Next Article in Journal
A New Approach to Compare the Strong Convergence of the Milstein Scheme with the Approximate Coupling Method
Next Article in Special Issue
Stability Analysis and Computational Interpretation of an Effective Semi Analytical Scheme for Fractional Order Non-Linear Partial Differential Equations
Previous Article in Journal
Analytical and Numerical Solutions for a Kind of High-Dimensional Fractional Order Equation
Previous Article in Special Issue
Neutrosophic Double Controlled Metric Spaces and Related Results with Application
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Global Well-Posedness of Rotating Magnetohydrodynamics Equations with Fractional Dissipation

by
Muhammad Zainul Abidin
,
Muhammad Marwan
*,
Humaira Kalsoom
* and
Omer Abdalrhman Omer
College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2022, 6(6), 340; https://doi.org/10.3390/fractalfract6060340
Submission received: 11 April 2022 / Revised: 16 June 2022 / Accepted: 16 June 2022 / Published: 17 June 2022
(This article belongs to the Special Issue New Trends on Fixed Point Theory)

Abstract

:
This work considers the three-dimensional incompressible rotating magnetohydrodynamics equation spaces with fractional dissipation ( Δ ) for 1 2 < 1 . Furthermore, we use the Littlewood–Paley decomposition and frequency localization techniques to establish the global well-posedness of fractional rotating magnetohydrodynamics equations in a more generalized Besov spaces characterized by the time evolution semigroup related to the generalized linear Stokes–Coriolis operator.

