Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- soil A is 100% manure obtained from a private company in Lebanon;
- soil B is a potting mix composed of 50% peat moss and 50% potting soil;
- soil C is a professional agriculture mixture composed of 33% peat moss, 33% manure, and 33% potting soil;
- soil D is 100% vegetable compost obtained from Holy Spirit University of Kaslik;
- soil E is composed of 100% nursery mixture;
- soil F is a natural agricultural soil, collected from the Upper Litani Basin, in Marj village, Bekaa, Lebanon (latitude: 33.766404° N, longitude: 35.876819° E). A fraction of the agricultural soil (F) was sterilized by autoclave (three times at 121 °C), while the other part was not sterilized. The experiment was conducted in the presence of 30 g of an AMF inoculum, Symbivit® containing six AMF morphotypes (Claroideoglomus etunicatum, Glomus microaggregatum, Rhizophagus intraradices, Claroideoglomus claroideum, Funneliformis mosseae, Funneliformis geosporum) (150,000 fungal propagule/L), or its equivalent substrate, in both sterilized and non-sterilized conditions.
2.2. Plant Biomasses and Root Colonization Rate
2.3. EO Extraction and Yield Evaluation
2.4. EO Chemical Composition
2.4.1. GC Analyses
2.4.2. GC/MS Analyses
2.5. Statistical Analyses
3. Results
3.1. Plant Biomasses and Root Mycorrhizal Rates
3.2. EO Extraction and Yield Evaluation
3.3. EO Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Andrade, M.; De Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Masotti, V.; Juteau, F.; Bessiere, J.M.; Viano, J. Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J. Agric. Food Chem. 2003, 51, 7115–7121. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.C.; Herrera, A.; Martinez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Zgheib, R.; Chaillou, S.; Ouaini, N.; Kassouf, A.; Rutledge, D.; Azzi, D.; El Beyrouthy, M. Chemometric tools to highlight the variability of the chemical composition and yield of Lebanese Origanum syriacum L. essential oil. Chem. Biodivers. 2016, 13, 1326–1347. [Google Scholar] [CrossRef] [PubMed]
- Horwath, A.B.; Grayer, R.J.; Keith-Lucas, D.M.; Simmonds, M.S. Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochem. Syst. Ecol. 2008, 36, 117–133. [Google Scholar] [CrossRef]
- Karousou, R.; Koureas, D.N.; Kokkini, S. Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry 2005, 66, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- El Beyrouthy, M.; Elian, G.; Jaoudeh, C.A.; Chalak, L. In vitro propagation of Origanum syriacum and Origanum ehrenbergii. Acta Hortic. 2015, 1083, 169–172. [Google Scholar] [CrossRef]
- Soliman, F.M.; Yousif, M.F.; Zaghloul, S.S.; Okba, M.M.; El-Sayed, E.M. Seasonal variation in the essential oil composition of Origanum syriacum L. subsp. sinaicum greuter and burdet; evaluation of its tocolytic activity. Egypt. J. Biomed. Sci. 2007, 23, 121–134. [Google Scholar]
- Başer, K.H.C.; Kürkçüoǧlu, M.; Demirci, B.; Ozek, T. The essential oil of Origanum syriacum L. var. sinaicum (Boiss.) letswaart. Flavour Fragr. J. 2003, 18, 98–99. [Google Scholar]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- Kirimer, N.; Başer, K.H.C.; Tümen, G. Carvacrol-rich plants in Turkey. Chem. Nat. Compd. 1995, 31, 37–41. [Google Scholar] [CrossRef]
- Awada, F.; Kobaissi, A.; Chokr, A.; Hamze, K.; Hayar, S.; Mortada, A. Factors affecting quantitative and qualitative variation of thyme (Origanum syriacum L.) essential oil in Lebanon. Adv. Environ. Biol. 2012, 6, 1509–1514. [Google Scholar]
- Shiyab, S. Influence of developmental stage on yield and composition of Origanum syriacum L. oil by multivariate analysis. J. Med. Plants Res. 2012, 6, 2985–2994. [Google Scholar]
- Yaldiz, G.; Şekeroǧlu, N.; Özgüven, M.; Kirpik, M. Seasonal and diurnal variability of essential oil and its components in Origanum onites L. grown in the ecological conditions of Çukurova. Grasas y Aceites 2005, 56, 254–258. [Google Scholar] [CrossRef]
- Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Complement. Altern. Med. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L.-H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Khaosaad, T.; Vierheilig, H.; Nell, M.; Zitterl-Eglseer, K.; Novák, J. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 2006, 16, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Tarraf, W.; Ruta, C.; Tagarelli, A.; De Cillis, F.; De Mastro, G. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Ind. Crops Prod. 2017, 102, 144–153. [Google Scholar] [CrossRef]
- Holmgren, N.H.; Mouterde, P.; Charpin, A.; Greuter, W. Nouvelle Flore du Liban et de la Syrie. Brittonia 1979, 31, 118. [Google Scholar] [CrossRef]
- Phillips, J.; Hayman, D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 3rd ed.; Concil of Europe: Strasbourg, France, 1997.
