Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review
Abstract
:1. Introduction
2. Characteristics and Properties of Natural Lignocellulosic Fibers
Chemical Component of Natural Fibers | Parameters of Mechanical Properties | Parameter of Physical Properties | |||||
---|---|---|---|---|---|---|---|
Tensile Strength | Specific Young’s Modulus | Failure Strain | Microfibril Angle (MFA) | Diameter | Density | Moisture Gain | |
Cellulose | +++ | ++ | - | - | + | +++ | - |
Hemicellulose | - | +++ | ++ | - | + | - | ++ |
Lignin | - | - | +++ | +++ | - | - | ++ |
Pectin | - | - | ++ | +++ | - | +++ | - |
Wax | - | ++ | - | - | - | - | + |
Fiber | Density (g/cm3) | Diameter (μm) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation (%) |
---|---|---|---|---|---|
Jute | 1.46 | - | 393–800 | 10–30 | 1.5–1.8 |
Sisal | 1.45 | 30–300 | 227–400 | 9–20 | 2–14 |
Pineapple | 1.44 | 20–80 | 413–1627 | 345–825 | 0.8–1 |
Kenaf | 1.40 | 81 | 250 | 4.3 | - |
Red Banana | - | - | 482–567 | - | 30.6 |
Nendranbanana | - | - | 407–505 | - | 28.3 |
Rasthalybanana | - | - | 304–388 | - | 27.8 |
Morrisbanana | - | - | 222–282 | - | 24.2 |
Poovanbanana | - | - | 144–206 | - | 21.8 |
Vakka | 0.81 | 175–230 | 549 | 1.5–8.5 | 3.46 |
Abaca | 0.83 | 114–130 | 418–486 | 12–13.8 | - |
Alfa | 0.89 | - | 35 | 22 | 5.8 |
Softwood kraft pulp | 1.5 | - | 1000 | 40 | 4.4 |
Viscose | - | - | 593 | 11 | 11.4 |
Wool | - | - | 120–174 | 2.3–3.4 | 25–35 |
Nettle | - | - | 650 | 38 | 1.7 |
Flax | 1.50 | - | 345–1500 | 27.6–80 | 1.2–3.2 |
Hemp | 1.48 | - | 550–900 | 70 | 1.6 |
Banana | 1.35 | 80–250 | 529–759 | 8–20 | 1–3.5 |
Coir | 1.15 | 100–460 | 108–252 | 4–6 | 15–40 |
Root | 1.15 | 100–650 | 157 | 6.2 | 3 |
Palymyrah | 1.09 | 70–1300 | 180–215 | 7.4–604 | 7–15 |
Date | 0.99 | - | 309 | 11.3 | 2.7 |
Bamboo | 0.91 | - | 503 | 35–91 | 1.4 |
Talipot | 0.89 | 200–700 | 143–294 | 9.3–13 | 3.2–5 |
Snake Grass | 0.88 | 45–250 | 279 | 9.7 | 2.9 |
Elephant Grass | 0.81 | 70–400 | 185 | 7.4 | 2.5 |
Petiole Bark | 0.69 | 250–650 | 185 | 15 | 2.1 |
Spatha | 0.69 | 150–400 | 75.6 | 3.1 | 6 |
Rachila | 0.65 | 200–400 | 61 | 2.8 | 8.1 |
Rachis | 0.61 | 350–408 | 73 | 2.5 | 13.5 |
Coconut tree leafs heath | - | - | 119.8 | 18 | 5.5 |
Sansevieria ehrenbergii | 0.88 | 20–250 | 50–585 | 1.5–7.7 | 2.8–21.7 |
Sanseveria rifasciata | 0.89 | 83–93 | 526–598 | 13.5–15.3 | - |
Sanseveria cylindrica | 0.91 | 230–280 | 585–676 | 0.2–11.2 | 11–14 |
Palm | 1.03 | 400–490 | 377 | 2.75 | 13.7 |
Agave | 1.20 | 126–344 | - | - | - |
Henequen | 1.20 | - | 430–470 | 11.1–16.3 | 3.7–5.9 |
Bagasse | 1.25 | 200–400 | 290 | 11 | - |
Curaua | 1.40 | 170 | 158–729 | - | 5 |
Sea Grass | 1.50 | 5 | 453–692 | 3.1–3.7 | 13–26.6 |
Oil Palm | 0.70–1.55 | 150–500 | 80–248 | 0.5–3.2 | 17–25 |
Piassava | 1.4 | - | 134–143 | 1.07–4.59 | 7.8–21.9 |
PALF | 0.80–1.60 | 20–80 | 180–1627 | 1.44–82.5 | 1.6–14.5 |
Ramie | 1.00–1.55 | 20–80 | 400–1000 | 24.5–128 | 1.2–4.0 |
Isora | 1.20–1.30 | - | 500–600 | - | 5–6 |
Hivernal | - | 12.9 ± 3.3 | 1111 ± 544 | 71.7 ± 23.3 | 1.7 ± 0.6 |
Alaska | - | 15.8 ± 4.1 | 733 ± 271 | 49.5 ± 3.2 | 1.7 ± 0.6 |
Niagara | - | 15.6 ± 2.3 | 741 ± 400 | 45.6 ± 16.7 | 1.7 ± 0.6 |
Oliver | - | 13.7 ± 3.7 | 899 ± 461 | 55.5 ± 20.9 | 1.7 ± 0.8 |
Cotton | 1.60 | - | 287–597 | 5.5–12.6 | 3–10 |
E—glass | 2.55 | 17 | 3400 | 73 | 3.4 |
S—glass | 2.50 | - | 4580 | 85 | 4.6 |
Aramid | 1.4 | 11.9 | 300 | 124 | 2.5 |
HS Carbon | 1.82 | 8.2 | 2550 | 200 | 1.3 |
Carbon (Std. PAN-based) | 1.4 | - | 4000 | 230–240 | 1.4–1.8 |
3. Amazon Natural Fibers
3.1. Açaí
3.2. Babassu
3.3. Buriti
3.4. Carnauba
3.5. Curaua
3.6. Guaruman
3.7. Periquiteira
3.8. Piassava
3.9. Tucum
3.10. Ubim
4. Final Remarks and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
° | Angle symbol |
°C | Celsius |
μm | micrometer |
Al2O3 | Aluminium Oxide |
BC | Before Christ |
BFS | Backface Signature |
CC | Creative Commons |
DNFI | Discover Natural Fibers Initiative |
DSC | Differential Scanning Calorimetry |
Eabs | Energy absorbed |
g | Gram |
g/cm3 | Gram per cubic centimeter |
GJ | Gigajoule |
GPa | Gigapascal |
HDPE | High Density Polyethylene |
HIPS | High-Impact Polystyrene |
J | Joule |
kg | Kilogram |
m/s | Meters per second |
MAS | Multilayered Armor System |
MFA | Microfibril Angle |
mm | milimeter |
MPA | Megapascal |
MWCNT | Multi-Walled Carbon Nanotube |
N | Newton |
N2 | Nitrogen |
NaOH | Sodium Hydroxide |
NIJ | National Institute of Justice |
nm | nanometer |
NFRPC | Natural Fiber-Reinforced Polymer Composite |
PHB | Polyhydroxybutyrate |
PP | Polypropylene |
PPr | Recycled Polypropylene |
PP-g-MA | Maleic Anhydride |
SDGs | Sustainable Development Goals |
SEM | Scanning Electron Microscopy |
tex | Unit of textile measurement |
TGA | Thermogravimetric Analysis |
ton | Tonne |
US$ | Dollar |
UV | Ultraviolet |
vi | Initial velocity |
vL | Limit velocity |
vr | Residual velocity |
vol.% | Volume percent |
wt.% | Weight percent |
References
- Fisher, C.H. History of natural fibers. J. Macromol. Sci. Chem. 1981, 15, 1345–1375. [Google Scholar] [CrossRef]
- Viot, C.R.; Wendel, J.F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit. Rev. Plant Sci. 2023, 42, 1–33. [Google Scholar] [CrossRef]
- Kieling, A.C.; de Macedo Neto, J.C.; Del Pino, G.G.; da Silva Barboza, R.; Diáz, F.R.V.; Rivera, J.L.V.; Fernández, M.V.; Ketterer, C.G.; Ortega, A.G.; Abarzúa, R.I. Development of an Epoxy Matrix Hybrid Composite with Astrocaryum Aculeatum (Tucumã) Endocarp and Kaolin from the Amazonas State in Brazil. Polymers 2023, 15, 2532. [Google Scholar] [CrossRef] [PubMed]
- Pezzolo, D.B. Tecidos: História, Rramas, Tipos e Usos; Editora Senac São Paulo: São Paulo, Brazil, 2021. [Google Scholar]
- Baldia, C.M.; Armitage, R.A. Archaeological Textiles as Secondary Plant and Animal Products. Handb. Archaeol. Sci. 2023, 2, 797–811. [Google Scholar]
- Xhauflair, H.; Jago-On, S.; Vitales, T.J.; Manipon, D.; Amano, N.; Callado, J.R.; Tandang, D.; Kerfant, C.; Choa, O.; Pawlik, A. The invisible plant technology of Prehistoric Southeast Asia: Indirect evidence for basket and rope making at Tabon Cave, Philippines, 39–33,000 years ago. PLoS ONE 2023, 18, e0281415. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, N.; Selvadhas, A.; Archarya, S. Innovative Collaboration and Co-Designing with Santhal and Mohli Tribes of Dumka, India. 2023. Available online: https://dl.designresearchsociety.org/iasdr/iasdr2023/fullpapers/175/ (accessed on 15 November 2023).
