Urban Heat Island and Mitigation Technologies in Asian and Australian Cities—Impact and Mitigation
1. Introduction
2. The Special Issue
3. Concluding Remarks and Research Directions
- (1)
- Automate the entire urban modelling process. Different kinds of special or external urban features should be considered.
- (2)
- A more holistic study of the relationship between the reduction of temperature in the urban environment and its consequences for the reduction of emissions should be considered.
- (3)
- A more accurate depiction of homogeneous urban areas is needed in order to decrease the variability of the land surface temperature trends.
Funding
Conflicts of Interest
References
- Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166, 154–164. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Webster, C. Urban environments and human health: Current trends and future directions. Curr. Opin. Environ. Sustain. 2017, 25, 33–44. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tham, K.W.; Lee, S.E.; Santamouris, M.; Sekhar, C.; Cheong, D.K.W. Anthropogenic heat reduction through retrofitting strategies of campus buildings. Energy Build. 2017, 152, 813–822. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Koronakis, L.; Georgakis, C.; Argiriou, A.; Asimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on housing energy comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Santamouris, M. Heat island research in Europe—The state of the art. Adv. Build. Energy Res. 2007, 1, 123–150. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512–513, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Kotharkar, R.; Ramesh, A.; Bagade, A. Urban Heat Island studies in South Asia: A critical review. Urban Clim. 2018, 24, 1011–1026. [Google Scholar] [CrossRef]
- Doan, Q.V.; Kusaka, H. Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City’s metropolitan area, over the past 20 years. Int. J. Climatol. 2016, 36, 3633–3650. [Google Scholar] [CrossRef]
- Bui, V.P.; Liu, H.Z.; Low, Y.Y.; Tang, T.; Zhu, Q.; Shah, K.W.; Shidoji, E.; Lim, Y.M.; Koh, W.S. Evaluation of building glass performance metrics for the tropical climate. Energy Build. 2017, 157, 195–203. [Google Scholar] [CrossRef]
- Jonsson, P. Vegetation as an urban climate control in the subtropical city of Gaborone. Botswana Int. J. Climatol. 2004, 24, 1307–1322. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Caob, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast US. Urban Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- Giridharana, R.; Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustain. Cities Soc. 2018, 40, 677–687. [Google Scholar] [CrossRef]
- Ichinose, T.; Hanaki, K.; Matsuo, T. Analyses on geographical distribution of urban anthropogenic heat based on very precise geographical information. Environ. Eng. Res. 1994, 31, 263–273. (In Japanese) [Google Scholar]
- Chen, F.; Tewari, M.; Miao, S.; Liu, Y.; Warner, T.; Kusaka, H.; Bao, J. Developing an integrated urban modeling system in WRF: Current status and future plan. In Proceedings of the 8th WRF User’s Workshop, Boulder, CO, USA, 11–15 June 2007; pp. 11–15. [Google Scholar]
- Narumi, D.; Shimoda, Y.; Kondo, A.; Minoru, M. Effect of anthropogenic wasteheat upon urban thermal environment using mesoscale meteorologicalmodel. In Proceedings of the Fifth International Conference on Urban Climate, Lodz, Poland, 1–5 September 2003. [Google Scholar]
- Kondo, H.; Kikegawa, Y. Temperature variation in the urban canopy withanthropogenic energy use. Pure Appl. Geophys. 2003, 160, 317–324. [Google Scholar] [CrossRef]
- Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Hirano, Y.; Yoshikado, H. A study of horizontal temperature distribution within urban canopy layer at the Tokyo central area. In Proceedings of the Fifth International Conference on Urban Climate, Lodz, Poland, 1–5 September 2003. [Google Scholar]
- Kikegawa, Y.; Genchi, Y.; Yoshikado, H.; Kondo, H. Development of a numerical simulation system toward comprehensiveassessments of urban warming countermeasures including their impactsupon the urban buildings’ energy-demands. Appl. Energy 2003, 76, 449–466. [Google Scholar] [CrossRef]