1. Introduction

In this paper, we study the following three-dimensional fractional rotating magnetohydrodynamics (MHD) equations:
u t + ( u · ) u + μ ( Δ ) u + e 3 × u + P = ( B · ) B in 3 × + , B t + ( u · ) B + γ ( Δ ) B = ( B · ) u in 3 × + , div u = 0 , div B = 0 in 3 × + , u t = 0 = u 0 , B t = 0 = B 0 in 3 ,
where u is the incompressible velocity field, denotes the speed of rotation around a vertical unit vector e 3 = ( 0 , 0 , 1 ) , P = p + 1 2 | B | 2 in which B is the magnetic field and p is pressure, and μ and γ represent the viscosity coefficient and diffusion of the magnetic field, respectively. For convenience, we use μ = γ = 1 .
For = 1 , Equation (1) explains why the Earth has a nonzero large-scale magnetic field, the polarity of which appears to change over several hundred centuries.
When = 0 , Equation (1) becomes the following fractional MHD equations:
u t + ( u · ) u + ( Δ ) u + P = ( B · ) B in 3 × + , B t + ( u · ) B + ( Δ ) B = ( B · ) u in 3 × + , div u = 0 , div B = 0 in 3 × + , u t = 0 = u 0 , B t = 0 = B 0 in 3 .
Equation (2) studies the magnetic characteristics of electrically conducted fluids. Since Duvaut and Lions [1] developed a globally Leray–Hopf weak solution and a locally strong solution to the 3D inviscid MHD equations, the MHD equations remain a challenging open problem in terms of determining whether there is always a globally smooth solution for smooth initial data. Sermange and Temam further investigated the properties and conditions of these solutions [2]. Melo and Santos [3] proved the existence and decay rates of a unique global asymptotic solution for Equation (2) in Sobolev–Gevrey spaces, where Zhao and Li [4] obtained the time decay rate of weak solutions to (2) in R 2 . Liu et al. [5] obtained the existence of attractors for (2) with damping and overcame the main difficulty in dealing with the nonlinear term. For the detailed study related to the existence of a solution for fractional MHD equations, we refer the readers to [6,7,8,9,10].
When B = 0 , 0 and = 1 , Equation (1) corresponds to the following Navier–Stokes equations with Coriolis force:
u t + ( u · ) u Δ u + e 3 × u + P = 0 in 3 × + , div u = 0 , div B = 0 in 3 × + , u t = 0 = u 0 , in 3 .
Equation (3) has received considerable attention due to its importance in geophysical flows. The existence of a solution for Equation (3) starts with the work of Babin et al. [11,12,13], who established the global existence and regularity of solutions for Equation (3) with periodic initial velocity, when the rotation speed is sufficiently large. Under the smallness condition of initial data u 0 , Giga et al. [14] proved the uniform mild solution in F M 0 1 ( 3 ) . The uniform global well-posedness was established by Hieber and Shibata [15] in H 1 2 ( 3 ) . More recently, for the fractional case 1 2 < 1 , Wang and Wu [16] obtained the global well-posedness for small initial data belonging to Lei–Lin spaces X s .
When B = 0 , = 0 and = 1 , Equation (1) becomes the following classical Navier–Stokes equations:
u t + ( u · ) u Δ u + P = 0 in 3 × + , div u = 0 , div B = 0 in 3 × + , u t = 0 = u 0 , in 3 .
Equation (4) is one of the most fundamental mathematical model in fluid dynamics. Numerous publications have addressed the global well-posedness of Equation (4) in critical spaces. This work originates with the work of Fujita and Kato [17], who established the existence of a strong solution to the Cauchy problem of Equation (4) under the smallness condition of u 0 in H 1 + n 2 ( n ) . In [18], they rewrote Equation (4) to an integral form and obtained the local well-posedness in some Sobolev and Lebesgue spaces. These results led to an intensive study of well-posedness for Navier–Stokes equations in various function spaces in recent years, such as [19,20,21,22]. As far as the fractional case is concerned, many authors have studied the existence of solutions. For reference we refer the readers to [23,24,25].
This paper considers the global well-posedness of Equation (1) in some function space characterized by the time evolution semigroup T , ( t ) . We obtain the global well-posedness of Equation (1) in scaling subcritical spaces X s , p , π ( 3 ) for 1 2 < 1 , 2 π + 3 p < s + ( 2 1 ) and the critical spaces X p ( 3 ) for 7 8 < 5 4 , 3 2 1 < p 4 . The following are the main results of the paper.
Theorem 1.
Let , s , p , and π satisfy
1 2 < 1 , 3 3 < s < 3 ( 15 4 ) 2 ( 9 + 8 ) , 1 3 + s 9 1 p < min 1 4 + 5 16 s 8 , 2 1 3 + s 3 , max 0 , 2 p 1 2 1 + 3 p s < 1 π < min 1 2 , 1 1 2 1 + 3 p s , 1 2 + 1 8 3 2 p + s 4 .
Then, for u 0 , B 0 X s , p , π 3 3 H ˙ s 3 3 with div u 0 = 0 , div B 0 = 0 and
u 0 X s , p , π + B 0 X s , p , π | | 1 1 2 1 + 3 p s 1 π ,
Equation (1) has a unique global solution
u , B L π 0 , ; W ˙ s , p 3 3 C [ 0 , ) ; H ˙ s 3 3
such that div u = 0 and div B = 0 .
Theorem 2.
Let , s , p satisfy
7 8 < 5 4 , 0 s < 2 1 , max 1 4 , s 3 1 p < 2 1 3
Then, for u 0 , B 0 X p 3 3 H ˙ s 3 3 with div u 0 = 0 , B 0 = 0 and
u 0 X p + B 0 X p δ ,
Equation (1) has a unique global solution
u , B C [ 0 , ) ; H ˙ s 3 3
such that
sup t > 0 t 1 2 1 3 p u ( t ) L p + sup t > 0 t 1 2 1 3 p B ( t ) L p 2 u 0 X p + B 0 X p ,
div u = 0 and div B = 0 .
Throughout this paper we write f g to denote f K g , where K is positive constant.