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography; Elsevier B.V.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Davies, N. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Waterman, P.G. Identification of essential oil components by gas chromatography/mass spectroscopy. Biochem. Syst. Ecol. 1996, 24, 594. [Google Scholar] [CrossRef]
- El Gendy, A.N.; Leonardi, M.; Mugnaini, L.; Bertelloni, F.; Ebani, V.V.; Nardoni, S.; Mancianti, F.; Hendawy, S.; Omer, E.; Pistelli, L. Chemical composition and antimicrobial activity of essential oil of wild and cultivated Origanum syriacum plants grown in Sinai, Egypt. Ind. Crops Prod. 2015, 67, 201–207. [Google Scholar] [CrossRef]
- Hassiotis, C.; Ntana, F.; Lazari, D.; Poulios, S.; Vlachonasios, K.; Lazari, D. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Ben Marzoug, H.N.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Khouja, M.L.; Bouajila, J.; Abderrabba, M. Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 2011, 16, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Boira, H.; Blanquer, A. Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. Syst. Ecol. 1998, 26, 811–822. [Google Scholar] [CrossRef]
- De Falco, E.; Mancini, E.; Roscigno, G.; Mignola, E.; Taglialatela-Scafati, O.; Senatore, F. Chemical Composition and Biological Activity of Essential Oils of Origanum vulgare L. subsp. vulgare L. under Different Growth Conditions. Molecules 2013, 18, 14948–14960. [Google Scholar] [PubMed]
- Ninou, E.G.; Paschalidis, K.A.; Mylonas, I.G.; Vasilikiotis, C.; Mavromatis, A.G. The effect of genetic variation and nitrogen fertilization on productive characters of Greek oregano. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 1–8. [Google Scholar] [CrossRef]
- Khalil, M.Y.; Kandil, M.A.M.; Swaefy Hend, M.F. Effect of three different compost levels on fennel and salvia growth character and their essential oils. Res. J. Agric. Biol. Sci. 2008, 4, 34–39. [Google Scholar]
- Zarandi, S.T.; Moghaddam, P.R.; Jahan, M. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of basil (Ocimum basilicum L.). Iran. J. F. Crop. Res. 2015, 12, 543–553. [Google Scholar]
- El-Sayed, A.; El-Leithy, A.; Swaefy, H.; Senossi, Z. Effect of bio and organic fertilizers on oil production and chemical composition of lemongrass plant. Annu. Res. Rev. Biol. 2018, 25, 1–15. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, L.-P.; Chen, B.-D.; Hao, Z.; Wang, J.-Y.; Huang, L.-Q.; Yang, G.; Cui, X.-M.; Yang, L.; Wu, Z.-X.; et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 2013, 23, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, E.E.; El-Ashry, S.M. Efficiency of slow release urea fertilizer on yield and essential oil production of lemon balm (Melissa officinalis L.) plant. Am. J. Agric. Environ. Sci. 2009, 5, 141–147. [Google Scholar]
- Dzida, K. Biological value and essential oil, content in sweet basil (Ocimum basilicum L.) depending on calcium fertilization and cultivar. Acta Sci. Pol. Hort. Cult. 2010, 9, 153–161. [Google Scholar]
