Fractal Characteristics and Microstructure of Coal with Impact of Starch-Polymerized Aluminum Sulfate Fracturing Fluids
Abstract
:1. Introduction
2. Experiments
2.1. Material and Methods
2.2. Experimental Steps
2.2.1. FTIR Measurements
2.2.2. Low-Temperature N2 Adsorption
3. Results and Discussion
3.1. FTIR Analysis
3.2. Pore Morphology
3.3. Pore Size Distribution
3.4. Fractal Characteristics
3.5. Mechanism of Starch-Polymerized Aluminum Sulfate Solution on Coal
4. Conclusions
- (1)
- The structure of the functional groups dramatically changed as the concentration of starch-polymerized aluminum sulfate composite solution increased. Contracted hydrogen bonds were markedly minimized. Moreover, the methyl hypromellose was constantly dissolved, resulting in the shortening of the aliphatic chain length. The content of oxygen-containing functional groups initially increased and then decreased, and the quantity of aromatic hydrocarbons exhibited no obvious alteration, which was favorable to the desorption of gas.
- (2)
- With the increase in starch-polymerized aluminum sulfate solution concentration, the TPV and SSA of all treated coal samples declined, and the average pore size increased and then decreased, which particularly affected the pore structure of DX3 coal. This indicates that the adsorption effect of the starch–flocculant solution induces the transformation of macropores to micropores and mesopores, which is conducive to gas extraction.
- (3)
- Fractal dimension D1 decreased by 5.4–15.4% and fractal dimension D2 increased by 1.2~7.9% after treatment with starch-polymerized aluminum sulfate solution. As the concentration of starch–flocculant solution increased, the solution adsorption of minerals in the coal became stronger, which caused the pore structure of the coal to become more complex, thus increasing the connectivity of the pores.
- (4)
- The nitrogen adsorption of each group of coal samples was reduced, and it was clearly less than that of the original coal. With the increase in starch–flocculant solution concentration, the adsorption of nitrogen by coal displayed an “inverted N” trend and arrived at the minimum value of nitrogen adsorption of 0.6814 cm3/g when the starch-polymerized aluminum sulfate solution was 10%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Cao, X.; Li, B.; Zhou, A.T. Quantitative study on the role of desorption gas on coal-gas outbursts: Energy contribution and dynamic characteristics. Process Saf. Environ. 2023, 171, 437–446. [Google Scholar] [CrossRef]
- Yuan, L.; Jiang, Y.D.; He, X.Q.; Kou, L.M.; Zhao, X.S.; Wang, K.; Yu, Q.; Lu, X.M.; Li, H.C. Research progress in key technologies for accurate identification, monitoring and early warning of typical dynamic disaster risk in coal mines. J. China. Coal. Soc. 2018, 43, 306–318. [Google Scholar]
- Lu, Y.Y.; Zhang, H.D.; Zhou, Z.; Ge, Z.L.; Chen, C.Y.; Hou, Y.D.; Ye, M.L. Current status and effective suggestions for efficient exploitation of coalbed methane in China: A review. Energy. Fuels 2021, 35, 9102–9123. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.S.; Tang, S.H.; Elsworth, D. Re-evaluating adsorbed and free methane content in coal and its ad-and desorption processes analysis. Chem. Eng. J. 2022, 428, 131946. [Google Scholar] [CrossRef]
- Xi, X.; Jiang, S.J.; Zhang, W.Q.; Wang, K.; Shao, H.; Wu, Z.Y. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal. Fuel 2019, 244, 176–183. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Zhang, X.; Li, P.P. Effect of microstructure and chemical composition of coal on methane adsorption. J. Nat. Gas. Sci. Eng. 2020, 82, 103507. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Shao, Y. Effect of demineralization on Yimin lignite by experiments and molecular simulation techniques. J. Mol. Struct. 2022, 1269, 133837. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhong, X.Y.; Jiang, X.M. Solvent Extraction of Superfine Pulverized Coal. Part 2. Free-Radical Characteristics. Energy Fuels 2021, 35, 15555–15566. [Google Scholar] [CrossRef]
- Zhao, L.; Ni, G.H.; Wang, H.; Sun, Q.; Wang, G.; Jiang, B.Y.; Zhang, C. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel 2020, 272, 117705. [Google Scholar] [CrossRef]
- Wang, Z.; Ge, Z.; Li, R.; Liu, X.F.; Wang, H.M.; Gong, S.H. Effects of acid-based fracturing fluids with variable hydrochloric acid contents on the microstructure of bituminous coal: An experimental study. Energy 2022, 244, 122621. [Google Scholar]
- Ren, J.; Wang, Z.; Li, B.; Chen, F.; Liu, J.; Liu, G.; Song, Z. Fractal-Time-Dependent Fick Diffusion Model of Coal Particles Based on Desorption–Diffusion Experiments. Energy Fuels 2022, 36, 6198–6215. [Google Scholar] [CrossRef]
- Ni, G.; Li, S.; Rahman, S.; Xun, M.; Wang, H.; Xu, Y.H.; Xie, H.C. Effect of nitric acid on the pore structure and fractal characteristics of coal based on the low-temperature nitrogen adsorption method. Powder. Technol. 2020, 367, 506–516. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.X.; Zhao, Y.C.; Liao, X.X.; Li, j.; Zhao, Z.; Liu, Q.Q. Multi-scale pore structure transformation of shale under mixed acid acidification method. Arab. J. Chem. 2023, 16, 104937. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Li, Z.; Li, J.H.; Zhang, X.Y.; Liu, L.W.; Yan, D.C.; Zhou, Y.B. Influence of soluble organic matter on mechanical properties of coal and occurrence of coal and gas outburst. Powder. Technol. 2018, 332, 8–17. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, B.; Yang, W.; Li, H.; Lin, M.H. Fracture and pore development law of coal under organic solvent erosion. Fuel 2022, 307, 121815. [Google Scholar] [CrossRef]
- Ali, M.E.M.; Moniem, S.M.A.; Hemdan, B.A. Innovative polymeric inorganic coagulant-flocculant for wastewater purification with simultaneous microbial reduction in treated effluent and sludge. S. Afr. J. Chem. Eng. 2022, 42, 127–137. [Google Scholar] [CrossRef]
- Fernandez-Luqueno, F.; Thalasso, F.; Luna-Guido, M.L.; Ceballos-Ramírez, J.M.; Ordoñez-Ruiz, I.M.; Dendooven, L. Flocculant in wastewater affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil. J. Environ. Manag. 2009, 90, 2813–2818. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, S.B.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Coagulation-flocculation of aquaculture effluent using biobased flocculant: From artificial to real wastewater optimization by response surface methodology. J. Water. Process. Eng. 2023, 53, 103869. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Yang, H.; Xie, X.C.; Zhu, Y.T.; Xu, G.Z.; Hu, X.J.; Jin, Z.Y.; Hu, Y.; Hai, Z.B.; et al. Treatment of potato starch wastewater by dual natural flocculants of chitosan and poly-glutamic acid. J. Clean. Prod. 2020, 264, 121641. [Google Scholar] [CrossRef]
- Hu, P.; Ren, J.; Hu, X.; Yang, H. Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl. Int. J. Biol. Macromol. 2021, 167, 223–232. [Google Scholar] [CrossRef]
- Ma, Y.F.; Wang, Y.Q.; Zheng, L.; Hou, L.L.; Gao, T.; Jiang, J.J.; Li, L.J. Synthesis of cationic starch flocculant and its performance when treating coal mine wastewater. Ind. Water Wastewater 2013, 44, 1. [Google Scholar]
- Xu, C.; Li, H.; Lu, Y.; Liu, T.; Lu, J.X.; Shi, S.L.; Ye, Q.; Jia, Z.Z.; Wang, Z. Influence of microwave-assisted oxidant stimulation on pore structure and fractal characteristics of bituminous coal based on low-temperature nitrogen adsorption. Fuel 2022, 327, 125173. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, D.; Xu, H.; Tao, S.; Li, S.; Yang, G.; Yu, J. Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China. J. Nat. Gas. Sci. Eng. 2015, 26, 264–1277. [Google Scholar] [CrossRef]
- Hu, B.; Cheng, Y.; Pan, Z. Classification methods of pore structures in coal: A review and new insight. J. Nat. Gas. Sci. Eng. 2023, 110, 204876. [Google Scholar] [CrossRef]
- Gao, D.; Guo, L.; Wang, F.; Zhu, L.; Gao, Z. Investigation on thermal analysis and FTIR microscopic characteristics of artificially-oxidized coal and chronic naturally-oxidized coal during secondary oxidation. Fuel 2022, 327, 125151. [Google Scholar] [CrossRef]
- Chen, C.; Tang, Y.; Guo, X. Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy. Fuel 2022, 310, 122362. [Google Scholar] [CrossRef]
- Kandagal, V.S.; Pathak, A.; Ayappa, K.G.; Punnathanam, S.N. Adsorption on edge-functionalized bilayer graphene nanoribbons: Assessing the role of functional groups in methane uptake. J. Phys. Chem. C 2012, 116, 23394–23403. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, T.; Kang, J.; Zhang, X.; Zhang, B.; Guo, J.; Chai, Z. Response of molecular structures and methane adsorption behaviors in coals subjected to cyclical microwave exposure. ACS Omega 2021, 6, 31566–31577. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Rong, L.; Xiao, J.; Wang, X.; Sun, J.; Jia, F.; Chu, M. Low-rank coal drying behaviors under negativepressure: Thermal fragmentation, volume shrinkage and changes in pore structure. J. Clean. Prod. 2020, 272, 122572. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, X.; Gao, Z.; Wang, Y.; Zhu, Y.; Zhang, Y.; Duan, J. Adsorption characteristics and removal mechanism of malathion in water by high and low temperature calcium–modified water hyacinth–based biochar. J. Clean. Prod. 2023, 411, 137258. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.L.; He, J.H.; Dai, P.; Yin, S.; Xie, F. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Pet. Geol. 2016, 70, 46–57. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloid. Surf. A 2013, 437, 3–32. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Petrol. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S. Thermodynamic and Kinetic Behaviors of Trinitrotoluene Adsorption on Powdered Activated Carbons. Sep. Sci. Technol. 2006, 41, 3655–3672. [Google Scholar] [CrossRef]
- Zhang, X. Fractal character of coal nanopore and effect of deviation corrected, coal rank, and gas adsorption. Micropor. Mesopor. Mat. 2024, 367, 112972. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, S.; Xue, S. Effects of chemical solvents on coal pore structural and fractal characteristics: An experimental investigation. Fuel 2022, 327, 125246. [Google Scholar] [CrossRef]
- Wu, M.; Li, H.; Wang, L.; Yang, X.; Dai, C.; Yang, N.; Li, J.; Wang, Y.; Yu, M. μCT quantitative assessment of the pore–fracture structures and permeability behaviors of long-flame coal treated by infrared rapid heating. Energy 2023, 274, 127308. [Google Scholar] [CrossRef]
- Yang, L.; Cai, F.; Yuan, Y. Fractal Dimension and Nuclear Magnetic Resonance Characteristics of Surfactants for Coal Gas Desorption. Fractal. Fract. 2023, 7, 217. [Google Scholar] [CrossRef]
- Zhang, J.; Ni, X.; Liu, X.; Su, E. Influences of Different Acid Solutions on Pore Structures and Fractal Features of Coal. Fractal Fract. 2024, 8, 82. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Pu, H.; Zheng, Y.; Li, B.; Wu, P.; Qiu, P.; Ma, C.; Feng, Y. Dynamic Compressive Mechanical Property Characteristics and Fractal Dimension Applications of Coal-Bearing Mudstone at Real-Time Temperatures. Fractal Fract. 2023, 7, 695. [Google Scholar] [CrossRef]
- Sousa-Vieira, M.E.; Fernández-Veiga, M. Efficient Generators of the Generalized Fractional Gaussian Noise and Cauchy Processes. Fractal Fract. 2023, 7, 455. [Google Scholar] [CrossRef]
Type | Mad/% | Vdaf/% | Aad/% | FCad/% |
---|---|---|---|---|
raw coal | 3.38 | 9.91 | 9.86 | 81.2 |
Wavenumber/cm−1 | Code | Samples | Characteristic Parameters | |||||
---|---|---|---|---|---|---|---|---|
DX0 | DX1 | DX2 | DX3 | DX4 | DX5 | |||
3600~3200 | A | 31.64 | 11.79 | 13.32 | 14.71 | 13.42 | 29.12 | I1 = Av (CH2) + Av (CH3) + Av (CH2 + CH3)/Av (C–C) = AC + AG + AH/AE + AF I2 = Av (-OH) + Av (C–O) + Av (C–O–C)/Av (C–C) = AA + AD + AI/AE + AF I3 = Av (-CH) + Av (-CH)/Av (CH2 + CH3) = AB + AJ/AC I4 = Av (-CH) + Av (-CH)/Av (C–C) = AB + AJ/AE + AF |
3080~3035 | B | 0.048 | 0.081 | 0.044 | 0.054 | 0.124 | 0.171 | |
3000~2800 | C | 0.891 | 0.624 | 0.620 | 0.083 | 0.061 | 0.213 | |
1770~1700 | D | 0.039 | 0.030 | 0.057 | 0.031 | 0.072 | 0.022 | |
1645~1545 | E | 3.123 | 4.898 | 3.128 | 3.709 | 3.740 | 3.921 | |
1545~1480 | F | 0.167 | 0.047 | 1.670 | 0.086 | 0.011 | 2.243 | |
1480~1421 | G | 0.676 | 0.734 | 0.427 | 0.019 | 0.020 | 2.962 | |
1420~1350 | H | 0.604 | 0.558 | 0.332 | 2.333 | 1.229 | 0.931 | |
1300~1000 | I | 1.611 | 1.715 | 1.690 | 2.731 | 2.063 | 3.042 | |
900~700 | J | 0.811 | 2.284 | 0.839 | 1.012 | 1.359 | 2.332 |
Samples | Volume (10−3cm3/g) | TPV (×10−3 cm3/g) | SSA (m2/g) | SSA (m2/g) | Average Pore Size (nm) | ||||
---|---|---|---|---|---|---|---|---|---|
Micropore | Mesopore | Macropore | Micropore | Mesopore | Macropore | ||||
DX0 | 0.0922 | 0.3468 | 0.7385 | 1.1775 | 0.0156 | 0.3859 | 0.0387 | 0.4402 | 18.7922 |
DX1 | 0.0980 | 0.6653 | 0.4138 | 1.1771 | 0.0288 | 0.4784 | 0.0377 | 0.5512 | 20.1077 |
DX2 | 0.0664 | 0.2556 | 0.1943 | 0.5163 | 0.0330 | 0.3873 | 0.0257 | 0.4534 | 17.4464 |
DX3 | 0.0370 | 0.1270 | 0.1727 | 0.3367 | 0.0183 | 0.1429 | 0.0153 | 0.1766 | 26.3684 |
DX4 | 0.0688 | 0.2070 | 0.2049 | 0.4607 | 0.0352 | 0.2917 | 0.0193 | 0.3949 | 17.8398 |
DX5 | 0.0525 | 0.2983 | 0.1716 | 0.5251 | 0.011 | 0.4584 | 0.0242 | 0.4936 | 23.2461 |
Samples | Fractal Dimension | |||
---|---|---|---|---|
D1 | R2 | D2 | R2 | |
DX0 | 2.4057 | 0.9901 | 2.4999 | 0.9966 |
DX1 | 2.2752 | 0.9902 | 2.5301 | 0.9984 |
DX2 | 2.0350 | 0.9624 | 2.6984 | 0.9854 |
DX3 | 2.4454 | 0.9585 | 2.4693 | 0.9888 |
DX4 | 2.1019 | 0.9563 | 2.5708 | 0.9867 |
DX5 | 2.6355 | 0.9895 | 2.4444 | 0.9839 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, F.; Zhang, Q.; Yang, L. Fractal Characteristics and Microstructure of Coal with Impact of Starch-Polymerized Aluminum Sulfate Fracturing Fluids. Fractal Fract. 2024, 8, 228. https://doi.org/10.3390/fractalfract8040228
Cai F, Zhang Q, Yang L. Fractal Characteristics and Microstructure of Coal with Impact of Starch-Polymerized Aluminum Sulfate Fracturing Fluids. Fractal and Fractional. 2024; 8(4):228. https://doi.org/10.3390/fractalfract8040228
Chicago/Turabian StyleCai, Feng, Qian Zhang, and Lingling Yang. 2024. "Fractal Characteristics and Microstructure of Coal with Impact of Starch-Polymerized Aluminum Sulfate Fracturing Fluids" Fractal and Fractional 8, no. 4: 228. https://doi.org/10.3390/fractalfract8040228