2. Preliminaries

This section gives a brief review of important definitions and useful lemmas. By substituting B = 0 into Equation (1), we get the fractional Navier–Stokes equations with Coriolis force. We need to define an equivalent fractional Stokes–Coriolis semigroup T , . Therefore, we consider the following fractional linear problem:
u t + ( Δ ) u + e 3 × u + p = 0 in 3 × + div u = 0 in 3 × + u t = 0 = u 0 in 3
The solution of Equation (5) can be obtained using the fractional Stokes–Coriolis semigroup T , , which has an explicit representation of the following form [15,16]:
T , ( t ) u = F 1 cos η 3 | η | t I + sin η 3 | η | t R ( η ) * e ( Δ ) t u ,
where I denotes the unit matrix in M 3 × 3 ( ) and N ( η ) denotes the skew-symmetric matrix given by
R ( η ) : = 1 | η | 0 η 3 η 2 η 3 0 η 1 η 2 η 1 0 , η 3 { 0 } .
Therefore, we can write the semigroup as
A , ( t ) = T , ( t ) 0 0 S ( t ) ,
where S ( t ) : = e ( Δ ) t = F 1 e | η | 2 t . Using the semigroup A , ( t ) , we can transform Equation (1) into the following integral form:
u B = A , ( t ) u 0 B 0 0 t A , ( t y ) div ( u u B B ) div ( u B B u ) ( y ) d y ,
where = I ( Δ ) 1 div is the Leray–Hopf projection.
If ( u , B ) satisfies Equation (7) in a suitable function space, then ( u , B ) is a solution to Equation (1).
Now, we give the definitions of the function spaces X s , p , π ( 3 ) and X p ( 3 ) of Besov type, which are generated by the linear semigroup T , . The set of all tempered distributions is denoted by S ( 3 ) . Let < s , < and the function spaces X s , p , π ( 3 ) and X p ( 3 ) are defined as
X s , p , π ( 3 ) = { u S | u X s , p , π < } ,
u X s , p , π = T ( t ) u L t π ( 0 , ; W ˙ x s , p ( 3 ) )
and
X p ( 3 ) = { u S | u X p < } ,
u X p = sup t > 0 t 1 2 1 3 p T ( t ) u L p .
When = 0 , T , ( t ) becomes T 0 , ( t ) u = e t ( Δ ) ( t ) u . By [26], for 1 π < , we have
u X 0 s , p , π = t 1 π ( Δ ) s 2 e t ( Δ ) u L p L π ( 0 , ; d t t ) ( Δ ) s 2 u B ˙ p , π 2 π = u B ˙ p , π s 2 π .
For 3 < p , we see that
u X 0 p = t 1 2 ( 1 3 p ) e t ( Δ ) u L p L π ( 0 , ; d t t ) u B ˙ p , π 1 + 3 p .
Hence, the function spaces and X s , p , π ( 3 ) and X p ( 3 ) can be considered as a generalization of the Besov spaces B ˙ p , π s 2 π and B ˙ p , π 1 + 3 p , respectively.
Next, we recall the Littlewood–Paley decomposition tool. Let S ( 3 ) be a Schwartz space and let ψ S ( 3 ) satisfy the following conditions:
0 ψ ^ 0 ( η ) 1 for all η 3 ,
supp ψ ^ 0 : = η 3 : 1 2 | η | 2
and
j Z ψ ^ 0 2 j η = 1 for all η 3 { 0 } ,
where ψ j ( x ) : = 2 3 j ψ 0 ( 2 j x ) and Δ j u : = ψ j * u for u S ( 3 ) and j Z .
Now, we define the homogeneous Besov space B ˙ p , q s ( 3 ) . For s and p , q [ 1 , ]