- Nurzyńska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hort. Cult. 2013, 12, 3–16. [Google Scholar]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R.; Butkienė, R. Variation of essential oil composition of Thymus pulegioides in relation to soil chemistry. Ind. Crops Prod. 2017, 95, 422–433. [Google Scholar]
- Omer, E.A. Response of wild Egyptian oregano to nitrogen fertilization in a sandy soil. J. Plant Nutr. 1999, 22, 103–114. [Google Scholar] [CrossRef]
- Gharib, F.A.; Moussa, L.A.; Massoud, O.N. Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int. J. Agric. Biol. 2008, 10, 381–387. [Google Scholar]
- Bolechowski, A.; Moral, R.; Bustamante, M.; Bartual, J.; Paredes, C.; Perez-Murcia, M.; Carbonell-Barrachina, Á.A. Winery–distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Copetta, A.; Berta, G.; Lingua, G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.M.; Forsythe, J.A. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci. Hortic. 2012, 148, 206–214. [Google Scholar] [CrossRef]
- Husen, E. Screening of soil bacteria for plant growth promotion activities in vitro. Indones. J. Agric. Sci. 2016, 4, 27. [Google Scholar] [CrossRef]
- Novo, L.A.B.; Castro, P.M.L.; Alvarenga, P.; Da Silva, E.F. Plant growth–promoting rhizobacteria-assisted phytoremediation of mine soils. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 281–295. [Google Scholar]
Soil Type | A | B | C | D | E | F | |||
---|---|---|---|---|---|---|---|---|---|
NSNI | NSI | SNI | SI | ||||||
Total foliar biomass fresh weight (g/pot) | 31.4 | 303.4 | 115.4 | 8.1 | 553.4 | 11.4 | 20.1 | 4.2 | 4.9 |
Essential oil volume (mL) | 0.3 | 1.8 | 0.8 | 0.15 | 4.9 | 0.4 | 0.3 | 0.1 | 0.2 |
Yield (mL/g) | 0.1 | 0.6 | 0.7 | 1.9 | 0.9 | 3.5 | 1.5 | 2.4 | 4.1 |
NSNI | NSI | SNI | SI | |
---|---|---|---|---|
Shoot dry weight (g/plant) | 1.59 ± 1.56 a | 3.52 ± 1.89 b | 0.85 ± 0.37 a | 1.15 ± 0.85 a |
Root dry weight (g/plant) | 0.83 ± 0.82 a | 0.85 ± 0.46 a | 0.65 ± 0.28 a | 0.80 ± 0.59 a |
Mycorrhizal rate (%) | 17.03 ± 3.3 a | 51.1 ± 4.7 b | 0 a | 22.9 ± 4.6 a |
Soil type | A | B | C | D | E | F | |||
---|---|---|---|---|---|---|---|---|---|
EO composition (%) | NSNI | NSI | SNI | SI | |||||
α-pinene | nd | nd | nd | nd | nd | 1.47 ± 0.03 a | 1.56 ± 0.03 a | 0.77 ± 0.06 ab | nd |
camphene | nd | nd | 0.1 | nd | nd | 0.24 ± 0 a | 0.17 ± 0.002 a | nd | nd |
sabinene | nd | nd | nd | nd | nd | 0.32 ± 0.01 a | 0.30 ± 0.06 a | 0.20 ± 0 c | 0.13 ± 0 d |
β-pinene | nd | 0.5 | 0.2 | nd | nd | nd | nd | nd | nd |
1-octen-3-ol | nd | nd | 0.4 | nd | 0.4 | 0.20 ± 0.003 a | 0.30 ± 0.10 ab | 0.35 ± 0.04 b | 0.35 ± 0.04 b |
myrcene | nd | 1.3 | 1.4 | nd | 1.7 | 0.87 ± 0.002 a | 1.64 ± 0.38 b | 0.32 ± 0 c | 0.32 ± 0 c |
3-octanol | nd | nd | nd | nd | nd | 0.17 ± 0.002 a | nd | 0.23 ± 0 c | 0.23 ± 0 c |
α-phellandrene | nd | nd | nd | nd | nd | 0.43 ± 0.005 a | 0.70 ± 0.26 b | 0.24 ± 0 a | 0.24 ± 0 a |
α-terpinene | 2.5 | 1.5 | 2.7 | 2.4 | 2.5 | 2.10 ± 0.03 a | 2.27 ± 0.46 a | 1.13 ± 0.06 b | 0.76 ± 0 b |
p-cymene | 12.6 | 4.9 | 5.6 | 9.4 | 4.2 | 14.83 ± 0.47 a | 7.50 ± 1.35 b | 5.97 ± 0.06 c | 4.47 ± 0.12 d |
β-phellandrene | nd | 0.7 | 0.4 | nd | 1.2 | nd | nd | nd | nd |
trans-β-ocimene | nd | nd | 0.2 | nd | nd | nd | 0.2 ± 0a | nd | nd |
γ-terpinene | 11.4 | 6.5 | 4.7 | 10.6 | 6.4 | 3.83 ± 0.08 a | 6.04 ± 0.77 b | 1.56 ± 0.03 c | 1.56 ± 0.03 c |
cis-sabinene hydrate | nd | 0.6 | nd | nd | nd | 0.68 ± 0.06 ab | 0.55 ± 0.37 a | 0.80 ± 0 ab | 0.98 ± 0.10 a |
terpinolene | nd | nd | 0.3 | nd | nd | 0.11 ± 0.01 ab | 0.15 ± 0.04 b | 0.09 ± 0 a | 0.09 ± 0 a |
α-terpineol | nd | nd | nd | nd | nd | 0.26 ± 0.02 a | 0.08 ± 0.04 b | 0.10 ± 0 b | 0.10 ± 0 b |
borneol | nd | nd | 0.1 | nd | nd | nd | nd | nd | nd |
neo-allo-ocimene | nd | nd | nd | nd | nd | nd | nd | nd | nd |
terpinen-4-ol | nd | nd | nd | nd | nd | nd | 0.16 ± 0.10 | nd | nd |
thymol methyl ether | nd | nd | 0.2 | nd | nd | nd | nd | nd | nd |
thymoquinone | nd | 0.5 | 1.2 | nd | nd | 0.81 ± 0.07 a | 0.29 ± 0 b | 1.20 ± 0 c | 1.70 ± 0 d |
thymol | 54.3 | 46.5 | 47.8 | 56.3 | 51.2 | 54.48 ± 0.03 a | 37.80 ± 1.56 b | 48.03 ± 0.12 c | 43.83 ± 0.42 d |
carvacrol | 10.3 | 28.5 | 27.4 | 14.1 | 25.9 | 11.46 ± 0.17 a | 35.84 ± 1.68 b | 30.13 ± 0.06 c | 32.47 ± 0.71 c |
carvacryl acetate | nd | nd | 0.2 | nd | nd | nd | nd | nd | nd |
β-caryophyllene | 2.1 | 1.3 | 2.5 | 3.1 | 1.2 | 2.14 ± 0 a | 1.93 ± 0.12 b | 1.73 ± 0.06 ac | 1.85 ± 0.05 c |
α-bergamotene | nd | nd | nd | nd | nd | nd | 0.08 ± 0.01 | nd | nd |
α-humulene | nd | 0.7 | 0.6 | nd | nd | 0.19 ± 0 a | 0.34 ± 0.02 b | 0.06 ± 0 c | 0.06 ± 0 c |
germacrene D | nd | nd | 0.1 | nd | nd | 0.07 ± 0 a | 0.09 ± 0.01 b | 0.10 ± 0 b | 0.30 ± 0 c |
γ-cadinene | nd | 0.6 | 0.1 | nd | nd | nd | 0.08 ± 0b | 0.10 ± 0 c | 0.10 ± 0 c |
δ-cadinene | nd | nd | nd | nd | nd | nd | 0.06 ± 0b | 0.50 ± 0 c | 0.90 ± 0 d |
delta-cadinene | nd | nd | nd | nd | nd | nd | nd | nd | nd |
cis-alpha-bisabolene | nd | 0.3 | 0.2 | nd | nd | nd | nd | nd | nd |
caryophyllene oxide | nd | 0.7 | 0.9 | nd | nd | 0.19 ± 0 a | 0.10 ± 0 b | 0.20 ± 0 c | 0.30 ± 0 d |
humulene-1,2-epoxide | nd | 0.4 | 0.1 | nd | nd | nd | nd | nd | nd |
α-cadinol | nd | nd | 0.5 | nd | nd | nd | 0.17± 0.13 | nd | nd |
Total | 93.2 | 95.5 | 97.9 | 95.9 | 94.7 | 94.85 | 98.4 | 93.8 | 90.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Alam, I.; Zgheib, R.; Iriti, M.; El Beyrouthy, M.; Hattouny, P.; Verdin, A.; Fontaine, J.; Chahine, R.; Lounès-Hadj Sahraoui, A.; Makhlouf, H. Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods 2019, 8, 90. https://doi.org/10.3390/foods8030090
El-Alam I, Zgheib R, Iriti M, El Beyrouthy M, Hattouny P, Verdin A, Fontaine J, Chahine R, Lounès-Hadj Sahraoui A, Makhlouf H. Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods. 2019; 8(3):90. https://doi.org/10.3390/foods8030090
Chicago/Turabian StyleEl-Alam, Imad, Raviella Zgheib, Marcello Iriti, Marc El Beyrouthy, Paul Hattouny, Anthony Verdin, Joël Fontaine, Ramez Chahine, Anissa Lounès-Hadj Sahraoui, and Hassane Makhlouf. 2019. "Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type" Foods 8, no. 3: 90. https://doi.org/10.3390/foods8030090
APA StyleEl-Alam, I., Zgheib, R., Iriti, M., El Beyrouthy, M., Hattouny, P., Verdin, A., Fontaine, J., Chahine, R., Lounès-Hadj Sahraoui, A., & Makhlouf, H. (2019). Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods, 8(3), 90. https://doi.org/10.3390/foods8030090