–240. [Google Scholar] [CrossRef]
- Lan, R.J.; Duan, M.Y.; Wu, F.D.; Lai, R.F.; Mo, Z.W.; Pan, S.G.; Tang, X.R. Enhancement of ultrasonic seed treatment on yield, grain quality characters, and 2-acetyl-l-pyrroline biosynthesis in different fragrant rice genotypes. Phyton Int. J. Exp. Bot. 2022, 91, 2461–2473. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, H.N.; Bing, F.L.; Chen, D.; Feng, T.; Xu, Z.M. Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue. Food Sci. Nutr. 2021, 9, 2095–2104. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lin, H.-C.; Mau, J.-L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Wifall, T.C.; Faes, T.M.; Taylor-Burds, C.C.; Mitzelfelt, J.D.; Delay, E.R. An Analysis of 5′-Inosine and 5′-Guanosine Monophosphate Taste in Rats. Chem. Senses 2007, 32, 161–172. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Tsai, H.-L.; Mau, J.-L. Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chem. 2008, 107, 977–983. [Google Scholar] [CrossRef]
- Kasuga, A.; Fujihara, S.; Aoyagi, Y. The relationship between the varieties of dried shiitake mushrooms (Lentinus edodes (Berk.) Sing.) and chemical composition: The effect of the varieties of dried shiitake mushrooms on their taste: Part I. J. Jpn. Soc. Food Sci. Technol. Nippon. Shokuhin Kagaku Kogaku Kaishi 1999, 46, 692–703. [Google Scholar] [CrossRef]
- Kasuga, A.; Fujihara, S.; Aoyagi, Y. The behavior of different varieties of dried shiitake mushrooms (Lentinus edodes (Berk.) Sing.) in rehydration: The effect of different varieties of dried shiitake mushrooms on their taste, Part II. J. Jpn. Soc. Food Sci. Technol. Nippon. Shokuhin Kagaku Kogaku Kaishi 2000, 47, 347–354. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Cherif, A.O.; Ben Messaouda, M.; Kaabi, B.; Boukhchina, S.; Pepe, C.; Kallel, H. Comparison of the concentrations of long-chain alcohols (Policosanol) in three tunisian peanut varieties (Arachis hypogaea L.). J. Agric. Food Chem. 2010, 58, 12143–12148. [Google Scholar] [CrossRef] [PubMed]
Relative Amount/% | Water Content | Fat Content | Protein Content |
---|---|---|---|
Taihua0122-601 | 5.152 ± 0.24 ab | 50.87 ± 1.67 abc | 27.54 ± 1.13 abc |
Taihua6 | 5.386 ± 0.23 ab | 48.24 ± 1.84 c | 29.90 ± 1.46 a |