- Galán-Guevara, C. Understanding change in traditional sustainable livelihoods: A complex socio-ecological system in an indigenous community in Mexico. Community Dev. J. 2023, bsad010. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Abbas, J.; He, C.; Pilař, L.; Shah, S.A.R. Tourism, urbanization and natural resources rents matter for environmental sustainability: The leading role of AI and ICT on sustainable development goals in the digital era. Resour. Policy 2023, 82, 103445. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total Environ. 2023, 859, 160181. [Google Scholar] [CrossRef]
- Cardoso, R.L.B.; da Silva Rodrigues, J.; Ramos, R.P.B.; de Castro Correa, A.; Leão Filha, E.M.; Monteiro, S.N.; da Silva, A.C.R.; Fujiyama, R.T.; Candido, V.S. Use of Yarn and Carded Jute as Epoxy Matrix Reinforcement for the Production of Composite Materials for Application in the Wind Sector: A Preliminary Analysis for the Manufacture of Blades for Low-Intensity Winds. Polymers 2023, 15, 3682. [Google Scholar] [CrossRef]
- Ravindran, G.; Mahesh, V.; Bheel, N.; Chittimalla, S.; Srihitha, K.; Sushmasree, A. Usage of Natural Fibre Composites for Sustainable Material Development: Global Research Productivity Analysis. Buildings 2023, 13, 1260. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Hasan, K.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Silva, J.R.S.d.; Fonseca, J.C.P.; Santos, T.d.S.; Oliveira, J.B.d.; Maquiné, T.M.; Freitas, B.M.d.; Silva, R.N.A.; Nascimento, N.R.d.; Costa, J.M.d.; Bello, R.H.; et al. Polymer composite produced with Brazil nut residues and high impact polystyrene. Polímeros 2023, 32. [Google Scholar] [CrossRef]
- Initiative, D.N.F. World Natural Fibre Update November 2023. Discover Natural Fibers Initiative. Technical Report. 2023. Available online: https://dnfi.org (accessed on 15 November 2023).
- da Silveira, P.H.P.M.; Santos, M.C.C.d.; Chaves, Y.S.; Ribeiro, M.P.; Marchi, B.Z.; Monteiro, S.N.; Gomes, A.V.; Tapanes, N.d.L.C.O.; Pereira, P.S.d.C.; Bastos, D.C. Characterization of Thermo-Mechanical and Chemical Properties of Polypropylene/Hemp Fiber Biocomposites: Impact of Maleic Anhydride Compatibilizer and Fiber Content. Polymers 2023, 15, 3271. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; La Rosa, A.D.; Goutianos, S.; Grammatikos, S. Effect of accelerated weathering on the performance of natural fibre reinforced recyclable polymer composites and comparison with conventional composites. Compos. Part C Open Access 2023, 12, 100378. [Google Scholar] [CrossRef]
- Murali, B.; Karthik, K.; Marotrao, S.S.; Laxmaiah, G.; Yadav, A.S.; Prasanth, I.; Abbas, M. Mechanical and dynamic mechanical properties of hybrid kevlar/natural fiber composites. Mater. Res. Express 2023, 10, 105305. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.; Siengchin, S. Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Ind. Crops Prod. 2023, 192, 116099. [Google Scholar] [CrossRef]
- Neto, J.S.; de Queiroz, H.F.; Aguiar, R.A.; Banea, M.D. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers 2021, 13, 4425. [Google Scholar] [CrossRef]
- Kieling, A.C.; Santana, G.P.; Santos, M.C.D.; Neto, J.C.D.M.; Pino, G.G.D.; Santos, M.D.D.; Duvoisin Jr, S.; Panzera, T.H. Wood-plastic composite based on recycled polypropylene and Amazonian tucumã (Astrocaryum aculeatum) endocarp waste. Fibers Polym. 2021, 22, 2834–2845. [Google Scholar] [CrossRef]
- Park, H. A study on structural design and analysis of small wind turbine blade with natural fibre (flax) composite. Adv. Compos. Mater. 2016, 25, 125–142. [Google Scholar] [CrossRef]
- Klose, L.; Meyer-Heydecke, N.; Wongwattanarat, S.; Chow, J.; Pérez García, P.; Carré, C.; Streit, W.; Antranikian, G.; Romero, A.M.; Liese, A. Towards Sustainable Recycling of Epoxy-Based Polymers: Approaches and Challenges of Epoxy Biodegradation. Polymers 2023, 15, 2653. [Google Scholar] [CrossRef] [PubMed]
- Panzera, T.H.; Jeannin, T.; Gabrion, X.; Placet, V.; Remillat, C.; Farrow, I.; Scarpa, F. Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering. Compos. Part B Eng. 2020, 197, 108049. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2022, 43, 645–691. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/inequality (accessed on 20 November 2023).
- Maximo, Y.I.; Hassegawa, M.; Verkerk, P.J.; Missio, A.L. Forest bioeconomy in Brazil: Potential innovative products from the forest sector. Land 2022, 11, 1297. [Google Scholar] [CrossRef]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the circular bioeconomy: Drivers and indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Barañano, L.; Garbisu, N.; Alkorta, I.; Araujo, A.; Garbisu, C. Contextualization of the bioeconomy concept through its links with related concepts and the challenges facing humanity. Sustainability 2021, 13, 7746. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Barbosa, B.M.; Vaz, S., Jr.; Colodette, J.L.; de Siqueira, H.F.; da Silva, C.M.S.; Cândido, W.L. Effects of Kraft Lignin and Corn Residue on the Production of Eucalyptus Pellets. BioEnergy Res. 2023, 16, 484–493. [Google Scholar] [CrossRef]
- Barros, M.A.L.; Silva, C.R.C.D.; Lima, L.M.D.; Farias, F.J.C.; Ramos, G.A.; Santos, R.C.D. A review on evolution of cotton in Brazil: GM, white, and colored cultivars. J. Nat. Fibers 2022, 19, 209–221. [Google Scholar] [CrossRef]
- Soares, V.L.; Faber, M.d.O.; Monteiro, A.F.; Cammarota, M.C.; Ferreira-Leitão, V.S. Potential use of sisal juice as raw material for sequential biological production of hydrogen and methane. Braz. J. Chem. Eng. 2023, 1–12. [Google Scholar] [CrossRef]
- Raya, F.T.; Carvalho, L.M.; José, J.; da Cruz, L.P.; Almeida, R.L.; Delevatti, H.A.d.A.; Silveira, N.; da Silva, S.F.; Pissolato, M.D.; Oliveira, A.B.; et al. Rescuing the Brazilian Agave breeding program: Morphophysiological and molecular characterization of a new germplasm. Front. Chem. Eng. 2023, 5, 1218668. [Google Scholar] [CrossRef]
- de Souza, L.A.G. Biodiversity of Fabaceae in the Brazilian Amazon and Its Timber Potential for the Future. In Tropical Forests-Ecology, Diversity and Conservation Status; IntechOpen: London, UK, 2023. [Google Scholar]
- Rodrigues, L.d.A.P.; Nunes, D.D.G.; Hodel, K.V.S.; Viana, J.D.; Silva, E.P.; Soares, M.B.P. Exotic fruits patents trends: An overview based on technological prospection with a focus on Amazonian. Heliyon 2023, 9, e22060. [Google Scholar] [CrossRef] [PubMed]
- Neves, P.D.; Cabral, M.R.; Santos, V.; Mafra, M.R.P.; Junior, H.S. Technical assessment of leaf fibers from curaua: An amazonian bioresource. J. Nat. Fibers 2022, 19, 5900–5909. [Google Scholar] [CrossRef]
- Akil, H.; Omar, M.; Mazuki, A.M.; Safiee, S.; Ishak, Z.M.; Bakar, A.A. Kenaf fiber reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.; Yogesha, B. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review. Mater. Today Proc. 2015, 2, 2959–2967. [Google Scholar] [CrossRef]
- Tonk, R. Natural fibers for sustainable additive manufacturing: A state of the art review. Mater. Today Proc. 2021, 37, 3087–3090. [Google Scholar] [CrossRef]
- Crewther, W. The stress—Strain characteristics of animal fibers after reduction and alkylation. Text. Res. J. 1965, 35, 867–877. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Wang, X. Evaluating the softness of animal fibers. Text. Res. J. 2004, 74, 535–538. [Google Scholar] [CrossRef]
- Ammar, Z.; Ibrahim, H.; Adly, M.; Sarris, I.; Mehanny, S. Influence of natural fiber content on the frictional material of brake pads—A review. J. Compos. Sci. 2023, 7, 72. [Google Scholar] [CrossRef]
- Al-Kharabsheh, B.N.; Arbili, M.M.; Majdi, A.; Alogla, S.M.; Hakamy, A.; Ahmad, J.; Deifalla, A.F. Basalt fiber reinforced concrete: A compressive review on durability aspects. Materials 2023, 16, 429. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Wang, B.; Wang, N.; Guo, Y.; Li, J.; Zhou, Z. Research progress on basalt fiber-based functionalized composites. Rev. Adv. Mater. Sci. 2023, 62, 20220300. [Google Scholar] [CrossRef]
- Dvorkin, L.; Konkol, J.; Marchuk, V.; Huts, A. Efficient, Fine-Grained Fly Ash Concrete Based on Metal and Basalt Fibers. Materials 2023, 16, 3969. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, H.; Feng, Q.; Zheng, Y. Improvement of basalt fiber dispersion and its effect on mechanical characteristics of oil well cement. J. Build. Eng. 2023, 76, 107244. [Google Scholar] [CrossRef]