B ˙ p , q s 3 : = u S 3 u B ˙ p , q s < + , u B ˙ p , q s : = j Z 2 j s q Δ j u L p q 1 q .
Further, we write the operator G as
G ± ( t ) u ( x ) : = e ± i t D 3 | D | u ( x ) : = 3 e i x · η 2 ± i t η 3 | η | u ^ ( η ) d η for x 3 and t .
So the operator T , becomes
T , ( t ) u = 1 2 G + ( t ) e t ( Δ ) ( I + J ) u + 1 2 G ( t ) e t ( Δ ) ( I J ) u ,
where J is the singular integral operator matrix defined as
J : = 0 R 3 R 2 R 3 0 R 1 R 2 R 1 0 ,
where R k for k = 1 , 2 , 3 is the Riesz transforms in 3 . Next, we give the following lemmas as important tools to prove our main results.
Lemma 1
([26]). Let u L r n and 1 r p . Then, for , β > 0 we have
e t ( Δ ) u L p t n 2 1 r 1 p u L r ,
and
( Δ ) β 2 e t ( Δ ) u L p t β 2 n 2 1 r 1 p u L r .
Lemma 2
([27]). Let 1 p , q and < s 0 s 1 < . Then,
e t ( Δ ) u B ˙ p , q s 1 t 1 2 s 1 s 0 u B ˙ p , q s 0 .
Lemma 3
([28]). Let 1 p 0 p 1 , 1 q and < s 0 s 1 < . Then,
e t ( Δ ) u B ˙ p 1 , q s 1 t 1 2 s 1 s 0 3 2 1 p 0 1 p 1 u B ˙ p 0 , A s 0 .
Lemma 4 is used to obtain the dispersive estimate for the operator G ± ( y ) .
Lemma 4
([29]). Let y , s , 2 p and 1 q . Then,
G ± ( y ) u B ˙ p , q s ( 1 + | y | ) 1 2 p u B ˙ p , q s + 3 ( 1 2 )
where 1 p + 1 p = 1 .
Lemma 5.
Let 1 p 0 2 p 1 , 1 q . and < s 0 s 1 < . Then,
T , ( t ) u B ˙ p 1 , q s 1 t 1 2 s 1 s 0 3 2 a 1 p 0 1 p 1 u B ˙ p 0 , q s 0 .
Proof. 
According to Plancherel’s theorem, R is bounded in L 2 3 , and using the semigroup estimate e t ( Δ ) in L p 0 L 2 and Lemmas 3, 4 we have
e t 2 ( Δ ) G ± ( t ) e t 2 ( Δ ) ( I ± R ) u B ˙ p 1 , q s 1 t 1 2 s 1 s 0 3 2 1 2 1 p 1 G ± ( t ) e t 2 ( Δ ) u B ˙ 2 , q s 0 t 1 2 a s 1 s 0 3 2 1 2 1 p 1 e t 2 ( Δ ) u B ˙ 2 , q s 0 t 1 2 s 1 s 0 3 2 1 p 0 1 p 1 u B ˙ p 0 , q s 0 .
Lemma 6.
Let 1 < p 0 2 p 1 < and 0 s < . Then,
x β T , ( t ) u H s t 1 2 ( s + | β | ) 3 2 a 1 p 0 1 2 u L p 0 ,
and
x β T , ( t ) u L p 1 t β 2 3 2 1 p 0 1 p 1 u L p 0 .
Proof. 
By using Lemma 4 and the embeddings
L p 3 B ˙ p , 2 0 3 ,
B ˙ p , 2 0 3 L p 3 , for p ( 1 , 2 ]
and
H ˙ s 3 = B ˙ 2 , 2 s , for p [ 2 , ) ,
we can easily obtain the result. □
Lemma 7
([27]). Let t > 0 , and s . Then,
T , ( t ) u H ˙ s u H ˙ s .
Lemma 8.
Let , p , q and π satisfy 1 2 < < 5 4 , 2 < p < 3 2 and 1 1 p 1 q < 2 1 3 + 1 p , max 0 , 1 1 2 3 2 1 q 1 p 1 2 p < 1 π min 1 2 , 1 1 2 3 2 1 q 1 p . Then,
0 t T ( t y ) u ( y ) d y L π 0 , ; L p | | 1 1 2 a 3 2 a 1 q 1 p 1 π u L π 2 0 , ; L q
for u , B L π 2 0 , ; L q 3 .
Proof. 
By considering the boundedness of in L q 3 , using the embedding B ˙ p , 2 0 3 L p 3 for p [ 2 , ) , applying Lemmas 1, 3, and 4, we get
0 t T ( t y ) u ( y ) d y L π 0 , ; L p 0 t k ( t y ) u ( y ) L q d y L t π ( 0 , )
where
k ( t ) : = { 1 + | | t } 1 2 p t 3 2 a 1 q 1 p 1 2 a
