Next Issue
Volume 6, September
Previous Issue
Volume 6, March
 
 

Instruments, Volume 6, Issue 2 (June 2022) – 3 articles

Cover Story (view full-size image): A new-generation magnetic spectrometer in space is required to address open frontiers in fundamental and cosmic ray physics. The design of the Antimatter Large Acceptance Detector in Orbit (ALADInO) instrument is based on advanced technologies, mainly a superconducting magnet coupled to precision tracking and time-of-flight systems and an inner 3D-imaging deep calorimeter, conceived to overcome the limitations of magnetic spectrometers in space. ALADInO is proposed for operations in L2 to enable observations with ground-breaking discovery potentials by precision measurements of electrons, positrons, and antiprotons up to 10 TeV, of nuclear cosmic rays up to PeV energies, and by the possible unambiguous detection and measurement of low-energy antideuteron and antihelium in cosmic rays. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
40 pages, 12080 KiB  
Article
Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)
by Oscar Adriani, Corrado Altomare, Giovanni Ambrosi, Philipp Azzarello, Felicia Carla Tiziana Barbato, Roberto Battiston, Bertrand Baudouy, Benedikt Bergmann, Eugenio Berti, Bruna Bertucci, Mirko Boezio, Valter Bonvicini, Sergio Bottai, Petr Burian, Mario Buscemi, Franck Cadoux, Valerio Calvelli, Donatella Campana, Jorge Casaus, Andrea Contin, Raffaello D’Alessandro, Magnus Dam, Ivan De Mitri, Francesco de Palma, Laurent Derome, Valeria Di Felice, Adriano Di Giovanni, Federico Donnini, Matteo Duranti, Emanuele Fiandrini, Francesco Maria Follega, Valerio Formato, Fabio Gargano, Francesca Giovacchini, Maura Graziani, Maria Ionica, Roberto Iuppa, Francesco Loparco, Jesús Marín, Samuele Mariotto, Giovanni Marsella, Gustavo Martínez, Manel Martínez, Matteo Martucci, Nicolò Masi, Mario Nicola Mazziotta, Matteo Mergé, Nicola Mori, Riccardo Munini, Riccardo Musenich, Lorenzo Mussolin, Francesco Nozzoli, Alberto Oliva, Giuseppe Osteria, Lorenzo Pacini, Mercedes Paniccia, Paolo Papini, Mark Pearce, Chiara Perrina, Piergiorgio Picozza, Cecilia Pizzolotto, Stanislav Pospíšil, Michele Pozzato, Lucio Quadrani, Ester Ricci, Javier Rico, Lucio Rossi, Enrico Junior Schioppa, Davide Serini, Petr Smolyanskiy, Alessandro Sotgiu, Roberta Sparvoli, Antonio Surdo, Nicola Tomassetti, Valerio Vagelli, Miguel Ángel Velasco, Xin Wu and Paolo Zucconadd Show full author list remove Hide full author list
Instruments 2022, 6(2), 19; https://doi.org/10.3390/instruments6020019 - 11 May 2022
Cited by 6 | Viewed by 4720
Abstract
A new generation magnetic spectrometer in space will open the opportunity to investigate the frontiers in direct high-energy cosmic ray measurements and to precisely measure the amount of the rare antimatter component in cosmic rays beyond the reach of current missions. We propose [...] Read more.
A new generation magnetic spectrometer in space will open the opportunity to investigate the frontiers in direct high-energy cosmic ray measurements and to precisely measure the amount of the rare antimatter component in cosmic rays beyond the reach of current missions. We propose the concept for an Antimatter Large Acceptance Detector In Orbit (ALADInO), designed to take over the legacy of direct measurements of cosmic rays in space performed by PAMELA and AMS-02. ALADInO features technological solutions conceived to overcome the current limitations of magnetic spectrometers in space with a layout that provides an acceptance larger than 10 m2 sr. A superconducting magnet coupled to precision tracking and time-of-flight systems can provide the required matter–antimatter separation capabilities and rigidity measurement resolution with a Maximum Detectable Rigidity better than 20 TV. The inner 3D-imaging deep calorimeter, designed to maximize the isotropic acceptance of particles, allows for the measurement of cosmic rays up to PeV energies with accurate energy resolution to precisely measure features in the cosmic ray spectra. The operations of ALADInO in the Sun–Earth L2 Lagrangian point for at least 5 years would enable unique revolutionary observations with groundbreaking discovery potentials in the field of astroparticle physics by precision measurements of electrons, positrons, and antiprotons up to 10 TeV and of nuclear cosmic rays up to PeV energies, and by the possible unambiguous detection and measurement of low-energy antideuteron and antihelium components in cosmic rays. Full article
(This article belongs to the Special Issue Space Instruments for Astroparticle Physics)
Show Figures