- Wang, N.; Liu, H.; Huang, F. Effects of Hybrid Rockwool–Wood Fiber on the Performance of Asbestos-Free Brake Friction Composites. Lubricants 2023, 11, 27. [Google Scholar] [CrossRef]
- Yavuz, H. Effect of limestone usage on tribological properties in copper and asbestos-free brake friction materials. Ind. Lubr. Tribol. 2023, 75, 238–245. [Google Scholar] [CrossRef]
- Suphamitmongkol, W.; Khanoonkon, N.; Rungruangkitkrai, N.; Boonyarit, J.; Changniam, C.; Sampoompuang, C.; Chollakup, R. Potential of Pineapple Leaf Fibers as Sound and Thermal Insulation Materials in Thailand. Prog. Appl. Sci. Technol. 2023, 13, 26–32. [Google Scholar]
- Patel, R.V.; Yadav, A.; Winczek, J. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Appl. Sci. 2023, 13, 5126. [Google Scholar] [CrossRef]
- Khatri, H.; Naveen, J.; Jawaid, M.; Jayakrishna, K.; Norrrahim, M.; Rashedi, A. Potential of natural fiber based polymeric composites for cleaner automotive component Production-A comprehensive review. J. Mater. Res. Technol. 2023, 25, 1086–1104. [Google Scholar]
- El Hawary, O.; Boccarusso, L.; Ansell, M.P.; Durante, M.; Pinto, F. An overview of natural fiber composites for marine applications. J. Mar. Sci. Eng. 2023, 11, 1076. [Google Scholar] [CrossRef]
- Haramina, T.; Hadžić, N.; Keran, Z. Epoxy Resin Biocomposites Reinforced with Flax and Hemp Fibers for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 382. [Google Scholar] [CrossRef]
- Sangmesh, B.; Patil, N.; Jaiswal, K.K.; Gowrishankar, T.; Selvakumar, K.K.; Jyothi, M.; Jyothilakshmi, R.; Kumar, S. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 2023, 368, 130457. [Google Scholar]
- Özkılıç, Y.O.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; Ananova, O.; Aksoylu, C.; Madenci, E. Lightweight expanded-clay fiber concrete with improved characteristics reinforced with short natural fibers. Case Stud. Constr. Mater. 2023, 19, e02367. [Google Scholar] [CrossRef]
- Mansor, M.; Nurfaizey, A.; Tamaldin, N.; Nordin, M. Natural fiber polymer composites: Utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–224. [Google Scholar]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In Sustainable Composites for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 253–268. [Google Scholar]
- Dhas, J.E.R.; Arun, M. A review on development of hybrid composites for aerospace applications. Mater. Today Proc. 2022, 64, 267–273. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Bismarck, A.; Mishra, S.; Lampke, T. Plant fibers as reinforcement for green composites. In Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005; pp. 52–128. [Google Scholar]
- Anandjiwala, R.D.; Blouw, S. Composites from bast fibres-prospects and potential in the changing market environment. J. Nat. Fibers 2007, 4, 91–109. [Google Scholar] [CrossRef]
- Ticoalu, A.; Aravinthan, T.; Cardona, F. A review of current development in natural fiber composites for structural and infrastructure applications. In Proceedings of the Southern Region Engineering Conference (SREC 2010), Toowoomba, Australia, 11–12 November 2010. [Google Scholar]
- Bhattacharyya, D.; Subasinghe, A.; Kim, N.K. Natural fibers: Their composites and flammability characterizations. Multifunct. Polym. Compos. 2015, 1, 102–143. [Google Scholar]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem. Concr. Res. 2015, 73, 1–16. [Google Scholar] [CrossRef]
- Jayaraman, K. Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos. Sci. Technol. 2003, 63, 367–374. [Google Scholar] [CrossRef]
- Tsoumis, G. Science and Technology of Wood: Structure, Properties, Utilization; Van Nostrand Reinhold New York: New York, NY, USA, 1991; Volume 115. [Google Scholar]
- Satyanarayana, K.; Ravikumar, K.; Sukumaran, K.; Mukherjee, P.; Pillai, S.; Kulkarni, A. Structure and properties of some vegetable fibres: Part 3 Talipot and palmyrah fibres. J. Mater. Sci. 1986, 21, 57–63. [Google Scholar] [CrossRef]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Brink, M.; Escobin, R. Plant Resources of South-East Asia; Backhuys Publ.: Leiden, The Netherlands, 2003. [Google Scholar]
- Stokke, D.D.; Wu, Q.; Han, G. Introduction to Wood and Natural Fiber Composites; John Wiley & Sons: Hoboken, NJ, USA, 2013; 314p, ISBN 978-0-470-71091-3. [Google Scholar]
- Oksman, K.; Bengtsson, M. Wood fibre thermoplastic composites: Processing, properties and future developments. 2007. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew. Makromol. Chem. 1999, 272, 108–116. [Google Scholar] [CrossRef]
- Koohestani, B.; Darban, A.; Mokhtari, P.; Yilmaz, E.; Darezereshki, E. Comparison of different natural fiber treatments: A literature review. Int. J. Environ. Sci. Technol. 2019, 16, 629–642. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Baltazar-y Jimenez, A.; Bismarck, A. Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 2007, 14, 115–127. [Google Scholar] [CrossRef]
- Kostic, M.; Pejic, B.; Skundric, P. Quality of chemically modified hemp fibers. Bioresour. Technol. 2008, 99, 94–99. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Ding, R.; Yu, C. Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Text. Res. J. 2016, 86, 451–460. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Yu, C. Property of ramie fiber degummed with Fenton reagent. Fibers Polym. 2017, 18, 1891–1897. [Google Scholar] [CrossRef]
- Wang, C.; Bai, S.; Yue, X.; Long, B.; Choo-Smith, L.P. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers Polym. 2016, 17, 1757–1764. [Google Scholar] [CrossRef]
- Azevedo, A.R.; Lima, T.E.; Reis, R.H.; Oliveira, M.S.; Candido, V.S.; Monteiro, S.N. Guaruman fiber: A promising reinforcement for cement-based mortars. Case Stud. Constr. Mater. 2022, 16, e01029. [Google Scholar] [CrossRef]
- Wang, W.M.; Cai, Z.S.; Yu, J.Y.; Xia, Z.P. Changes in composition, structure, and properties of jute fibers after chemical treatments. Fibers Polym. 2009, 10, 776–780. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Hinrichsen, G. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol. Mater. Eng. 2004, 289, 955–974. [Google Scholar] [CrossRef]
- Zhu, Z.; Hao, M.; Zhang, N. Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. J. Nat. Fibers 2018, 17, 101–112. [Google Scholar] [CrossRef]
- Tenazoa, C.; Savastano, H.; Charca, S.; Quintana, M.; Flores, E. The effect of alkali treatment on chemical and physical properties of ichu and cabuya fibers. J. Nat. Fibers 2021, 18, 923–936. [Google Scholar] [CrossRef]
- Chokshi, S.; Parmar, V.; Gohil, P.; Chaudhary, V. Chemical composition and mechanical properties of natural fibers. J. Nat. Fibers 2022, 19, 3942–3953. [Google Scholar] [CrossRef]
- Saragih, S.W.; Lubis, R.; Wirjosentono, B.; Eddyanto, E. Characteristic of abaca (Musa textilis) fiber from Aceh Timur as bioplastic. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; Volume 2049, p. 020058. [Google Scholar] [CrossRef]
- Hassan, M.M.; Wagner, M.H.; Zaman, H.; Khan, M.A. Physico-mechanical performance of hybrid betel nut (Areca catechu) short fiber/seaweed polypropylene composite. J. Nat. Fibers 2010, 7, 165–177. [Google Scholar] [CrossRef]
- Yusriah, L.; Sapuan, S.; Zainudin, E.; Mariatti, M. Exploring the potential of betel nut husk fiber as reinforcement in polymer composites: Effect of fiber maturity. Procedia Chem. 2012, 4, 87–94. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Dufresne, A.; El-Zawawy, W.K.; Agblevor, F.A. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr. Polym. 2010, 81, 811–819. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Venkatachalam, R.; Nallakumarasamy, G. Characterisation of banana fiber-a review. J. Environ. Nanotechnol. 2015, 4, 23–26. [Google Scholar]
- Chollakup, R.; Smitthipong, W.; Kongtud, W.; Tantatherdtam, R. Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): Effect of fiber surface treatment and fiber content. J. Adhes. Sci. Technol. 2013, 27, 1290–1300. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part B Eng. 2019, 176, 107305. [Google Scholar] [CrossRef]
- Yueping, W.; Ge, W.; Haitao, C.; Genlin, T.; Zheng, L.; Feng, X.Q.; Xiangqi, Z.; Xiaojun, H.; Xushan, G. Structures of bamboo fiber for textiles. Text. Res. J. 2010, 80, 334–343. [Google Scholar] [CrossRef]