If 1 π < 1 1 2 3 2 1 q 1 p , we have k L | | 1 1 2 3 2 1 q 1 p 1 π . By using Young’s inequality, 1 π = 1 π + 2 π 1 , we obtain inequality (10). □
In order to prove the bilinear term in Equation (7), the following lemma is significant.
Lemma 9
([29]). Let p , q , and s satisfy the conditions s 3 < 1 p < 1 2 + s 6 , 1 q = 2 p s 3 and 0 s < 3 . Then,
u v W ˙ s , q u W ˙ s , p v W ˙ s , p ,
where u , v W ˙ s , p 3 .
Proof of Theorem 1
Let us define · Z 1 : = · L π 0 , ; W s , p 3 3 . It is easy to get
A , ( t ) u 0 B 0 Z 1 T , ( t ) u 0 Z 1 + S ( t ) B 0 Z 1 = u 0 X s , p , π + B 0 X s , p , π .
Next, we write a complete metric space ( X 1 , d 1 ) with mapping J as:
X 1 : = u , B L π 0 , ; W ˙ s , p 3 3 u Z 1 2 u 0 X s , p , π , B Z 1 2 B 0 X s , p , π , d 1 u B , v b : = u v Z 1 + B b Z 1 , J u B ( t ) : = A , u 0 B 0 ( t ) B u B , u B ,
where
B u B , u B = 0 t A , ( t y ) div ( u u B B ) div ( u B B u ) y d y .
We can write
J u B ( t ) Z 1 A , u 0 B 0 ( t ) Z 1 + B u B , u B Z 1 = I 1 + I 2 .
I 1 is estimated in inequality (11). To estimate I 2 , let 1 q = 2 p s 3 , using Lemmas 7, 8, and Holder’s inequality, it is easy to obtain that
0 t T , ( t y ) div ( u u ) ( y ) d y Z 1 | | 1 1 2 1 + 3 p s 1 π u Z 1 2 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π 2 .
Similarly, we have
0 t T , ( t y ) div ( B B ) ( y ) d y Z 1 4 | | 1 1 2 1 + 3 p s 1 π B 0 X s , p , π 2 ,
0 t S ( t y ) div ( u B ) ( y ) d y Z 1 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π B 0 X s , p , π ,
and
0 t S ( t y ) div ( B u ) ( y ) d y Z 1 4 | | 1 1 2 1 + 3 p s 1 π B 0 X s , p , π u 0 X s , p , π .
So from Equation (13), we have
J u B ( t ) Z 1 u 0 X s , p , π + B 0 X s , p , π + 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π 2 + 4 | | 1 1 2 1 + 3 p s 1 π B 0 X s , p , π 2 + 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π B 0 X s , p , π + 4 | | 1 1 2 1 + 3 p s 1 π B 0 X s , p , π u 0 X s , p , π = u 0 X s , p , π 1 + 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π + B 0 X s , p , π + B 0 X s , p , π 1 + 4 | | 1 1 2 1 + 3 p s 1 π B 0 X s , p , π + u 0 X s , p , π .
We can also write
J u B ( t ) J v b ( t ) Z 1 = B u B , u v B b + B u v B b , u B Z 1 | | 1 1 2 1 + 3 p s 1 π u Z 1 + v Z 1 + B Z 1 + b Z 1 u v Z 1 + B b Z 1 4 | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π + B 0 X s , p , π u v Z 1 + B b Z 1 .
Let us consider that u 0 , B 0 X s , p , π 3 3 H ˙ s 3 3 satisfies
sup { 0 } | | 1 1 2 1 + 3 p s 1 π u 0 X s , p , π + u 0 X s , p , π min 1 8 K 1 , 1 4 K 2 .
Then, in the view of Equations (18) and (19), for all u B , v b X 1 we can obtain that
J u B Z 1 2 u 0 X s , p , π + B 0 X s , p , π ,
J u B J v b Z 1 1 2 u v Z 1 + B b Z 1 .