Taihua0311 | 5.021 ± 0.16 ab | 50.07 ± 1.13 abc | 28.31 ± 1.28 ab |
Taihua0605-2 | 4.752 ± 0.14 b | 53.83 ± 1.53 a | 28.58 ± 1.42 a |
Taihua10 | 5.212 ± 0.27 ab | 51.02 ± 1.45 abc | 27.23 ± 1.18 abc |
Taihua11 | 5.483 ± 0.35 a | 48.47 ± 1.67 bc | 28.67 ± 1.87 a |
Taihua7506 | 5.274 ± 0.49 ab | 53.59 ± 2.15 a | 23.95 ± 1.45 c |
Taihua9725 | 5.129 ± 0.25 ab | 49.27 ± 1.57 bc | 27.96 ± 1.26 ab |
Taihua4 | 5.069 ± 0.18 ab | 52.38 ± 2.05 ab | 24.86 ± 1.06 bc |
Taihua9922 | 5.269 ± 0.29 ab | 50.43 ± 1.97 abc | 28.71 ± 1.76 a |
Relative Amount/g/100 g | Taihua0122-601 | Taihua6 | Taihua 0311 | Taihua 0605-2 | Taihua 10 | Taihua 11 | Taihua 7506 | Taihua 9725 | Taihua 4 | Taihua 9922 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
L-Aspartic | 2.89 ± 0.31 d | 4.14 ± 1.23 a | 2.77 ± 0.33 d | 2.81 ± 0.21 d | 4.03 ± 1.18 ab | 4.06 ± 1.97 a | 3.55 ± 0.13 c | 3.64 ± 0.16 c | 3.71 ± 1.21 bc | 3.42 ± 0.61 c | 3.50 |
L-Glutamic | 3.01 ± 0.98 bc | 3.24 ± 0.76 ab | 2.29 ± 0.88 d | 1.96 ± 0.23 d | 3.58 ± 1.22 a | 3.22 ± 0.86 b | 2.98 ± 0.98 bc | 3.02 ± 0.45 bc | 2.69 ± 0.11 c | 3.11 ± 0.24 b | 2.91 |
L-Serine | 1.32 ± 0.87 de | 1.95 ± 0.92 ab | 1.15 ± 0.78 e | 1.56 ± 0.31 cd | 2.19 ± 0.56 a | 1.84 ± 0.99 bc | 1.23 ± 0.20 de | 1.39 ± 0.35 de | 1.41 ± 0.02 de | 1.51 ± 0.11 cd | 1.56 |
Glycine | 1.22 ± 0.23 cd | 1.95 ± 0.14 a | 0.98 ± 0.02 d | 1.71 ± 0.38 ab | 1.86 ± 0.92 ab | 1.94 ± 0.19 a | 1.56 ± 0.29 bc | 1.82 ± 0.12 ab | 1.64 ± 0.18 ab | 1.02 ± 0.09 d | 1.57 |
L-Histidine | 0.75 ± 0.09 abc | 0.98 ± 0.23 a | 0.64 ± 0.43 abcd | 0.87 ± 0.05 ab | 0.95 ± 0.19 a | 0.89 ± 0.44 ab | 0.48 ± 0.14 bd | 0.29 ± 0.11 d | 0.59 ± 0.32 bcd | 0.86 ± 0.13 ab | 0.73 |
L-Arginine | 3.17 ± 1.43 bc | 3.68 ± 0.93 a | 3.09 ± 0.76 cd | 3.29 ± 1.32 bcd | 3.56 ± 1.22 ab | 3.50 ± 0.23 abc | 3.40 ± 0.76 abcd | 2.78 ± 0.78 de | 2.52 ± 0.98 e | 2.67 ± 0.68 e | 3.17 |
L-Threonine | 0.31 ± 0.09 c | 0.67 ± 0.23 abc | 0.56 ± 0.45 abc | 0.49 ± 0.29 bc | 0.73 ± 0.45 ab | 0.91 ± 0.13 a | 0.64 ± 0.95 abc | 0.77 ± 0.55 ab | 0.82 ± 0.44 ab | 0.65 ± 0.08 abc | 0.66 |
L-Alanine | 1.06 ± 0.34 cd | 1.49 ± 0.13 b | 0.78 ± 0.09 de | 1.86 ± 0.17 a | 1.08 ± 0.82 cd | 1.33 ± 0.91 bc | 0.88 ± 0.45 de | 0.67 ± 0.29 e | 1.27 ± 0.23 bc | 0.75 ± 0.14 de | 1.12 |
L-Proline | 1.31 ± 0.93 a | 1.23 ± 0.14 ab | 0.88 ± 0.72 bcd | 0.77 ± 0.24 d | 1.14 ± 0.98 abc | 1.01 ± 0.04 abcd | 0.86 ± 0.12 cd | 0.97 ± 0.78 bcd | 0.76 ± 0.24 d | 0.98 ± 0.5 bcd | 0.99 |
L-Tyrosine | 0.3 ± 0.09 abc | 0.21 ± 0.12 bc | 0.41 ± 0.23 abc | 0.58 ± 0.08 a | 0.59 ± 0.13 a | 0.09 ± 0.03 c | 0.28 ± 0.18 abc | 0.31 ± 0.08 abc | 0.54 ± 0.13 ab | 0.56 ± 0.23 a | 0.39 |
L-Valine | 0.69 ± 0.34 cd | 0.63 ± 0.21 cd | 1.87 ± 0.37 a | 0.84 ± 0.34 cd | 0.97 ± 0.24 c | 0.62 ± 0.23 d | 1.54 ± 0.98 b | 0.60 ± 0.56 d | 0.61 ± 0.45 d | 0.71 ± 0.09 cd | 0.91 |
L-Methionine | 0.11 ± 0.09 cd | 0.44 ± 0.39 abc | 0.28 ± 0.13 bcd | 0.56 ± 0.23 ab | 0.38 ± 0.16 bcd | 0.72 ± 0.56 a | 0.33 ± 0.23 bcd | 0.38 ± 0.14 bcd | 0.09 ± 0.06 d | 0.21 ± 0.11 cd | 0.35 |
L-Isoleucine | 0.51 ± 0.34 bc | 0.93 ± 0.45 a | 0.82 ± 0.24 ab | 0.65 ± 0.45 ab | 0.55 ± 0.03 bc | 0.71 ± 0.67 ab | 0.86 ± 0.24 ab | 0.61 ± 0.45 ab | 0.21 ± 0.13 c | 0.76 ± 0.34 ab | 0.66 |
L-Leucine | 0.67 ± 0.45 cd | 1.89 ± 0.23 a | 1.17 ± 0.56 b | 1.04 ± 0.35 b | 1.68 ± 0.45 a | 1.57 ± 0.19 a | 0.58 ± 0.34 d | 0.98 ± 0.18 bc | 0.85 ± 0.09 bcd | 1.06 ± 0.45 b | 1.15 |
L-Phenylalanine | 1.37 ± 0.78 ef | 1.86 ± 0.45 bcd | 1.78 ± 0.12 bcd | 1.98 ± 0.34 bc | 2.10 ± 0.67 b | 1.57 ± 0.36 de | 1.64 ± 0.13 cde | 1.80 ± 0.08 bcd | 1.03 ± 0.15 f | 2.54 ± 0.36 a | 1.77 |
L-Lysine | 1.89 ± 0.98 a | 1.15 ± 0.74 b | 1.23 ± 0.24 b | 0.97 ± 0.54 bc | 0.34 ± 0.06 e | 1.06 ± 0.35 b | 0.59 ± 0.21 de | 0.71 ± 0.45 cd | 0.43 ± 0.03 de | 0.64 ± 0.24 cde | 0.90 |
L-Tryptophan | 0.88 ± 0.13 b | 0.74 ± 0.21 b | 0.82 ± 0.47 b | 0.78 ± 0.09 b | 0.71 ± 0.35 b | 1.68 ± 0.56 a | 0.29 ± 0.11 c | 0.58 ± 0.23 bc | 0.91 ± 0.43 b | 0.59 ± 0.17 bc | 0.80 |
Bitter | 7.27 ± 3.52 bc | 10.41 ± 2.89 a | 9.65 ± 2.61 ab | 9.23 ± 3.08 ab | 10.19 ± 2.96 ab | 9.58 ± 2.68 ab | 8.83 ± 2.82 abc | 7.44 ± 2.30 abc | 5.9 ± 2.18 c | 8.81 ± 2.16 abc | |
Sweet | 3.91 ± 1.53 b | 6.06 ± 1.42 a | 3.47 ± 1.34 b | 5.62 ± 1.15 ab | 5.86 ± 2.75 ab | 6.02 ± 2.22 a | 4.31 ± 1.89 ab | 4.65 ± 1.31 ab | 5.14 ± 0.87 ab | 3.93 ± 0.42 b | |
MSG-like | 5.9 ± 1.29 ab | 7.38 ± 1.99 a | 5.06 ± 1.21 ab | 4.77 ± 0.44 b | 7.61 ± 2.40 a | 7.28 ± 2.83 a | 6.53 ± 1.11 ab | 6.66 ± 0.61 ab | 6.40 ± 1.32 ab | 6.53 ± 0.85 ab | |