- Nahar, S.; Hasan, M. Effect of chemical composition, anatomy and cell wall structure on tensile properties of bamboo fiber. Eng. J. 2013, 17, 61–68. [Google Scholar] [CrossRef]
- Satyanarayana, K.; Guimarães, J.; Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1694–1709. [Google Scholar] [CrossRef]
- Guimaraes, J.L.; Frollini, E.; Da Silva, C.; Wypych, F.; Satyanarayana, K. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crops Prod. 2009, 30, 407–415. [Google Scholar] [CrossRef]
- Tanobe, V.O.; Sydenstricker, T.H.; Munaro, M.; Amico, S.C. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym. Test. 2005, 24, 474–482. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Zereshkian, A.; Sain, M. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour. Technol. 2006, 97, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.O.; Maheswari, C.U.; Shukla, M.; Rajulu, A.V. Chemical composition and structural characterization of Napier grass fibers. Mater. Lett. 2012, 67, 35–38. [Google Scholar] [CrossRef]
- Tomczak, F.; Satyanarayana, K.G.; Sydenstricker, T.H.D. Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian curauá fibers. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2227–2236. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Negi, Y.S. Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Yasin, P.; Ramana, M.V.; Vamshi, C.K.; Pradeep, K. A study of continuous Henequen/Epoxy composites. Mater. Today Proc. 2019, 18, 3798–3811. [Google Scholar] [CrossRef]
- Ioelovich, M.; Leykin, A. Structural investigations of various cotton fibers and cotton celluloses. BioResources 2008, 3, 170–177. [Google Scholar] [CrossRef]
- Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J.M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331. [Google Scholar] [CrossRef]
- Bacci, L.; Di Lonardo, S.; Albanese, L.; Mastromei, G.; Perito, B. Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text. Res. J. 2011, 81, 827–837. [Google Scholar] [CrossRef]
- Viju, S.; Thilagavathi, G. Characterization of surface modified nettle fibers for composite reinforcement. J. Nat. Fibers 2022, 19, 1819–1827. [Google Scholar] [CrossRef]
- Laftah, W.A.; Wan Abdul Rahman, W.A. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: A review. J. Nat. Fibers 2016, 13, 85–102. [Google Scholar] [CrossRef]
- Neto, A.R.S.; Araujo, M.A.; Barboza, R.M.; Fonseca, A.S.; Tonoli, G.H.; Souza, F.V.; Mattoso, L.H.; Marconcini, J.M. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind. Crops Prod. 2015, 64, 68–78. [Google Scholar] [CrossRef]
- Duarte, G.V.; Ramarao, B.V.; Amidon, T.E.; Ferreira, P.T. Effect of hot water extraction on hardwood kraft pulp fibers (Acer saccharum, sugar maple). Ind. Eng. Chem. Res. 2011, 50, 9949–9959. [Google Scholar] [CrossRef]
- Neus Anglès, M.; Salvadó, J.; Dufresne, A. Steam-exploded residual softwood-filled polypropylene composites. J. Appl. Polym. Sci. 1999, 74, 1962–1977. [Google Scholar] [CrossRef]
- Bledzki, A.; Franciszczak, P.; Osman, Z.; Elbadawi, M. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind. Crops Prod. 2015, 70, 91–99. [Google Scholar] [CrossRef]
- Elzubair, A.; Bonelli, C.M.C.; Suarez, J.C.M.; Mano, E.B. Morphological, structural, thermal and mechanical characterization of piassava fibers. J. Nat. Fibers 2007, 4, 13–31. [Google Scholar] [CrossRef]
- Arce, C.; Garzon, E.; Sanchez-Soto, P.J. Phyllite clays as raw materials replacing cement in mortars: Properties of new impermeabilizing mortars. Constr. Build. Mater. 2019, 224, 348–358. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Suntijitto, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 2015, 94, 664–669. [Google Scholar] [CrossRef]
- Lilargem Rocha, D.; Tambara Júnior, L.U.D.; Marvila, M.T.; Pereira, E.C.; Souza, D.; de Azevedo, A.R.G. A review of the use of natural fibers in cement composites: Concepts, applications and Brazilian history. Polymers 2022, 14, 2043. [Google Scholar] [CrossRef]
- Carr, D.J.; Cruthers, N.M.; Laing, R.M.; Niven, B.E. Fibers from Three Cultivars of New Zealand Flax (Phormium tenax). Text. Res. J. 2005, 75, 93–98. [Google Scholar] [CrossRef]
- Sreenivasan, V.; Somasundaram, S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres—An exploratory investigation. Mater. Des. 2011, 32, 453–461. [Google Scholar] [CrossRef]
- Syed, N.F.; Zakaria, M.H.; Bujang, J.S. Fiber Characteristics and Papermaking of Seagrass Using Hand-beaten and Blended Pulp. BioResources 2016, 11, 5358–5380. [Google Scholar] [CrossRef]
- Mathew, L.; Joseph, K.; Joseph, R. Isora fibre: Morphology, chemical composition, surface modification, physical, mechanical and thermal properties—A potential natural reinforcement. J. Nat. Fibers 2007, 3, 13–27. [Google Scholar] [CrossRef]
- Chirayil, C.J.; Joy, J.; Mathew, L.; Mozetic, M.; Koetz, J.; Thomas, S. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crops Prod. 2014, 59, 27–34. [Google Scholar] [CrossRef]
- Sreekala, M.; Kumaran, M.; Thomas, S. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J. Appl. Polym. Sci. 1997, 66, 821–835. [Google Scholar] [CrossRef]
- Ammar, H.; Abid, M.; Abid, S. Cellulose fibers obtained by organosolv process from date palm rachis (Phoenix dactylifera L.). In Proceedings of the Materiaux 2010, Mahdia, Tunisia, 4–7 January 2010; IOP Publishing: Bristol, UK, 2012; 28, p. 012002. [Google Scholar] [CrossRef]
- Sivamurugan, P.; Selvam, R.; Pandian, M.; Ashraf, M.S.; Chakrapani, I.S.; Thanikasalam, A.; Roshith, P.; Ramesh, K.; Ramesh, B. Extraction of novel biosilica from finger millet husk and its coconut rachilla-reinforced epoxy biocomposite: Mechanical, thermal, and hydrophobic behaviour. Biomass Convers. Biorefinery 2022, 1–9. [Google Scholar] [CrossRef]
- da Silva Nicolau, G.; Weber, R.P.; Monteiro, S.N.; Loureiro, G.A.; Lavinsky, A.A.; da Fonseca, L.V.; da Silva, E.G.; dos Santos, P.L.B.; Abranches, R.P.; Machado, V.C. Influence of Mercerization Process on the Surface of Coconut Fiber for Composite Reinforcement. In Proceedings of the Materials Science Forum, Chennai, India, 16–17 September 2020; Trans Tech Publications: Wollerau, Switzerland, 2020; Volume 1012, pp. 37–42. [Google Scholar]
- Brígida, A.; Calado, V.; Gonçalves, L.; Coelho, M. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 2010, 79, 832–838. [Google Scholar] [CrossRef]
- Kulandaivel, N.; Muralikannan, R.; KalyanaSundaram, S. Extraction and characterization of novel natural cellulosic fibers from pigeon pea plant. J. Nat. Fibers 2018, 17, 769–779. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Valenza, A. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 2014, 106, 77–83. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Volk, J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 480–488. [Google Scholar] [CrossRef]
- Belkhir, S.; Koubaa, A.; Khadhri, A.; Ksontini, M.; Nadji, H.; Smiti, S.; Stevanovic, T. Seasonal effect on the chemical composition of the leaves of Stipa tenacissima L. and implications for pulp properties. Ind. Crops Prod. 2013, 44, 56–61. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Adithya, K.; CV, A.K.; Srinivas, C.; Yogesh, S.; Nagananda, G.; Venkatesh, K.; Reddy, N. Biofibers and biocomposites from sabai grass: A unique renewable resource. Carbohydr. Polym. 2019, 218, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Nath Barman, D.; Haque, M.A.; Kang, T.H.; Kim, G.H.; Kim, T.Y.; Kim, M.K.; Yun, H.D. Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. Environ. Technol. 2014, 35, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, T.M.; Sultan, M.T.H.; Ahsan, Q.; Jawaid, M.; Naveen, J.; Shah, A.U.M.; Hua, L.S. Characterization of alkali treated new cellulosic fibre from Cyrtostachys renda. J. Mater. Res. Technol. 2020, 9, 3537–3546. [Google Scholar] [CrossRef]
- Chow, P.; Nakayama, F.S.; Blahnik, B.; Youngquist, J.A.; Coffelt, T.A. Chemical constituents and physical properties of guayule wood and bark. Ind. Crops Prod. 2008, 28, 303–308. [Google Scholar] [CrossRef]
- Song, Y.; Han, G.; Li, M.; Jiang, W.; Li, X.; Zhang, Y.; Yu, R. Performance analysis of kudzu fiber prepared by using combined steam explosion and chemical degumming. J. Nat. Fibers 2017, 14, 759–768. [Google Scholar] [CrossRef]
- Kazama, E.H.; Ferreira, F.M.; Silva, A.R.B.d.; Fiorese, D.A. Influência do sistema de colheita nas características da fibra do algodão. Rev. Ceres 2016, 63, 631–638. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.; Pua, G.; Jawaid, M.; Islam, M.S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Petroudy, S.D. Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 59–83. [Google Scholar]
- Madsen, B.; Gamstedt, E.K. Wood versus plant fibers: Similarities and differences in composite applications. Adv. Mater. Sci. Eng. 2013, 2013, 564346. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 1996, 37, 5139–5149. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Imran, R.; Arif, Z.U.; Akram, N.; Arshad, H.; Al Rashid, A.; Garcia Marquez, F.P. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 2021, 11, 293. [Google Scholar] [CrossRef]
- Sonawane, G.H.; Patil, S.P.; Sonawane, S.H. Nanocomposites and its applications. In Applications of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–22. [Google Scholar]
- Meneghetti, P.; Qutubuddin, S. Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim. Acta 2006, 442, 74–77. [Google Scholar] [CrossRef]
- Vilaseca, F.; Corrales, F.; Llop, M.F.; Pelach, M.A.; Mutjé, P. Chemical treatment for improving wettability of biofibres into thermoplastic matrices. Compos. Interfaces 2005, 12, 725–738. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Rahman, A.S.; Mathur, V.; Asmatulu, R. Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Compos. Struct. 2018, 187, 481–488. [Google Scholar] [CrossRef]
- Sanjay, M.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Amiandamhen, S.; Meincken, M.; Tyhoda, L. Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposite materials. Fibers Polym. 2020, 21, 677–689. [Google Scholar] [CrossRef]
- Nurazzi, N.; Asyraf, M.; Rayung, M.; Norrrahim, M.; Shazleen, S.; Rani, M.; Shafi, A.; Aisyah, H.; Radzi, M.; Sabaruddin, F.; et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Mohammed, M.; Rahman, R.; Mohammed, A.M.; Adam, T.; Betar, B.O.; Osman, A.F.; Dahham, O.S. Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polym. Test. 2022, 115, 107707. [Google Scholar] [CrossRef]
- Corrales, F.; Vilaseca, F.; Llop, M.; Girones, J.; Mendez, J.; Mutje, P. Chemical modification of jute fibers for the production of green-composites. J. Hazard. Mater. 2007, 144, 730–735. [Google Scholar] [CrossRef]
- Gallego, R.; Piras, C.C.; Rutgeerts, L.A.; Fernandez-Prieto, S.; De Borggraeve, W.M.; Franco, J.M.; Smets, J. Green approach for the activation and functionalization of jute fibers through ball milling. Cellulose 2020, 27, 643–656. [Google Scholar] [CrossRef]
- Sood, M.; Dwivedi, G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt. J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Benítez, A.N.; Monzón, M.D.; Angulo, I.; Ortega, Z.; Hernández, P.M.; Marrero, M.D. Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement 2013, 46, 1065–1073. [Google Scholar] [CrossRef]
- Huda, M.; Drzal, L.; Ray, D.; Mohanty, A.; Mishra, M. Natural-fiber composites in the automotive sector. In Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 221–268. [Google Scholar]
- da Costa Tavares, M.G. A Amazônia brasileira: Formação histórico-territorial e perspectivas para o século XXI. GEOUSP Espaço E Tempo (Online) 2011, 15, 107–121. [Google Scholar]
- Rorato, A.C.; Dal’Asta, A.P.; Lana, R.M.; Dos Santos, R.B.; Escada, M.I.S.; Vogt, C.M.; Neves, T.C.; Barbosa, M.; Andreazzi, C.S.; Dos Reis, I.C.; et al. Trajetorias: A dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci. Data 2023, 10, 65. [Google Scholar] [CrossRef]
- Buchdid Camargo Neves, L.T.; Dos Santos Campos, D.C.; Souza Mendes, J.K.; Urnhani, C.O.; Mattos De Araujo, K.G. Quality of Fruits Manually Processed of Acai (Euterpe oleracea MART.) and BACABA (Oenocarpus bacaba MART.). Rev. Bras. De Frutic. 2015, 37, 729–738. [Google Scholar] [CrossRef]
- Yokomizo, G.K.I.; Mochiutti, S.; de Queiroz, J.A.L.; dos Santos, G.R.; Furtado, R.G.; Brandão, A.P.; Colares, I.B. Parameter estimates for genetic characters of assai palm trees fruits in Amapá State. Ciência Florest. 2016, 26, 985–993. [Google Scholar] [CrossRef]
- Nascimento, R.J.S.d.; Couri, S.; Antoniassi, R.; Freitas, S.P. Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. Rev. Bras. De Frutic. 2008, 30, 498–502. [Google Scholar] [CrossRef]
- Rogez, H. Açai: Preparo, Composição e Melhoramento da Conservação; EDUFPA: Belém, Brazil, 2000; 313p. [Google Scholar]
- Rodrigues, R.B.; Lichtenthäler, R.; Zimmermann, B.F.; Papagiannopoulos, M.; Fabricius, H.; Marx, F.; Maia, J.G.; Almeida, O. Total oxidant scavenging capacity of Euterpe oleracea Mart.(açaí) seeds and identification of their polyphenolic compounds. J. Agric. Food Chem. 2006, 54, 4162–4167. [Google Scholar] [CrossRef]
- Matias dos Santos, G.; Arraes Maia, G.; Machado de Sousa, P.H.; Correia da Costa, J.M.; Wilane de Figueiredo, R.; Matias do Prado, G. Correlação entre atividade antioxidante e compostos bioativos de polpas comerciais de açaí (Euterpe oleracea Mart). Arch. Latinoam. De Nutr. 2008, 58, 187–192. [Google Scholar]
- Global Biodiversity Information Facility GBIF. Ocorrência Euterpe Oleracea Mart. 2023. Available online: https://www.gbif.org/pt/species/5293398 (accessed on 10 November 2023).
- Costa, D.d.S.; El Banna, W.R.; Lima, L.S.; Almeida, D.F.; Santos, E.d.J.S.d.; Lopes, C.E.P.; Fujiyama, R.T. Compósito De Fibras De Açaí E Resina Poliéster. In Proceedings of the 68th abm International Annual Congress, Belo Horizonte, Brazil, 30 July–2 August 2013; pp. 1393–1401. [Google Scholar]
- Bufalino, L.; de Sena Neto, A.R.; Tonoli, G.H.D.; de Souza Fonseca, A.; Costa, T.G.; Marconcini, J.M.; Colodette, J.L.; Labory, C.R.G.; Mendes, L.M. How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 2015, 22, 3657–3672. [Google Scholar] [CrossRef]
- Subramoniam, R.; Huisingh, D.; Chinnam, R.B.; Subramoniam, S. Remanufacturing Decision-Making Framework (RDMF): Research validation using the analytical hierarchical process. J. Clean. Prod. 2013, 40, 212–220. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, M.S.; Ishak, M.R.; Aziz, N.A. Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources 2014, 9, 4608–4621. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Castro, C.D.P.d.C.; Dias, C.G.B.T.; Faria, J.d.A.F. Production and evaluation of recycled polymers from açaí fibers. Mater. Res. 2010, 13, 159–163. [Google Scholar] [CrossRef]
- Bastos, L.P.; Lima, L.d.C.; Santos, G.B.; Melo, G.d.S.V.d.; Mesquita, A.L.A. Simulação com painéis de fibra de açaí para melhoria da inteligibilidade da fala em sala de aula. Ambiente Construído 2021, 21, 45–63. [Google Scholar] [CrossRef]
- Martins, M.A.; Mattoso, L.H.C.; Pessoa, J.D.C. Comportamento térmico e caracterização morfológica das fibras de mesocarpo e caroço do açaí (Euterpe oleracea Mart.). Rev. Bras. De Frutic. 2009, 31, 1150–1157. [Google Scholar] [CrossRef]
- de Carvalho, C.M.R.G.; Castro, G.C.; dos Santos, G.M.; Campelo, J.E.G.; Sarmento, J.L.R.; Carvalho, M.D.F. Aproveitamento integral do coco babaçu como estratégia de educação e desenvolvimento social sustentável. Extensão Em Foco 2020, 21, 156–164. [Google Scholar]
- Lorenzine, H.; Sousa, H.; Coelho, L.; Medeiros, J.; Nikolaus, B. Palmeiras No Brasil; Plantarum: Nova Odessa, Brazil, 1996; p. 70. [Google Scholar]
- Lorenzi, H.; Noblick, L.; Kahn, F.; Ferreira, E. Flora Brasileira-Arecaceae (Palmeiras); Instituto Plantarum: Nova Odessa, Brazil, 2010. [Google Scholar]
- González-Pérez, S.E.; Coelho-Ferreira, M.; Robert, P.d.; Garcés, C.L.L. Conhecimento e usos do babaçu (Attalea speciosa Mart. e Attalea eichleri (Drude) AJ Hend.) entre os Mebêngôkre-Kayapó da Terra Indígena Las Casas, estado do Pará, Brasil. Acta Bot. Bras. 2012, 26, 295–308. [Google Scholar] [CrossRef]
- Silva, G.; Barroso, M.E.; Silva, D.L.; Conceição, G. A importância do coco babaçu para a comunidade escolar e extrativista no município de São João do Arraial/PI. Agrar. Acad. 2016, 3. [Google Scholar] [CrossRef]
- Santana, S.A.; Vieira, A.P.; da Silva Filho, E.C.; Melo, J.C.; Airoldi, C. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption. J. Hazard. Mater. 2010, 174, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Global Biodiversity Information Facility GBIF. Ocorrência Attalea Speciosa Mart. ex Spreng. 2023. Available online: https://www.gbif.org/pt/species/8174773 (accessed on 10 November 2023).
- Carrazza, L.R.; Ávila, J.C.C.; Silva, M.L.D. Manual Tecnológico de Aproveitamento Integral do Fruto e da Folha do Babaçu (Attalea spp.), 2nd ed.; ISPN: Brasília, Brazil, 2012; ISBN 978-85-63288-06-6. [Google Scholar]
- Soler, M.P.; Vitali, A.d.A.; Muto, E.F. Tecnologia de quebra do coco babaçu (Orbignya speciosa). Food Sci. Technol. 2007, 27, 717–722. [Google Scholar] [CrossRef]
- de Morais, J.P.G.; Campana, M.; Del Valle, T.A.; Moreira, T.G.; da Silva, E.D.R.; do Prado, R.F.; de Oliveira, R.E. Inclusion of babassu bran produced in milk production in Amazonia. Trop. Anim. Health Prod. 2021, 53, 527. [Google Scholar] [CrossRef]
- Costa, R.M.; Leite, M.R.L.; Matos, S.d.S.; Sousa, R.C.M.d.; Silva-Matos, R.R.S.d.; Bezerra, A.A.d.C. Quality of pre-sprouted sugarcane seedlings grown on substrates with decomposed babassu palm stem. Pesqui. Agropecu. Trop. 2021, 51. [Google Scholar] [CrossRef]
- dos Anjos, S.S.N.; do Nascimento Neto, J.O. Avaliação do impacto de política de subvenção econômica na cadeia produtiva de biodiesel de Babaçu. Rev. Em Agronegócio E Meio Ambiente 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Chaves, Y.S.; da Silveira, P.H.P.; Neuba, L.d.M.; Junio, R.F.P.; Ribeiro, M.P.; Monteiro, S.N.; Nascimento, L.F.C. Evaluation of the density, mechanical, thermal and chemical properties of babassu fibers (Attalea speciosa.) for potential composite reinforcement. J. Mater. Res. Technol. 2023, 23, 2089–2100. [Google Scholar] [CrossRef]
- De Lemos, A.L.; Mauss, C.J.; Santana, R.M.C. Characterization of natural fibers: Wood, sugarcane and babassu for use in biocomposites. Cellul. Chem. Technol. 2017, 51, 711–718. [Google Scholar]
- Chaves, Y.S.; da Silveira, P.H.P.M.; Monteiro, S.N.; Nascimento, L.F.C. Babassu Coconut Fibers: Investigation of Chemical and Surface Properties (Attalea speciosa). Polymers 2023, 15, 3863. [Google Scholar] [CrossRef]
- Furtado, J.B.d.M.; Furtado Filho, P.A.; Oliveira, T.P.; Caetano, M.R.d.S.; Araujo, I.M.d.S.; Figueiredo, F.C.; Santos Júnior, J.R.d. Enhancement of the photodegradative potential of polymer composites containing babassu fiber. Mater. Res. 2020, 23. [Google Scholar] [CrossRef]
- de Oliveira Libório Dourado, J.B.; Alves, M.E.R.; de Oliveira Júnior, W.A.; de Oliveira, B.L.M.; de Jesus Bezerra da Silva, H.; López-Galindo, A.; Viseras, C.; Furtini, M.B.; dos Santos, V.B. Babassu Fibers as Green Mortar Additives. J. Nat. Fibers 2023, 20, 2256471. [Google Scholar] [CrossRef]
- Marinho, V.A.D.; Almeida, T.; Carvalho, L.; Canedo, E.L. Aditivação e biodegradação de compósitos PHB/babaçu. Rev. Eletrônica De Mater. E Process. 2018, 13, 37–41. [Google Scholar]
- Endress, B.A.; Horn, C.M.; Gilmore, M.P. Mauritia flexuosa palm swamps: Composition, structure and implications for conservation and management. For. Ecol. Manag. 2013, 302, 346–353. [Google Scholar] [CrossRef]
- Peters, C.M.; Balick, M.J.; Kahn, F.; Anderson, A.B. Oligarchic forests of economic plants in Amazonia: Utilization and conservation of an important tropical resource. Conserv. Biol. 1989, 3, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.; Phillips, O.L.; Ismodes, A.R.; Lopez, M.; Rose, S.; Wood, D.; Farfan, A.J. Local values for harvested forest plants in Madre de Dios, Peru: Towards a more contextualised interpretation of quantitative ethnobotanical data. Biodivers. Conserv. 2005, 14, 45–79. [Google Scholar] [CrossRef]
- da Cruz Demosthenes, L.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; da Costa Garcia Filho, F.; da Luz, F.S.; Oliveira, M.S.; Ramos, F.J.H.T.V.; Pereira, A.C.; Braga, F.O. Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. J. Mater. Res. Technol. 2020, 9, 115–123. [Google Scholar] [CrossRef]
- Mesa, L.; Galeano, G. Palms uses in the Colombian Amazon. Caldasia 2013, 35, 351–369. [Google Scholar]
- Abreu, Y.; Ávila, R.; Gonçalves, T. The buriti agro extractivism: An alternative for the development of the Brazilian Amazon Region. Int. J. Soc. Sci. Entrep. 2014, 1, 189–197. [Google Scholar]
- Virapongse, A. Social mechanisms and mobility: Buriti palm (Mauritia flexuosa) extractivism in Brazil. Hum. Ecol. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Sosnowska, J.; Walanus, A.; Balslev, H. Asháninka palm management and domestication in the Peruvian Amazon. Hum. Ecol. 2015, 43, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Draper, F.C.; Roucoux, K.H.; Lawson, I.T.; Mitchard, E.T.; Coronado, E.N.H.; Lähteenoja, O.; Montenegro, L.T.; Sandoval, E.V.; Zaráte, R.; Baker, T.R. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 2014, 9, 124017. [Google Scholar] [CrossRef]
- Demosthenes, L.C.d.C.; Luz, F.S.d.; Nascimento, L.F.C.; Monteiro, S.N. Buriti Fabric Reinforced Epoxy Composites as a Novel Ballistic Component of a Multilayered Armor System. Sustainability 2022, 14, 10591. [Google Scholar] [CrossRef]
- da Silva Santos, R.; de Souza, A.A.; De Paoli, M.A.; de Souza, C.M.L. Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: Preparation and characterization. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1123–1129. [Google Scholar] [CrossRef]
- Júnior, H.L.O.; Moraes, A.; Poletto, M.; Zattera, A.J.; Amico, S.C. Chemical composition, tensile properties and structural characterization of buriti fiber. Cellul. Chem. Technol. 2016, 50, 15–22. [Google Scholar]
- Pelegrini, K.; Donazzolo, I.; Brambilla, V.; Coulon Grisa, A.M.; Piazza, D.; Zattera, A.J.; Brandalise, R.N. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Calado, V.; Rodriguez, R.J.; Margem, F.M. Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—An Overview. J. Mater. Res. Technol. 2012, 1, 117–126. [Google Scholar] [CrossRef]
- Neves Monteiro, S.; de Oliveira Braga, F.; Pereira Lima, E.; Henrique Leme Louro, L.; Wieslaw Drelich, J. Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor. Polym. Eng. Sci. 2017, 57, 947–954. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lima, É.P.; Louro, L.H.L.; Da Silva, L.C.; Drelich, J.W. Unlocking function of aramid fibers in multilayered ballistic armor. Metall. Mater. Trans. A 2015, 46, 37–40. [Google Scholar] [CrossRef]
- NIJ 0101.06; Ballistic Resistance of Body Armor. National Institute of Justice: Washington, DC, USA, 2008.
- Cattani, I.M.; Baruque-Ramos, J. Buriti palm fiber (Mauritia flexuosa MART.): Characterization and studies for its application in design products. Key Eng. Mater. 2016, 668, 63–74. [Google Scholar] [CrossRef]
- Castro, M.F.d.O.; Xavier, G.S.M.; Dias, C.B.; Santos, K.d.S.d.; Leão, R. Resistência à flexão de compósitos reforçados com fibra de buriti tratada com NaOH. In Proceedings of the Congresso Técnico Científico da Engenharia e da Agronomia—CONTECC, Virtual, 15–17 September 2021; pp. 1–6. [Google Scholar]
- Junio, R.F.P.; de Mendonça Neuba, L.; Souza, A.T.; Pereira, A.C.; Nascimento, L.F.C.; Monteiro, S.N. Thermochemical and structural characterization of promising carnauba novel leaf fiber (Copernicia prunifera). J. Mater. Res. Technol. 2022, 18, 4714–4723. [Google Scholar] [CrossRef]
- Junio, R.F.P.; Nascimento, L.F.C.; Neuba, L.d.M.; Souza, A.T.; Moura, J.V.B.; Garcia Filho, F.d.C.; Monteiro, S.N. Copernicia prunifera leaf fiber: A promising new reinforcement for epoxy composites. Polymers 2020, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.D.D.; Carvalho, L.F.M.; Medeiros, A.M.; Souto, C.R.; Paskocimas, C.A. A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos. Part B Eng. 2012, 43, 2827–2835. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Barbosa, A.P.; Bevitori, A.B.; Silva, I.L.A.D.; Costa, L.L.D. Natural lignocellulosic fibers as engineering materials—An overview. Metall. Mater. Trans. A 2011, 42, 2963–2974. [Google Scholar] [CrossRef]
- Junio, R.F.P.; de Mendonça Neuba, L.; Pereira, A.C.; Souza, A.T.; Isidoro, L.M.M.; Nascimento, L.F.C.; Monteiro, S.N. Carnauba leaf fibers: Correlation among diametrical variation, physical and mechanical properties. J. Mater. Res. Technol. 2023, 22, 1888–1899. [Google Scholar] [CrossRef]
- Tiwari, Y.M.; Sarangi, S.K. Characterization of raw and alkali treated cellulosic Grewia Flavescens natural fiber. Int. J. Biol. Macromol. 2022, 209, 1933–1942. [Google Scholar] [CrossRef]