Therefore, by using Banach’s contraction principle, there exists a unique solution u , B X 1 satisfying (7). Next, we need to show that the solution u , B X 1 also belongs to C ( [ 0 , ) ; H s ( R 3 ) 3 ) .
u B ( t ) H ˙ s A , u 0 B 0 ( t ) H ˙ s + B u B , u B H ˙ s = I 3 + I 4 .
To obtain I 1 , we have I 3 u 0 H ˙ s + B 0 H ˙ s . For I 4 , let 1 q = 2 p 3 s with q ( 1 , 2 ] , applying Lemmas 6, 9 and Holder’s inequality, we have the following
I 4 1 ( t y ) 3 p s 2 3 4 + 1 2 u u L p d y + 1 ( t y ) 3 p s 2 3 4 + 1 2 B B L p d y + 1 ( t y ) 3 p s 2 3 4 + 1 2 u B L p d y + 1 ( t y ) 3 p s 2 3 4 + 1 2 B u L p d y 0 t 1 ( t y ) 3 p s 2 3 4 + 1 2 π 2 d y 1 π 2 u L π 0 , ; W ˙ s , p 2 + 0 t 1 ( t y ) 3 p s 2 3 4 + 1 2 π 2 d y 1 π 2 u L π 0 , ; W ˙ s , p 2 + 0 t 1 ( t y ) 3 p s 2 3 4 + 1 2 π 2 d y 1 π 2 u L π 0 , ; W ˙ s , p 2 B L π 0 , ; W ˙ s , p 2 + 0 t 1 ( t y ) 3 p s 2 3 4 + 1 2 π 2 d y 1 π 2 B L π 0 , ; W ˙ s , p 2 u L π 0 , ; W ˙ s , p 2 .
Since 1 π < 1 2 + 1 8 + s 4 3 2 p , the time integral on the right hand side in inequality (21) converges and
0 t 1 ( t y ) 3 p s 2 3 4 + 1 2 π 2 d y 1 π 2 t 2 1 2 + 1 8 + s 4 3 2 p 1 π .
This implies that for all t 0 , u , B H ˙ s ( 3 ) 3 . Similarly, it is easy to get that u , B C ( [ 0 , ) ; H ˙ s ( 3 ) 3 ) , which finishes the proof of Theorem 1. □
Remark 1.
By substituting B = 0 and = 1 in Theorem 1, we get Theorem 1.3, [30].
Proof of Theorem 2
Let us define
u Y 2 : = sup t > 0 u ( t ) H ˙ s and u Z 2 : = sup t > 0 t 1 2 1 3 p u ( t ) L p .
It is easy to get
A , ( t ) u 0 B 0 Y 1 T , ( t ) u 0 Y 1 + S ( t ) B 0 Y 1 u 0 H ˙ s + B 0 H ˙ s
and
A , ( t ) u 0 B 0 Z 2 T , ( t ) u 0 Z 2 + S ( t ) B 0 Z 2 = u 0 X p + B 0 X p .
Next, we write a complete metric space ( X 2 , d 2 ) with mapping J as:
X 2 : = u , B C [ 0 , ) ; H ˙ s 3 3
such that u Y 1 2 u 0 H ˙ s , B Y 1 2 B 0 H ˙ s , u Z 2 2 u 0 X p , B Z 2 2 B 0 X p ,
d 1 u B , v b : = u v Y 1 + B b Y 1 , J u B ( t ) : = A , u 0 B 0 ( t ) B u B , u B ,
where the bilinear term B u B , u B is defined in Equation (12). We can write
J u B ( t ) Y 1 A , u 0 B 0 ( t ) Y 1 + B u B , u B Y 1 = I 5 + I 6 .
I 5 is estimated in inequality (23). For I 6 , let 1 < r 2 and set 1 r = 1 s + 1 p , where 1 s = 1 2 s 3 with 2 s < 6 5 4 . Then, by Lemma 6, the boundedness of in L 2 ( n ) , and Holder’s inequality, we have
B u B , u B H ˙ s 0 t T ( t y ) [ u ( y ) u ( y ) ] H ˙ s d y + 0 t T ( t y ) [ B ( y ) B ( y ) ] H ˙ s d y + 0 t T ( t y ) [ u ( y ) B ( y ) ] H ˙ s d y + 0 t T ( t y ) [ B ( y ) u ( y ) ] H ˙ s d y 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) u ( y ) L r d y + 0 t 1 ( t y ) 1 2 + 3 2 p B ( y ) B ( y ) L r d y + 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) B ( y ) L r d y + 0 t 1 ( t y ) 1 2 + 3 2 p B ( y ) u ( y ) L r d y 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) L s u ( y ) L p d y + 0 t 1 ( t y ) 1 2 + 3 2 p B ( y ) L s B ( y ) L p d y + 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) L s B ( y ) L p d y + 0 t 1 ( t y ) 1 2 + 3 2 p B ( y ) L s u ( y ) L p d y .