Total | 21.46 ± 4.23 b | 27.18 ± 7.25 a | 21.52 ± 5.45 b | 22.72 ± 6.23 b | 26.44 ± 7.44 a | 26.72 ± 6.34 a | 21.69 ± 5.25 b | 21.32 ± 7.26 b | 20.08 ± 5.48 b | 22.04 ± 5.65 b |
5′-Nucleotides/mg/g | Taihua0122-601 | Taihua6 | Taihua0311 | Taihua0605-2 | Taihua10 | Taihua11 | Taihua7506 | Taihua9725 | Taihua4 | Taihua9922 |
---|---|---|---|---|---|---|---|---|---|---|
5-CMP | 0.06 ± 0.03 a | 0.06 ± 0.03 a | 0.06 ± 0.04 a | 0.06 ± 0.0.1 a | 0.04 ± 0.04 c | 0.05 ± 0.01 b | 0.06 ± 0.07 a | 0.06 ± 0.01 a | 0.06 ± 0.03 a | 0.06 ± 0.06 a |
5′-UMP | ND | ND | 0.05 ± 0.01 a | ND | 0.02 ± 0.01 b | ND | ND | ND | ND | ND |
5′-GMP | 0.05 ± 0.03 a | ND | ND | 0.05 ± 0.01 a | ND | 0.05 ± 0.04 a | 0.04 ± 0.01 b | ND | ND | 0.05 ± 0.03 a |
5′-IMP | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
5′-AMP | 0.03 ± 0.03 a | 0.02 ± 0.01 b | 0.02 ± 0.01 b | 0.02 ± 0.01 b | 0.02 ± 0.00 b | 0.02 ± 0.01 b | ND | 0.02 ± 0.01 b | 0.03 ± 0.01 a | 0.02 ± 0.01 b |
Total | 0.14 | 0.08 | 0.13 | 0.13 | 0.08 | 0.12 | 0.10 | 0.08 | 0.09 | 0.13 |
Relative Amount/% | Taihua0122-601 | Taihua6 | Taihua0311 | Taihua0605-2 | Taihua10 | Taihua11 | Taihua7506 | Taihua9725 | Taihua4 | Taihua9922 |
---|---|---|---|---|---|---|---|---|---|---|
2-Octen-1-ol | ND | ND | ND | 0.10 ± 0.04 bc | 0.32 ± 0.11 a | ND | 0.15 ± 0.07 b | 0.33 ± 0.08 a | ND | ND |
(E)-2-Octen-1-ol | 0.10 ± 0.08 bc | 0.24 ± 0.06 b | ND | ND | ND | ND | ND | ND | 0.55 ± 0.28 a | ND |
(Z)-2-Octen-1-ol | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.08 ± 0.08 a |
1-Nonanol | 0.20 ± 0.08 cd | 0.22 ± 0.04 cd | 0.31 ± 0.13 cd | 0.18 ± 0.03 d | 0.62 ± 0.11 ab | 0.45 ± 0.06 abc | 0.26 ± 0.14 cd | 0.41 ± 0.18 bcd | 0.68 ± 0.06 a | 0.34 ± 0.08 cd |
2-Butyl-1-Octanol | ND | ND | ND | ND | ND | ND | ND | 0.04 ± 0.04 a | ND | ND |
Nonanal | 0.67 ± 0.40 bc | 1.28 ± 0.33 bc | 0.77 ± 0.10 bc | 0.37 ± 0.14 c | 2.72 ± 1.00 a | 1.59 ± 0.42 b | 0.92 ± 0.17 bc | 1.31 ± 0.44 bc | 1.41 ± 0.28 bc | 0.61 ± 0.11 bc |
2-Nonenal | 0.08 ± 0.05 a | ND | ND | ND | ND | ND | ND | ND | ND | 0.06 ± 0.04 a |
(E)-2-Nonenal | ND | ND | 0.08 ± 0.03 a | ND | ND | ND | ND | ND | ND | ND |
(Z)-2-Nonenal | ND | 0.09 ± 0.07 a | ND | ND | 0.11 ± 0.03 a | 0.13 ± 0.07 a | ND | 0.11 ± 0.04 a | 0.10 ± 0.01 a | ND |
Decanal | 0.09 ± 0.07 bc | 0.08 ± 0.04 bc | 0.15 ± 0.07 bc | 0.06 ± 0.06 bc | 0.31 ± 0.20 ab | ND | ND | 0.45 ± 0.24 a | 0.13 ± 0.04 bc | ND |
(E)-2-Decenal | ND | ND | ND | ND | ND | ND | 0.10 ± 0.01 a | ND | 0.14 ± 0.08 a | 0.09 ± 0.08 ab |
(Z)-2-Decenal | 0.09 ± 0.04 a | ND | 0.08 ± 0.08 a | ND | ND | ND | ND | ND | ND | ND |
2,4-Decadienal | ND | ND | ND | ND | ND | 0.39 ± 0.27 a | 0.16 ± 0.08 ab | ND | 0.11 ± 0.06 b | ND |
(E,E)-2,4-Decadienal | ND | ND | 0.08 ± 0.06 a | ND | ND | ND | ND | ND | ND | ND |
2-Undecenal | ND | ND | 0.05 ± 0.02 a | ND | ND | ND | ND | ND | ND | ND |
2,4-Dimethyl-Benzaldehyde | ND | ND | ND | 0.09 ± 0.04 ab | 0.14 ± 0.08 a | ND | ND | ND | ND | 0.15 ± 0.08 a |
Undecanal | ND | ND | ND | ND | 0.03 ± 0.02 a | ND | ND | ND | ND | ND |
Formic Acid, Hexyl Ester | 1.15 ± 0.92 bc | 1.52 ± 0.74 abc | 1.40 ± 0.24 bc | 2.04 ± 1.47 abc | ND | 3.10 ± 0.85 ab | 3.63 ± 0.91 a | ND | 2.01 ± 0.26 abc | 1.98 ± 1.33 abc |
Formic Acid, Heptyl Ester | 0.08 ± 0.04 a | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Formic Acid, Octyl Ester | ND | 0.35 ± 0.34 a | ND | ND | ND | 0.37 ± 0.18 a | 0.21 ± 0.04 ab | ND | ND | ND |
Octanoic Acid, Methyl Ester | ND | 0.15 ± 0.07 c | ND | 0.40 ± 0.20 bc | 0.68 ± 0.45 ab | 0.30 ± 0.16 bc | ND | ND | 0.89 ± 0.31 a | ND |
Nonanoic Acid, Methyl Ester | ND | ND | ND | 0.04 ± 0.03 ab | 0.08 ± 0.01 a | ND | ND | ND | 0.10 ± 0.07 a | ND |
2-Methyl-Decane | 0.11 ± 0.06 a | 0.08 ± 0.03 ab | 0.09 ± 0.08 a | 0.04 ± 0.03 ab | ND | ND | ND | ND | ND | ND |
3-Methyl-Decane | 0.19 ± 0.08 a | 0.14 ± 0.07 a | ND | 0.17 ± 0.03 a | ND | ND | ND | ND | ND | ND |
4-Methyl-Decane | 0.18 ± 0.16 a | 0.09 ± 0.06 ab | ND | ND | ND | ND | ND | ND | ND | ND |
5-Methyl-Decane | ND | ND | 0.12 ± 0.06 a | ND | ND | ND | ND | ND | ND | ND |
2-Methyl-Undecane | ND | ND | ND | ND | ND | ND | ND | ND | 0.18 ± 0.06 a | ND |
3-Methyl-Undecane | 0.12 ± 0.11 ab | 0.05 ± 0.03 b | 0.08 ± 0.06 ab | 0.11 ± 0.06 ab | 0.25 ± 0.20 ab | 0.13 ± 0.04 ab | 0.06 ± 0.04 b | 0.10 ± 0.10 ab | 0.31 ± 0.18 a | 0.12 ± 0.07 ab |
4-Methyl-Undecane | ND | ND | ND | ND | ND | ND | ND | ND | 0.10 ± 0.04 a | ND |
2,6-Dimethyl-Undecane | ND | 0.19 ± 0.11 ab | ND | ND | ND | ND | 0.19 ± 0.13 ab | 0.38 ± 0.25 a | ND | ND |