- Eduardo, A.F.; Nóbrega, M.V.d.; Ferreira, R.L.d.S. Evaluation of the behavior of mortars produced with fibers from the straw of carnauba: Effects of the content of addition and length used. Matéria 2021, 26. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Silva, E.J.d.; Silva, P.D.d.; Marques, M.L.; Fornari Junior, C.; Garcia, F.C.; Luzardo, F.H. Resistência à compressão de argamassas em função da adição de fibra de coco. Rev. Bras. De Eng. Agríc. E Ambient. 2014, 18, 1268–1273. [Google Scholar] [CrossRef]
- De Pellegrin, M.; Acordi, J.; Montedo, O. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers 2019, 18, 111–121. [Google Scholar] [CrossRef]
- Castro, D.O.d.; Ruvolo-Filho, A.; Frollini, E. Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polym. Test. 2012, 31, 880–888. [Google Scholar] [CrossRef]
- Souza, S.; Ferreira, M.; Sain, M.; Ferreira, M.; Pupo, H.; Cherian, B.; Leão, A. The use of curaua fibers as reinforcements in composites. In Biofiber Reinforcements in Composite Materials; Elsevier: Amsterdam, The Netherlands, 2015; pp. 700–720. [Google Scholar]
- Santos, P.A.; Spinacé, M.A.; Fermoselli, K.K.; De Paoli, M.A. Efeito da forma de processamento e do tratamento da fibra de curauá nas propriedades de compósitos com poliamida-6. Polímeros 2009, 19, 31–39. [Google Scholar] [CrossRef]
- Leão, A.; Sartor, S.M.; Caraschi, J.C. Natural fibers based composites—Technical and social issues. Mol. Cryst. Liq. Cryst. 2006, 448, 161–763. [Google Scholar] [CrossRef]
- de Freitas, A.E.; Padilha, F.d.J.; Barros, S.d.S.; Khan, T.M.; Pereira, B.; Barbosa, W.T.; Barbosa, J.D.; Calderaro, F.L.; da Silva, S.; Quirino, M.G.; et al. Curauá fiber from plants produced by tissue culture: Thermal, mechanical, and morphological characterizations. Cellulose 2023, 30, 2841–2858. [Google Scholar] [CrossRef]
- Garcés, C.L.L.; Pérez, S.E.G.; Silva, J.A.d.; Araújo, M.O.d.; Coelho-Ferreira, M. Objetos indígenas para o mercado: Produção, intercâmbio, comércio e suas transformações. Experiências Ka’apor e Mebêngôkre-Kayapó. Bol. Do Mus. Para. Emilio Goeldi. Cienc. Humanas 2015, 10, 659–680. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; da Luz, F.S.; Pinheiro, W.A.; Monteiro, S.N. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement. J. Mater. Res. Technol. 2020, 9, 13390–13401. [Google Scholar] [CrossRef]
- Zah, R.; Hischier, R.; Leão, A.L.; Braun, I. Curauá fibers in the automobile industry—A sustainability assessment. J. Clean. Prod. 2007, 15, 1032–1040. [Google Scholar] [CrossRef]
- Gomes, A.; Matsuo, T.; Goda, K.; Ohgi, J. Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1811–1820. [Google Scholar] [CrossRef]
- Gomes, A.; Goda, K.; Ohgi, J. Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 2004, 47, 541–546. [Google Scholar] [CrossRef]
- Ferreira, S.R.; de Andrade Silva, F.; Lima, P.R.L.; Toledo Filho, R.D. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Constr. Build. Mater. 2017, 139, 551–561. [Google Scholar] [CrossRef]
- Teixeira, F.P.; de Andrade Silva, F. On the use of natural curauá reinforced cement based composites for structural applications. Cem. Concr. Compos. 2020, 114, 103775. [Google Scholar] [CrossRef]
- Teixeira, R.S.; Santos, S.F.d.; Christoforo, A.L.; Savastano, H., Jr.; Lahr, F.A.R. Extrudability of cement-based composites reinforced with curauá (Ananas erectifolius) or polypropylene fibers. Constr. Build. Mater. 2019, 205, 97–110. [Google Scholar] [CrossRef]
- Meliande, N.M.; Oliveira, M.S.; Silveira, P.H.P.M.d.; Dias, R.R.; Marçal, R.L.S.B.; Monteiro, S.N.; Nascimento, L.F.C. Curaua—Aramid Hybrid Laminated Composites for Impact Applications: Flexural, Charpy Impact and Elastic Properties. Polymers 2022, 14, 3749. [Google Scholar] [CrossRef]
- Meliande, N.M.; Silveira, P.H.P.M.d.; Monteiro, S.N.; Nascimento, L.F.C. Tensile Properties of Curaua—Aramid Hybrid Laminated Composites for Ballistic Helmet. Polymers 2022, 14, 2588. [Google Scholar] [CrossRef] [PubMed]
- Meliande, N.M.; Oliveira, M.S.; Pereira, A.C.; Balbino, F.D.P.; da Silva Figueiredo, A.B.H.; Monteiro, S.N.; Nascimento, L.F.C. Ballistic properties of curaua-aramid laminated hybrid composites for military helmet. J. Mater. Res. Technol. 2023, 25, 3943–3956. [Google Scholar] [CrossRef]
- da Silva, A.O.; de Castro Monsores, K.G.; Oliveira, S.d.S.; Weber, R.P.; Monteiro, S.N. Ballistic behavior of a hybrid composite reinforced with curaua and aramid fabric subjected to ultraviolet radiation. J. Mater. Res. Technol. 2018, 7, 584–591. [Google Scholar] [CrossRef]
- de Campos, A.; Claro, P.C.; Luchesi, B.R.; Miranda, M.; Souza, F.V.; Ferreira, M.D.; Marconcini, J.M. Curaua cellulose sheets dip coated with micro and nano carnauba wax emulsions. Cellulose 2019, 26, 7983–7993. [Google Scholar] [CrossRef]
- Frollini, E.; Bartolucci, N.; Sisti, L.; Celli, A. Biocomposites based on poly (butylene succinate) and curaua: Mechanical and morphological properties. Polym. Test. 2015, 45, 168–173. [Google Scholar] [CrossRef]
- Borsoi, C.; Scienza, L.C.; Zattera, A.J. Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. J. Appl. Polym. Sci. 2013, 128, 653–659. [Google Scholar] [CrossRef]
- Barbalho, G.H.d.A.; Nascimento, J.J.d.S.; Silva, L.B.d.; Gomez, R.S.; Farias, D.O.d.; Diniz, D.D.S.; Santos, R.S.; Figueiredo, M.J.d.; Lima, A.G.B.d. Bio-Polyethylene Composites Based on Sugar Cane and Curauá Fiber: An Experimental Study. Polymers 2023, 15, 1369. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.S.; Cavalcanti, D.K.; da Cunha Ferro, L.E.; de Queiroz, H.F.; Aguiar, R.A.; Banea, M.D. Effect of Multi-Walled Carbon Nanotubes on the Mechanical and Thermal Properties of Curauá Natural-Fiber-Reinforced Composites. C 2023, 9, 102. [Google Scholar] [CrossRef]
- Santos, N.S.S.; Carneiro, S.C.P.M.H.d.S. Utilização do trançado de palha como estratégia para o desenvolvimento sustentável do setor moveleiro. Simpósio De Eng. De Produção 2005, 13, 2005. [Google Scholar]
- Costa , M.O.; Souza, F.S.; Andrade, S.M.C. Ensaios de tração e de absorção de água em compósitos de resina poliester e fibra da tala de Guarumã. In Proceedings of the 21º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais, Cuiabá, Brazil, 9–13 November 2014; Volume 21, pp. 3736–3741. [Google Scholar]
- Pinheiro, M.A.; Gomes, L.G.; Silva, A.C.R.d.; Candido, V.S.; Reis, R.H.M.; Monteiro, S.N. Guaruman: A natural Amazonian fiber with potential for Polymer composite reinforcement. Mater. Res. 2019, 22, e20190092. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; Oliveira, M.S.; de Veiga Junior, V.F.; Filho, F.D.C.G.; Pinheiro, M.A.; Candido, V.S.; Monteiro, S.N. Guaruman fiber: Another possible reinforcement in composites. J. Mater. Res. Technol. 2020, 9, 622–628. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; da Luz, F.S.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target. Polymers 2021, 13, 1203. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.S.; de Moraes, M.F.; da Silva, R.S.D.; da Cruz, W.J.A.; Carniello, M.A. Cochlospermum orinocense (bixaceae) ocorrentes na bacia do guaporé, mato grosso, Brasil. In Proceedings of the 64º Congresso Nacional de Botânica, Belo Horizonte, Brazil, 10–15 November 2013; p. 1. [Google Scholar]
- Figueiredo, P.S.d.; Ribeiro, É.K.M.D.; Lacerda, D.M.A.; Girnos, E.C. Estratégia reprodutiva de Cochlospermum orinocense (Kunth) Steud.: Fenologia, biologia floral e sistema de cruzamento em uma espécie pioneira de florestas na Amazônia. Braz. J. Bot. 2009, 32, 781–792. [Google Scholar] [CrossRef]
- Reflora. Cochlospermum Orinocense (Kunth) Steud. 2023. Available online: https://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/BemVindoConsultaPublicaConsultar.do?invalidatePageControlCounter=&idsFilhosAlgas=&idsFilhosFungos=&lingua=&grupo=&familia=null&genero=&especie=&autor=&nomeVernaculo=&nomeCompleto=Cochlospermum+orinocense&formaVida=null&substrato=null&ocorreBrasil=QUALQUER&ocorrencia=OCORRE&endemismo=TODOS&origem=TODOS®iao=QUALQUER&estado=QUALQUER&ilhaOceanica=32767&domFitogeograficos=QUALQUER&bacia=QUALQUER&vegetacao=TODOS&mostrarAte=SUBESP_VAR&opcoesBusca=TODOS_OS_NOMES&loginUsuario=Visitante&senhaUsuario=&contexto=consulta-publica (accessed on 10 November 2023).