Using · Y 1 , · Z 2 defined in Equation (22) with 1 2 1 3 p < 1 and H ˙ s 3 L s 3 , we have
B u B , u B H ˙ s u Y 1 u Z 2 0 t 1 ( t y ) 1 2 + 3 2 p y 1 2 1 3 p d y + B Y 1 B Z 2 0 t 1 ( t y ) 1 2 + 3 2 p y 1 2 1 3 p d y + u Y 1 B Z 2 0 t 1 ( t y ) 1 2 + 3 2 p y 1 2 1 3 p d y + C B Y 1 u Z 2 0 t 1 ( t y ) 1 2 + 3 2 p y 1 2 1 3 p d y u Y 1 u Z 2 + B Y 1 B Z 2 + u Y 1 B Z 2 + B Y 1 u Z 2 .
Therefore, from Equation (25), we have
J u B ( t ) Y 1 u 0 H ˙ s + B 0 H ˙ s + 4 u 0 H ˙ s u 0 X p + B 0 H ˙ s B 0 X p + u 0 H ˙ s B 0 X p + B 0 H ˙ s u 0 X p u 0 H ˙ s + B 0 H ˙ s 1 + 4 u 0 X p + B 0 X p .
Similarly, we estimate the following
J u B ( t ) Z 2 A , u 0 B 0 ( t ) Z 2 + B u B , u B Z 2 = I 7 + I 8 .
I 7 is estimated in inequality (24) and we have to estimate I 8 . By using Lemma 6, Holder’s inequality, and the definition of Z 2 defined in (22), we have
t 1 2 1 3 p B u B , u B L p t 1 2 1 3 p 0 t T ( t y ) [ u ( y ) u ( y ) ] L p d y + 0 t T ( t y ) [ B ( y ) B ( y ) ] L p d y + t 1 2 1 3 p 0 t T ( t y ) [ u ( y ) B ( y ) ] L p d y + 0 t T ( t y ) [ B ( y ) u ( y ) ] L p d y t 1 2 1 3 p 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) v ( y ) L p 2 d y + 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) v ( y ) L p 2 d y + t 1 2 1 3 p 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) v ( y ) L p 2 d y + 0 t 1 ( t y ) 1 2 + 3 2 p u ( y ) v ( y ) L p 2 d y t 1 2 1 3 p u Z 2 u Z 2 + B Z 2 B Z 2 + 2 u Z 2 B Z 2 0 t 1 ( t y ) 1 2 + 3 2 p y 1 1 3 p d y u Z 2 u Z 2 + B Z 2 B Z 2 + 2 u Z 2 B Z 2 .
Here, we notice that 1 2 + 3 2 p < 1 as p > 3 2 1 . As a result, from Equation (27), we have
J u B ( t ) Z 2 u 0 X p + B 0 X p + 4 u 0 X p 2 + B 0 X p 2 + 2 u 0 X p B 0 X p u 0 X p + B 0 X p 1 + 4 u 0 X p + B 0 X p .
Furthermore, we can write
J u B ( t ) J v b ( t ) Y 1 = B u B , u v B b + B u v B b , u B Y 1 u Y 1 + v Y 1 + B Y 1 + b Y 1 u v Y 1 + B b Y 1 4 u 0 X p + B 0 X p u v Y 1 + B b Y 1 .
Let us consider that u 0 , B 0 X p 3 3 H ˙ s 3 3 satisfies
sup u 0 X p + u 0 X p min 1 8 K 1 , 1 4 K 2 1 4 K 3 .
Then, from Equations (19), (26) and (28), for all u B , v b X 1 we can easily obtain that
J u B Y 1 2 u 0 H ˙ s + B 0 H ˙ s ,
J u B Z 2 2 u 0 X p + B 0 X p ,
J u B J v b Y 1 1 2 u v Y 1 + B b Z 1 .
As a result, by using Banach’s contraction principle, there exists a unique solution u , B X 2 that satisfies (7), which finishes the proof of Theorem 2. □
Remark 2.
By substituting B = 0 and = 1 in Theorem 1, we get Theorem 1.5, [30].

Author Contributions

Conceptualization, M.Z.A., M.M., H.K. and O.A.O.; methodology, M.Z.A., and M.M.; validation, M.Z.A., M.M., H.K. and O.A.O.; formal analysis, M.Z.A. and M.M.; investigation, M.Z.A.; writing—original draft preparation, M.Z.A. and M.M.; writing—review and editing, M.Z.A., M.M., H.K. and O.A.O.; project administration, M.Z.A. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by Zhejiang Normal University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duvaut, G.; Lions, J.L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 1972, 46, 241–279. [Google Scholar] [CrossRef]
  2. Sermange, M.; Temam, R. Some mathematical questions related to the mhd equations. Commun. Pure Appl. Math. 1983, 36, 635–664. [Google Scholar] [CrossRef] [Green Version]
  3. Melo, W.G.; Rosa Santos, T.S. Time decay rates for the generalized MHD-α equations in Sobolev–Gevrey spaces. Appl. Anal. 2021, 1–22. [Google Scholar] [CrossRef]
  4. Zhao, C.; Li, B. Time decay rate of weak solutions to the generalized MHD equations in ℝ2. Appl. Math. Comput. 2017, 292, 1–8. [Google Scholar] [CrossRef]
  5. Liu, H.; Sun, C.; Xin, J. Attractors of the 3D magnetohydrodynamics equations with damping. Bull. Malays. Math. Sci. Soc. 2021, 44, 337–351. [Google Scholar] [CrossRef]
  6. Kim, S. Homogeneous statistical solutions of the magnetohydrodynamics equations. J. Math. Anal. Appl. 1998, 225, 1–25. [Google Scholar] [CrossRef] [Green Version]
  7. Zhou, Y. Regularity criteria for the generalized viscous MHD equations. Ann. L’Ihp Anal. Non LinéAire 2007, 24, 491–505. [Google Scholar] [CrossRef] [Green Version]
  8. Wu, J. Regularity criteria for the generalized MHD equations. Commun. Partial. Differ. Equ. 2008, 33, 285–306. [Google Scholar] [CrossRef]
  9. El Baraka, A.; Toumlilin, M. Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces. Electron. J. Differ. Equ. 2017, 65, 1–20. [Google Scholar]
  10. Wu, J. Generalized MHD equations. J. Differ. Equ. 2003, 195, 284–312. [Google Scholar] [CrossRef] [Green Version]
  11. Babin, A.; Mahalov, A.; Nicolaenko, B. Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids. Asymptot. Anal. 1997, 15, 103–150. [Google Scholar] [CrossRef]
  12. Babin, A.; Mahalov, A.; Nicolaenko, B. Global Regularity of 3D Rotating Navier–Stokes Equations for Resonant Domains. Indiana Univ. Math. J. 1999, 48, 1133–1176. [Google Scholar] [CrossRef] [Green Version]
  13. Babin, A.; Mahalov, A.; Nicolaenko, B. 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 2001, 50, 1–35. [Google Scholar] [CrossRef]
  14. Giga, Y.; Inui, K.; Mahalov, A.; Saal, J. Uniform global solvability of the rotating Navier–Stokes equations for nondecaying initial data. Indiana Univ. Math. J. 2008, 57, 2775–2791. [Google Scholar] [CrossRef] [Green Version]
  15. Hieber, M.; Shibata, Y. The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z. 2010, 265, 481–491. [Google Scholar] [CrossRef]
  16. Wang, W.; Wu, G. Global mild solution of the generalized Navier–Stokes equations with the Coriolis force. Appl. Math. Lett. 2018, 76, 181–186. [Google Scholar] [CrossRef]
  17. Fujita, H.; Kato, T. On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
  18. Kato, T.; Fujita, H. On the nonstationary Navier–Stokes system. Rend. Del Semin. Mat. Della Univ. Padova 1962, 32, 243–260. [Google Scholar]
  19. Cannone, M. Ondelettes, Paraproduits et Navier–Stokes; Diderot Editeur: Paris, France, 1995. [Google Scholar]
  20. Koch, H.; Tataru, D. Well-posedness for the Navier–Stokes equations. Adv. Math. 2001, 157, 22–35. [Google Scholar] [CrossRef] [Green Version]
  21. Bourgain, J.; Pavlović, N. Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 2008, 255, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
  22. Yoneda, T. Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO−1. J. Funct. Anal. 2010, 258, 3376–3387. [Google Scholar] [CrossRef] [Green Version]
  23. Wu, J. The generalized incompressible Navier–Stokes equations in Besov spaces. Dyn. Partial. Differ. Equ. 2004, 1, 381–400. [Google Scholar] [CrossRef] [Green Version]
  24. Li, P.; Zhai, Z. Well-posedness and regularity of generalized Navier–Stokes equations in some critical Q-spaces. J. Funct. Anal. 2010, 259, 2457–2519. [Google Scholar] [CrossRef] [Green Version]
  25. Ru, S.; Abidin, M.Z. Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents. Comput. Math. Appl. 2019, 77, 1082–1090. [Google Scholar] [CrossRef]
  26. Miao, C.; Yuan, B.; Zhang, B. Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. Theory Methods Appl. 2008, 68, 461–484. [Google Scholar] [CrossRef] [Green Version]
  27. Sun, X.; Ding, Y. Dispersive effect of the Coriolis force and the local well-posedness for the fractional Navier–Stokes–Coriolis system. J. Evol. Equ. 2020, 20, 335–354. [Google Scholar] [CrossRef]
  28. Kozono, H.; Ogawa, T.; Taniuchi, Y. Navier–Stokes equations in the Besov space near L and BMO. Kyushu J. Math. 2003, 57, 303–324. [Google Scholar] [CrossRef] [Green Version]
  29. Koh, Y.; Lee, S.; Takada, R. Dispersive estimates for the Navier–Stokes equations in the rotational framework. Adv. Differ. Equ. 2014, 19, 857–878. [Google Scholar]
  30. Ohyama, H. Global Well-Posedness for the Navier–Stokes equations with the Coriolis force in function spaces characterized by semigroups. J. Math. Fluid Mech. 2021, 23, 15. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Abidin, M.Z.; Marwan, M.; Kalsoom, H.; Omer, O.A. On the Global Well-Posedness of Rotating Magnetohydrodynamics Equations with Fractional Dissipation. Fractal Fract. 2022, 6, 340. https://doi.org/10.3390/fractalfract6060340

AMA Style

Abidin MZ, Marwan M, Kalsoom H, Omer OA. On the Global Well-Posedness of Rotating Magnetohydrodynamics Equations with Fractional Dissipation. Fractal and Fractional. 2022; 6(6):340. https://doi.org/10.3390/fractalfract6060340

Chicago/Turabian Style

Abidin, Muhammad Zainul, Muhammad Marwan, Humaira Kalsoom, and Omer Abdalrhman Omer. 2022. "On the Global Well-Posedness of Rotating Magnetohydrodynamics Equations with Fractional Dissipation" Fractal and Fractional 6, no. 6: 340. https://doi.org/10.3390/fractalfract6060340

Article Metrics

Back to TopTop