- Burkart, K.; Khan, M.M.H.; Schneider, A.; Breitner, S.; Langner, M.; Krämer, A.; Endlicher, W. The effects of season and meteorology on human mortality in tropical climates: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 393–421. [Google Scholar] [CrossRef] [PubMed]
- Goggins, W.B.; Chan, E.Y.; Ng, E.; Chao, R.; Liang, C. Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [PubMed]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Chen, H.; Ooka, R.; Huang, H.; Tsuchiya, T. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Build. Environ. 2009, 44, 2290–2299. [Google Scholar] [CrossRef]
- Georgakis, C.; Zoras, S.; Santamouris, M. Studying the effect of “cool” coatings in street urban canyons and its potential as a heat island mitigation technique. Sustain. Cities Soc. 2014, 13, 20–31. [Google Scholar] [CrossRef]
- Yang, J.; Kumar, D.I.M.; Pyrgou, A.; Chong, A.; Santamouris, M.; Kolokotsa, D.; Lee, S.E. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 2018, 173, 597–609. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.D.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Boehme, P.; Berger, M.; Massier, T. Estimating the building based energy consumption as an anthropogenic contribution to urban heat islands. Sustain. Cities Soc. 2015, 19, 373–384. [Google Scholar] [CrossRef]
- David, J.S.; Lu, L. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 2004, 38, 2737–2748. [Google Scholar]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Review of European ventilation strategies to meet the cooling heating demands of nearly zero energy buildings (nZEB)/Passivhaus Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Yang, J.; Pantazaras, A.; Lee, S.E.; Santamouris, M. Retrofitting solutions for two different occupancy levels of educational buildings in tropics. Int. J. Sustain. Energy 2016, 37, 81–95. [Google Scholar] [CrossRef]
- Lu, T.; Lü, X.; Viljanen, M. A Novel and Dynamic Demand-Controlled Ventilation Strategy for CO2 Control and Energy Saving in Buildings. Energy Build. 2011, 43, 2499–2508. [Google Scholar] [CrossRef]
- Bruce, T.; Zuo, J.; Rameezdeen, R.; Pullen, S. Factors influencing the retrofitting of existing office buildings using Adelaide, South Australia as a case study. Struct. Surv. 2015, 33, 150–166. [Google Scholar] [CrossRef]
- Rehan, R.M. Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC J. 2016, 12, 191–204. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M. Advances in the Development of Cool Materials for the Built Environment, Advances in the Development of Cool Materials for the Built Environment; Bentham Science Publishers: Alian, Sharjah, 2013. [Google Scholar]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Castiglia Feitosa, R.; Wilkinson, S.J. Attenuating heat stress through green roof and green wall retrofit. Build. Environ. 2018, 140, 11–22. [Google Scholar] [CrossRef]
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Liu, X. An experimental evaluation of the living wall system in hot humid climate. Energy Build. 2013, 61, 298–307. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.E.; To, P.H.; Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar] [CrossRef] [Green Version]
- Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Santamouris, M. Urban Heat Island and Mitigation Technologies in Asian and Australian Cities—Impact and Mitigation. Urban Sci. 2018, 2, 74. https://doi.org/10.3390/urbansci2030074
Yang J, Santamouris M. Urban Heat Island and Mitigation Technologies in Asian and Australian Cities—Impact and Mitigation. Urban Science. 2018; 2(3):74. https://doi.org/10.3390/urbansci2030074
Chicago/Turabian StyleYang, Junjing, and Mat Santamouris. 2018. "Urban Heat Island and Mitigation Technologies in Asian and Australian Cities—Impact and Mitigation" Urban Science 2, no. 3: 74. https://doi.org/10.3390/urbansci2030074
APA StyleYang, J., & Santamouris, M. (2018). Urban Heat Island and Mitigation Technologies in Asian and Australian Cities—Impact and Mitigation. Urban Science, 2(3), 74. https://doi.org/10.3390/urbansci2030074