Graphical abstract

19 pages, 17047 KiB  
Article
A High-Density Polarized 3He Gas–Jet Target for Laser–Plasma Applications
by Pavel Fedorets, Chuan Zheng, Ralf Engels, Ilhan Engin, Herbert Feilbach, Ulrich Giesen, Harald Glückler, Chrysovalantis Kannis, Franz Klehr, Manfred Lennartz, Heinz Pfeifer, Johannes Pfennings, Claus Michael Schneider, Norbert Schnitzler, Helmut Soltner, Robert Swaczyna and Markus Büscher
Instruments 2022, 6(2), 18; https://doi.org/10.3390/instruments6020018 - 25 Apr 2022
Cited by 7 | Viewed by 2402
Abstract
A laser-driven spin-polarized 3He2+-beam source for nuclear–physics experiments and for the investigation of polarized nuclear fusion demands a high-density polarized 3He gas-jet target. Such a target requires a magnetic system providing a permanent homogeneous holding field for the nuclear [...] Read more.
A laser-driven spin-polarized 3He2+-beam source for nuclear–physics experiments and for the investigation of polarized nuclear fusion demands a high-density polarized 3He gas-jet target. Such a target requires a magnetic system providing a permanent homogeneous holding field for the nuclear spins plus a set of coils for adjusting the orientation of the polarization. Starting from a transport vessel at a maximum pressure of 3 bar, the helium gas is compressed for a short time and can be injected into a laser–interaction chamber through a non-magnetic opening valve and nozzle, thus forming jets with densities of about a few 1019 cm−3 and widths of about 1 mm. The target comprises a 3D adjustment system for precise positioning of the jet relative to the laser focus. An auxiliary gas system provides remote target operation and flushing of the gas lines with Ar gas, which helps to reduce polarization losses. The design of the target, its operation procedures and first experimental results are presented. Full article
Show Figures

Figure 1

12 pages, 3102 KiB  
Article
First Results from the Thomson Scattering Diagnostic on the Large Plasma Device
by Marietta Kaloyan, Sofiya Ghazaryan, Shreekrishna P. Tripathi, Walter Gekelman, Mychal J. Valle, Byonghoon Seo and Christoph Niemann
Instruments 2022, 6(2), 17; https://doi.org/10.3390/instruments6020017 - 7 Apr 2022
Cited by 6 | Viewed by 2635
Abstract
We present the first Thomson scattering measurements of electron density and temperature in the Large Plasma Device (LAPD), a 22 m long magnetized linear plasma device at the University of California Los Angeles (UCLA). The diagnostic spectrally resolves the Doppler shift imparted on [...] Read more.
We present the first Thomson scattering measurements of electron density and temperature in the Large Plasma Device (LAPD), a 22 m long magnetized linear plasma device at the University of California Los Angeles (UCLA). The diagnostic spectrally resolves the Doppler shift imparted on light from a frequency-doubled Nd:YAG laser when scattered by plasma electrons. A fiber array coupled to a triple-grating spectrometer is used to obtain high stray light rejection and discriminate the faint scattering signal from a much larger background. In the center of the plasma column, the measured electron density and temperature are about ne1.5×1013 cm3 and Te 3 eV, respectively, depending on the discharge parameters and in good agreement with Langmuir probe data. Optical design considerations to maximize photon count while minimizing alignment sensitivity are discussed in detail and compared to numerical calculations. Raman scattering off of a quartz crystal probe is used for an absolute irradiance calibration of the system. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop