Interconnecting Haptic Interfaces with High Update Rates through the Internet †
Abstract
:1. Introduction
2. Internet-Based Haptic Applications
3. The Network Conditions of the Internet
4. Simulation Scenarioof Existing Protocols
4.1. Static Network Bandwidth, Delay and Internet Traffic
4.2. Dynamic Network Bandwidth, Delay and Internet Traffic
5. Simulation Results
5.1. Protocol Efficiency
5.2. Packet Loss
5.3. Throughput
5.4. Jitter
5.5. Packet Arrival Deviation
6. Complements, Differences and Relevancies Between Simulation and Real World Experiments
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kokkonis, G.; Psannis, K.E.; Roumeliotis, M.; Nikopolitidis, P.; Ishibashi, Y. Performance evaluation of transport protocols for realtime supermedia—HEVC streams over the Internet. In Proceedings of the 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Cagliari, Italy, 7–9 June 2017. [Google Scholar]
- Cen, Z.; Mutka, M.W.; Zhu, D.; Xi, N. Supermedia Transport for Teleoperations over Overlay Networks. In Networking 2005. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems; Boutaba, R., Almeroth, K., Puigjaner, R., Shen, S., Black, J.P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3462, ISBN 978-3-540-25809-4. [Google Scholar]
- Eid, M.; Cha, J.; El Saddik, A. Admux: An Adaptive Multiplexer for Haptic–Audio–Visual Data Communication. IEEE Trans. Instrum. Meas. 2011, 60, 21–31. [Google Scholar] [CrossRef]
- Iwata, K.; Ishibashi, Y.; Fukushima, N.; Sugawara, S. Qoe assessment in haptic media, sound, and video transmission: Effect of playout buffering control. Comput. Entertain. 2010, 8, 1–12. [Google Scholar] [CrossRef]
- Suzuki, N.; Katsura, S. Evaluation of QoS in haptic communication based on bilateral control. In Proceedings of the 2013 IEEE International Conference on Mechatronics (ICM), Vicenza, Italy, 27 February–1 March 2013; pp. 886–891. [Google Scholar]
- Isomura, E.; Tasaka, S.; Nunome, T. A multidimensional QoE monitoring system for audiovisual and haptic interactive IP communications. In Proceedings of the 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC 2013), Las Vegas, NV, USA, 11–14 January 2013; pp. 196–202. [Google Scholar]
- Hamam, A.; el Saddik, A. Toward a Mathematical Model for Quality of Experience Evaluation of Haptic Applications. IEEE Trans. Instrum. Meas. 2013, 62, 3315–3322. [Google Scholar] [CrossRef]
- Al Osman, H.; Eid, M.; Iglesias, R.; El Saddik, A. ALPHAN: Application Layer Protocol for HAptic Networking. In Proceedings of the 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games (HAVE 2007), Ottawa, ON, Canada, 12–14 October 2007; pp. 96–101. [Google Scholar]
- Dodeller, S.; Georganas, N.D. Transport layer protocols for telehaptics update message. In Proceedings of the 22nd Biennial Symposium on Communications, Queen’s Univeristy, Kingston, ON, Canada, 31 May–3 June 2004. [Google Scholar]
- Wirz, R.; Ferre, M.; Marin, R.; Barrio, J.; Claver, J.; Ortego, J. Efficient transport protocol for networked haptics applications. In Haptics: Perception, Devices and Scenarios; Ferre, M., Ed.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2008; Volume 5024, pp. 3–12. [Google Scholar]
- Wirz, R.; Marin, R.; Ferre, M.; Barrio, J.; Claver, J.M.; Ortego, J. Bidirectional Transport Protocol for Teleoperated Robots. IEEE Trans. Ind. Electron. 2009, 56, 3772–3781. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, W.; Sun, Z. Transport layer protocol reconfiguration for network-based robot control system. In Proceedings of the 2005 IEEE Networking, Sensing and Control, Tucson, AZ, USA, 19–22 March 2005; pp. 1049–1053. [Google Scholar]
- Mauve, M.; Hilt, V.; Kuhmunch, C.; Effelsberg, W. Rtp/i-toward a common application level protocol for distributed interactive media. IEEE Trans. Multimedia 2001, 3, 152–161. [Google Scholar] [CrossRef]
- Uchimura, Y.; Yakoh, T. Bilateral robot system on the real-time network structure. IEEE Trans. Ind. Electron. 2004, 51, 940–946. [Google Scholar] [CrossRef]
- Schulzrimie, H.; Casner, S.; Frederick, R.; Jacobson, V. RFC 1889—RTP: A Transport Protocol for Real-Time Applications. January 1996. Available online: https://tools.ietf.org/html/rfc1889 (accessed on 1 December 2017).
- Kohler, E.; Handley, M.; Floyd, S. RFC 4340—Datagram Congestion Control Protocol (DCCP). March 2006. Available online: https://tools.ietf.org/html/rfc4340 (accessed on 1 December 2017).
- Stewart, R. RFC 4960—Stream Control Transmission Protocol. October 2000. Available online: https://tools.ietf.org/html/rfc4960 (accessed on 1 December 2017).
- Marin, R.; Sanz, P.J.; Nebot, P.; Wirz, R. A multimodal interface to control a robot arm via the web: a case study on remote programming. IEEE Trans. Ind. Electron. 2005, 52, 1506–1520. [Google Scholar] [CrossRef]
- Huang, P.; Zeng, Q.; Ishibashi, Y. QoE assessment of will transmission using haptics: Influence of network delay. In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE 2013), Tokyo, Japan, 1–4 October 2013; pp. 456–460. [Google Scholar]
- Mizoguchi, T.; Nozaki, T.; Ohnishi, K. Stiffness Transmission of Scaling Bilateral Control System by Gyrator Element Integration. IEEE Trans. Ind. Electron. 2014, 61, 1033–1043. [Google Scholar] [CrossRef]
- Sakaino, S.; Sato, T.; Ohnishi, K. Multi-DOF Micro-Macro Bilateral Controller Using Oblique Coordinate Control. IEEE Trans. Ind. Informat. 2011, 7, 446–454. [Google Scholar] [CrossRef]
- Nozaki, T.; Mizoguchi, T.; Ohnishi, K. Decoupling Strategy for Position and Force Control Based on Modal Space Disturbance Observer. IEEE Trans. Ind. Electron. 2014, 61, 1022–1032. [Google Scholar] [CrossRef]
- Hirche, S.; Buss, M. Human-Oriented Control for Haptic Teleoperation. Proc. IEEE 2012, 100, 623–647. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, B.; Ohnishi, K. Stable and Transparent Time-Delayed Teleoperation by Direct Acceleration Waves. IEEE Trans. Ind. Electron. 2010, 57, 3228–3238. [Google Scholar] [CrossRef]
- Morimitsu, H.; Katsura, S.; Tomizuka, M. Design of force compensator with variable gain for bilateral control system under time delay. In Proceedings of the 2013 IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan, 28–31 May 2013; pp. 1–6. [Google Scholar]
- Natori, K.; Ohnishi, K. A Design Method of Communication Disturbance Observer for Time-Delay Compensation, Taking the Dynamic Property of Network Disturbance Into Account. IEEE Trans. Ind. Electron. 2008, 55, 2152–2168. [Google Scholar] [CrossRef]
- Linda, O.; Manic, M. Self-Organizing Fuzzy Haptic Teleoperation of Mobile Robot Using Sparse Sonar Data. IEEE Trans. Ind. Electron. 2011, 58, 3187–3195. [Google Scholar] [CrossRef] [Green Version]
- Sim, K.; Byun, K.; Harashima, F. Internet-based teleoperation on an intelligent robot with optimal two-layer fuzzy controller. IEEE Trans. Ind. Electron. 2006, 53, 1362–1372. [Google Scholar] [CrossRef]
- Peterlik, I.; Filipovic, J. Distributed Construction of Configuration Spaces for Real-Time Haptic Deformation Modeling. IEEE Trans. Ind. Electron. 2011, 58, 3205–3212. [Google Scholar] [CrossRef]
- Elliott, L.; Schmeisser, E.; Redden, E. Development of tactile and haptic systems for U.S. infantry navigation and communication. In Human Interface and the Management of Information: Interacting with Information; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011; Volume 6771, pp. 399–407. [Google Scholar]
- Mohammadi, N.; Murray, I. Developing methodologies for the presentation of graphical educational material in a non-visual form for use by people with vision impairment. In Proceedings of the 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE 2013), Bali, Indonesia, 26–29 August 2013; pp. 373–377. [Google Scholar]
- Nakajima, Y.; Nozaki, T.; Ohnishi, K. Heartbeat Synchronization with Haptic Feedback for Telesurgical Robot. IEEE Trans. Ind. Electron. 2014, 61, 3753–3764. [Google Scholar] [CrossRef]
- Guinan, A.L.; Caswell, N.A.; Drews, F.A.; Provancher, W.R. A video game controller with skin stretch haptic feedback. In Proceedings of the 2013 IEEE International Conference on Consumer Electronics (ICCE 2013), Las Vegas, NV, USA, 11–14 January; pp. 456–457.
- Danieau, F.; Fleureau, J.; Guillotel, P.; Mollet, N.; Christie, M.; Lecuyer, A. Toward Haptic Cinematography: Enhancing Movie Experience with Haptic Effects based on Cinematographic Camera Motions. IEEE MultiMedia 2014, 21, 11–21. [Google Scholar]
- Yajima, S.; Katsura, S. Multi-DOF Motion Reproduction Using Motion-Copying System With Velocity Constraint. IEEE Trans. Ind. Electron. 2014, 61, 3765–3775. [Google Scholar] [CrossRef]
- Hossain, S.; Rahman, A.; El Saddik, A. Measurements of multimodal approach to haptic interaction in second life interpersonal communication system. IEEE Trans. Instrum. Meas. 2011, 60, 3547–3558. [Google Scholar] [CrossRef]
- Sutherland, C.; Hashtrudi-Zaad, K.; Sellens, R.; Abolmaesumi, P.; Mousavi, P. An Augmented Reality Haptic Training Simulator for Spinal Needle Procedures. IEEE Trans. Biomed. Eng. 2013, 60, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Tsukahara, R.; Seki, M.; Fujie, M.G. A Haptic Interface “Force Blinker 2” for Navigation of the Visually Impaired. IEEE Trans. Ind. Electron. 2012, 59, 4112–4119. [Google Scholar] [CrossRef]
- Ahlmark, D.I.; Fredriksson, H.; Hyyppa, K. Obstacle avoidance using haptics and a laser rangefinder. In Proceedings of the IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO 2013), Tokyo, Japan, 7–9 November 2013; pp. 76–81. [Google Scholar]
- Suwanratchatamanee, K.; Matsumoto, M.; Hashimoto, S. Robotic Tactile Sensor System and Applications. IEEE Trans. Ind. Electron. 2010, 57, 1074–1087. [Google Scholar] [CrossRef]
- Oonishi, Y.; Oh, S.; Hori, Y. A new control method for power-assisted wheelchair based on the surface myoelectric signal. IEEE Trans. Ind. Electron. 2010, 57, 3191–3196. [Google Scholar] [CrossRef]
- Suwanratchatamanee, K.; Matsumoto, M.; Hashimoto, S. Haptic Sensing Foot System for Humanoid Robot and Ground Recognition With One-Leg Balance. IEEE Trans. Ind. Electron. 2011, 58, 3174–3186. [Google Scholar] [CrossRef]
- al Osman, H.; Jongeun, C.; el Saddik, A. The HTML5 Haptics Plugin. In Proceedings of the 2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012), Munich, Germany, 8–9 October 2012; pp. 130–133. [Google Scholar]
- Callado, A.; Kamienski, C.; Szabo, G.; Gero, B.; Kelner, J.; Fernandes, S.; Sadok, D. A Survey on Internet Traffic Identification. IEEE Commun. Surv. Tutor. 2009, 11, 37–52. [Google Scholar] [CrossRef]
- Finamore, A.; Mellia, M.; Meo, M.; Munafo, M.M.; Rossi, D. Experiences of Internet traffic monitoring with tstat. IEEE Netw. 2011, 25, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Ikeguchi, T. An analysis of the Internet traffic by the method of surrogate data. In Proceedings of the 2002 IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, AZ, USA, 26–29 May 2002; pp. III-599–III-602. [Google Scholar]
- Labovitz, C.; Iekel-Johnson, S.; McPherson, D.; Oberheide, J.; Jahanian, F. Internet Inter-domain Traffic. In Proceedings of the ACM SIGCOMM 2010 conference, New Delhi, India, 30 August–3 September 2010; pp. 75–86. [Google Scholar]
- Ishii, N.; Lee, S.; Ishibashi, Y.; Psannis, K.E.; Kim, J. Experiment on international connection for haptic media communications. In Proceedings of the Tokai-Section Joint Conference of the Eight Institutes of Electrical and Related Engineers, Tokai, Japan, 10–11 September 2009. O-434. [Google Scholar]
- Kokkonis, G.; Psannis, K.E.; Roumeliotis, M. Real time Haptic data transferring. In Proceedings of the IEEE 2016 Wireless Days (WD), Toulouse, France, 23–25 March 2016. [Google Scholar]
- GRNET: The Greek Research and Technology Network. Available online: https://www.grnet.gr/en (accessed on 20 November 2017).
- McCanne, S.; Floyd, S. Network Simulator ns-2. Available online: http://nsnam.isi.edu/nsnam/index.php (accessed on 1 December 2017).
- Fitzek, F.; Reisslein, M. Video Traces for Network Performance Evaluation: Yuv 4:2:0 Video Sequences. Available online: http://trace.eas.asu.edu/yuv/index.html (accessed on 20 November 2017).
- Kokkonis, G.; Psannis, K.E.; Roumeliotis, M.; Ishibashi, Y. Efficient algorithm for transferring a real-time HEVC stream with haptic data through the internet. J. Real-Time Image Process. 2016, 12, 343–355. [Google Scholar] [CrossRef]
- Cao, J.; Cleveland, W.S.; Gao, Y.; Jeffay, K.; Smith, F.D.; Weigle, M.C. Stochastic Models for Generating Synthetic HTTP Source Traffic. In Proceedings of the IEEE INFOCOM 2004, Hong Kong, China, 7–11 March 2004. [Google Scholar]
- Weigle, M.C.; Adurthi, P.; Hernandez-Campos, F.; Jeffay, K.; Smith, F.D. Tmix: A Tool for Generating Realistic Application Workloads in ns-2. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 67–76. [Google Scholar] [CrossRef]
QoS | Haptics | Video | Audio | Graphics |
---|---|---|---|---|
Jitter (ms) | ≤2 | ≤30 | ≤30 | ≤30 |
Delay (ms) | ≤50 | ≤400 | ≤150 | ≤100–300 |
Packet Loss (%) | ≤10 | ≤1 | ≤1 | ≤10 |
Update Rate (Hz) | ≥1000 | ≥30 | ≥50 | ≥30 |
Packet Size (bytes) | 64–128 | ≤MTU | 160–320 | 192–5000 |
Throughput(kbps) | 512–1024 | 25,000–40,000 | 64–128 | 45–1200 |
Countries Connected | Avg. Delay (ms) | Standard Delay Deviation (ms) | Packet Loss (%) | No. Hops |
---|---|---|---|---|
Japan–Korea | 27.01 | 0.19 | 0.02 | 11 |
Japan–Greece | 331.10 | 6.30 | 1.53 | 26 |
Connected Cities | Avg. Delay (ms) | Standard Delay Deviation (ms) | Packet Loss (%) | No. Hops |
---|---|---|---|---|
Grevena—thessalonikh through grnet [50] | 19.12 | 1.70 | 0 | 5 |
Grevena—thessalonikh through adsl line | 53.19 | 5.31 | 0.11 | 8 |
ETP | UDP | RTP | SCTP | DCCP | |
---|---|---|---|---|---|
Header (bytes) | 12 + 8(UDP) | 8 | 12 + 8(UDP) | 12 + 4(Chunk INF.) | 12 |
Haptic Payload (bytes) | 64 | 64 | 64 | 64 | 64 |
Efficiency | 76.19% | 88.88% | 76.19% | 80% | 84.21% |
Delay (ms) | Jitter (ms) | Packet Loss (%) | |
---|---|---|---|
Connection between Japan and Korea | 27.01 | 0.19 | 0.02 |
Simulation of Udp Protocol with 20 Mbps Internet Bandwidth | 32.10 | 0.19 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkonis, G.; Psannis, K.E.; Kontogiannis, S.; Nicopolitidis, P.; Roumeliotis, M.; Ishibashi, Y. Interconnecting Haptic Interfaces with High Update Rates through the Internet. Appl. Syst. Innov. 2018, 1, 51. https://doi.org/10.3390/asi1040051
Kokkonis G, Psannis KE, Kontogiannis S, Nicopolitidis P, Roumeliotis M, Ishibashi Y. Interconnecting Haptic Interfaces with High Update Rates through the Internet. Applied System Innovation. 2018; 1(4):51. https://doi.org/10.3390/asi1040051
Chicago/Turabian StyleKokkonis, George, Kostas E. Psannis, Sotirios Kontogiannis, Petros Nicopolitidis, Manos Roumeliotis, and Yutaka Ishibashi. 2018. "Interconnecting Haptic Interfaces with High Update Rates through the Internet" Applied System Innovation 1, no. 4: 51. https://doi.org/10.3390/asi1040051
APA StyleKokkonis, G., Psannis, K. E., Kontogiannis, S., Nicopolitidis, P., Roumeliotis, M., & Ishibashi, Y. (2018). Interconnecting Haptic Interfaces with High Update Rates through the Internet. Applied System Innovation, 1(4), 51. https://doi.org/10.3390/asi1040051