2,6,7-Trimethyl-Decane | ND | ND | ND | 0.07 ± 0.03 a | ND | ND | ND | ND | ND | ND |
2,6,8-Trimethyl-Decane | ND | 0.11 ± 0.04 a | ND | ND | ND | ND | ND | ND | ND | ND |
2,6,11-Trimethyl-Dodecane | ND | ND | 0.04 ± 0.03 a | ND | ND | ND | ND | ND | ND | ND |
3-Methyl-Tridecane | 0.10 ± 0.07 ab | 0.16 ± 0.06 a | 0.09 ± 0.01 ab | 0.05 ± 0.03 ab | 0.11 ± 0.08 ab | 0.08 ± 0.07 ab | ND | ND | 0.14 ± 0.06 a | 0.04 ± 0.03 ab |
1-Dodecene | 0.07 ± 0.04 ab | ND | ND | ND | ND | ND | ND | ND | 0.10 ± 0.06 a | ND |
(E)-2-Dodecene | ND | 0.02 ± 0.01 a | ND | ND | ND | ND | ND | ND | ND | ND |
1-Tridecene | ND | ND | ND | ND | ND | ND | ND | ND | 0.03 ± 0.02 a | ND |
6-Tridecene | ND | 0.01 ± 0.01 a | ND | ND | ND | ND | ND | ND | ND | ND |
(R)-1-Methyl-5-(1-Methylethenyl)-Cyclohexene | ND | ND | ND | 2.52 ± 1.19 a | ND | ND | ND | 0.02 ± 0.01 b | ND | ND |
o-Cymene | ND | ND | 0.03 ± 0.01 c | 0.15 ± 0.09 a | ND | ND | 0.12 ± 0.08 b | ND | ND | ND |
Nonanoic Acid | ND | 0.16 ± 0.11 ab | ND | ND | ND | ND | ND | ND | 0.26 ± 0.19 a | ND |
2-Pentyl-Furan | ND | ND | ND | ND | ND | ND | ND | ND | 0.33 ± 0.12 a | ND |
Sensor No. | Sensing Species | Reference Substance |
---|---|---|
W1C | aromatic | toluene |
W1S | broad methane | methane |
W1W | sulfur organic | hydrogen sulfide |
W2S | broad alcohol | carbon monoxide |
W2W | sulf–chlor | hydrogen sulfide |
W3C | aromatic | benzene |
W3S | methane–aliph | methane |
W5C | arom–aliph | propane |
W5S | broad-range | nitrogen dioxide |
W6S | hydrogen | hydrogen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.; Wang, F.; Zhang, B.; Feng, M.; Chang, L.; Shao, Y.; Sun, Y.; Jiang, Y.; Wang, R.; Wang, L.; et al. Flavor Characteristics of Ten Peanut Varieties from China. Foods 2023, 12, 4380. https://doi.org/10.3390/foods12244380
Ding B, Wang F, Zhang B, Feng M, Chang L, Shao Y, Sun Y, Jiang Y, Wang R, Wang L, et al. Flavor Characteristics of Ten Peanut Varieties from China. Foods. 2023; 12(24):4380. https://doi.org/10.3390/foods12244380
Chicago/Turabian StyleDing, Bin, Fei Wang, Bei Zhang, Mengshi Feng, Lei Chang, Yuyang Shao, Yan Sun, Ying Jiang, Rui Wang, Libin Wang, and et al. 2023. "Flavor Characteristics of Ten Peanut Varieties from China" Foods 12, no. 24: 4380. https://doi.org/10.3390/foods12244380