- da Silva, R.N.A.; de Macedo Neto, J.C.; Kimura, S.P.R. Natural fiber for reinforcement in matrix polymeric. Indep. J. Manag. Prod. 2022, 13, 154–167. [Google Scholar] [CrossRef]
- Pinheiro, M.A.; Ribeiro, M.M.; Rosa, D.L.S.; Nascimento, D.d.C.B.; da Silva, A.C.R.; Dos Reis, M.A.L.; Monteiro, S.N.; Candido, V.S. Periquiteira (Cochlospermum orinocense): A Promising Amazon Fiber for Application in Composite Materials. Polymers 2023, 15, 2120. [Google Scholar] [CrossRef]
- Monteiro, S.N. Properties and structure of Attalea funifera piassava fibers for composite reinforcement—A critical discussion. J. Nat. Fibers 2009, 6, 191–203. [Google Scholar] [CrossRef]
- Ferreira, D.C.d.O.N.; Ferreira, A.d.S.; Monteiro, S.N. Weibull analysis of tensile tested piassava fibers with different diameters. Matéria 2018, 23. [Google Scholar] [CrossRef]
- Pimentel, N.M.; Del Menezzi, C. Rendimento do processamento dos produtos oriundos da fibra vegetal da piaçava (Attalea funifera). Nativa 2020, 8, 137–144. [Google Scholar] [CrossRef]
- Bonelli, C.; Elzubair, A.; Suarez, J.C.M.; Mano, E.B. Comportamento térmico, mecânico e morfológico de compósitos de polietileno de alta densidade reciclado com fibra de piaçava. Polímeros 2005, 15, 256–260. [Google Scholar] [CrossRef]
- Turini, E. Proposta de preços mínimos safra 2013/2014. Produtos da sociobiodiversidade. Propos. De Preços Mínimos 2014, 3, 5–19. [Google Scholar]
- Fornari, C.I.; Fornari, J.; Celso, C. Avaliação da força de cisalhamento de fibras longas de piaçava em poliéster insaturado. Estud. Tecnol. Em Eng. 2013, 9. [Google Scholar] [CrossRef]
- Guimarães, C.A.L.; Silva, L.A.M. Piaçava da Bahia (Attalea funifera Martius): Do Extrativismo à Cultura Agrícola; Editus: Ilhéus, Brazil, 2012. [Google Scholar]
- Agrize, P.L.; da Silva, B.D.L.; Carvalho Veiga, B.; Rocha, C.A.A.; Garcia Filho, F.d.C.; Braga, F.d.O. Structure and mechanical behavior of lignosulfonate-treated piassava (Attalea funifera) fibers. Matéria 2023, 28, e20230041. [Google Scholar] [CrossRef]
- dos Santos, F.M.; de Souza, T.F.; Barquete, D.M.; Amado, F.D. Comparative analysis of the sisal and piassava fibers as reinforcements in lightweight cementitious composites with EVA waste. Constr. Build. Mater. 2016, 128, 315–323. [Google Scholar] [CrossRef]
- Miranda, C.S.; Fiuza, R.P.; Carvalho, R.F.; José, N.M. Efeito dos tratamentos superficiais nas propriedades do bagaço da fibra de piaçava Attalea funifera martius. Quím. Nova 2015, 38, 161–165. [Google Scholar]
- Carvalho, J.P.R.G.d.; Simonassi, N.T.; Lopes, F.P.D.; Monteiro, S.N.; Vieira, C.M.F. Novel sustainable castor oil-based polyurethane biocomposites reinforced with piassava fiber powder waste for high-performance coating floor. Sustainability 2022, 14, 5082. [Google Scholar] [CrossRef]
- NBR 14050; Sistemas de Revestimentos de alto Desempenho, à base de Resinas Epoxídicas e Agregados Minerais-Projeto, Execução e Avaliação do Desempenho-Procedimento. Associação Brasileira de Normas Técnicas: São Paulo, Brazil, 1998.
- Silva, D.S.; Ribeiro, M.M.; da Silva Rodrigues, J.; de Castro Corrêa, A.; Costa, D.C.L.; de Oliveira Costa, H.A.; da Silva, F.J.A.R.; dos Santos, A.J.G.; da Silva, M.H.P.; Fujiyama, R.T. Properties of flexural and impact of matrix composites polyester reinforced with short lignocellulosic fibers. Res. Soc. Dev. 2022, 11, e32511326612. [Google Scholar] [CrossRef]
- Thomas, B.C.; Jose, Y.S. A study on characteristics of sisal fiber and its performance in fiber reinforced concrete. Mater. Today Proc. 2022, 51, 1238–1242. [Google Scholar] [CrossRef]
- Fernandes, R.A.P.; Silveira, P.H.P.M.d.; Bastos, B.C.; Pereira, P.S.d.C.; Melo, V.A.d.; Monteiro, S.N.; Tapanes, N.d.L.C.O.; Bastos, D.C. Bio-based composites for light automotive parts: Statistical analysis of mechanical properties; effect of matrix and alkali treatment in sisal fibers. Polymers 2022, 14, 3566. [Google Scholar] [CrossRef] [PubMed]
- Nunesa, S.G.; da Silvab, L.V.; Amicob, S.C.; Dantas, J.; Vianac, F.D.R.A. Study of Composites Produced with Recovered Polypropylene and Piassava Fiber. Mater. Res. 2017, 20, 144–150. [Google Scholar] [CrossRef]
- Marinelli, A.L.; Monteiro, M.R.; Ambrósio, J.D.; Branciforti, M.C.; Kobayashi, M.; Nobre, A.D. Desenvolvimento de compósitos poliméricos com fibras vegetais naturais da biodiversidade: Uma contribuição para a sustentabilidade amazônica. Polímeros 2008, 18, 92–99. [Google Scholar] [CrossRef]
- Vasques, J.C. Nanocompósito de Poli(óxido de etileno) Reforçado Com Nanocristais de Celulose Extraídos da Fibra de Tucum. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2018. [Google Scholar]
- Ferreira, E.L. Manual das Palmeiras do Acre, Brasil; Instituto Nacional de Pesquisas/Universidade Federal do Acre: Rio Branco, Brazil, 2005. [Google Scholar]
- Abreu, R.; Nunes, N.L. Tecendo a tradição e valorizando o conhecimento tradicional na Amazônia: O caso da “linha do tucum”. Horiz. Antropol. 2012, 18, 15–43. [Google Scholar] [CrossRef]
- Jensen, O.H.; Balslev, H. Etnobotánica de la palma de fibra Astrocaryum chambira (Arecaceae) en la Amazonía ecuatoriana. Econ. Bot. 1995, 49, 309–319. [Google Scholar] [CrossRef]
- Vormisto, J. Making and marketing chambira hammocks and bags in the village of Brillo Nuevo, northeastern Peru. Econ. Bot. 2002, 56, 27–40. [Google Scholar] [CrossRef]
- Coomes, O.T. Rain forest ‘conservation-through-use’? Chambira palm fibre extraction and handicraft production in a land-constrained community, Peruvian Amazon. Biodivers. Conserv. 2004, 13, 351–360. [Google Scholar] [CrossRef]
- Bernal, R.; Torres, C.; García, N.; Isaza, C.; Navarro, J.; Vallejo, M.I.; Galeano, G.; Balslev, H. Palm management in south america. Bot. Rev. 2011, 77, 607–646. [Google Scholar] [CrossRef]
- Acevedo, L.M.G. El tejido en chambira, una actividad que une más que sogas. Bol. De Antropol. Univ. De Antioq. 2005, 19, 164–185. [Google Scholar] [CrossRef]
- Castaño-Arboleda, N.; Cárdenas, D.; Rodriguez, E.O. Ecología, Aprovechamiento y Manejo Sostenible de Nueve Especies de Plantas del Departamento del Amazonas, Generadoras de Productos Maderables y No Maderables; Instituto Amazónico de Investigaciones Científicas “SINCHI”: Bogotá, Colombia, 2006; ISBN 978-958-8317-21-2. [Google Scholar]
- Oliveira, M.S.; Luz, F.S.d.; Teixeira Souza, A.; Demosthenes, L.C.d.C.; Pereira, A.C.; Filho, F.d.C.G.; Braga, F.d.O.; Figueiredo, A.B.H.d.S.; Monteiro, S.N. Tucum fiber from Amazon Astrocaryum vulgare palm tree: Novel reinforcement for polymer composites. Polymers 2020, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.P.; de Mendonça Neuba, L.; da Silveira, P.H.P.M.; da Luz, F.S.; da Silva Figueiredo, A.B.H.; Monteiro, S.N.; Moreira, M.O. Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. J. Mater. Res. Technol. 2021, 12, 221–233. [Google Scholar] [CrossRef]
- da Silva, T.T.; Silveira, P.H.P.M.d.; Figueiredo, A.B.H.d.S.; Monteiro, S.N.; Ribeiro, M.P.; Neuba, L.d.M.; Simonassi, N.T.; Garcia Filho, F.d.C.; Nascimento, L.F.C. Dynamic mechanical analysis and ballistic performance of kenaf fiber-reinforced epoxy composites. Polymers 2022, 14, 3629. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.; Galeano, G.; Bernal, R. Field Guide to the Palms of the Americas; Princeton University Press: Princeton, NJ, USA, 2019; Volume 5390. [Google Scholar]
- Anderson, A.B. Os nomes e usos de palmeiras entre uma tribo de índios Yanomama. Acta Amaz. 1977, 7, 5–13. [Google Scholar] [CrossRef]
- Jardim, M.A.G.; Santos, G.d.; Medeiros, T.D.S.; Francez, D.d.C. Diversidade e estrutura de palmeiras em floresta de várzea do estuário amazônico. Amazôn. Ciênc. Desenvolv. 2007, 2, 67–84. [Google Scholar]
- Punt, W.; Wessels Boer, J. A palynological study in geonomoid palms. Acta Bot. Neerl. 1966, 15, 266–275. [Google Scholar] [CrossRef]
- Marchi, B.Z. Caracterização e Avaliação Balística de Compósitos Epóxi Reforçados Com Fibras de Ubim. Ph.D. Thesis, Instituto Militar de Engenharia, Rio de Janeiro, Brazil, 2023. [Google Scholar]
- de Granville, J.J. La distribución de las palmas en Guyana Francesa. Acta Amaz. 1989, 19, 115–138. [Google Scholar] [CrossRef]
- Rocha, A.E.S.d.; Silva, M.F.F.d. Aspectos fitossociológicos, florísticos e etnobotânicos das palmeiras (Arecaceae) de floresta secundária no município de Bragança, PA, Brasil. Acta Bot. Bras. 2005, 19, 657–667. [Google Scholar] [CrossRef]
- Siviero, A.; Lin, C.M.; Silveira, M.; Daly, D.C.; Wallace, R.H. Etnobotânica e Botânica Econômica do Acre; Edufac: Rio Branco, Brazil, 2016; 410p, ISBN 978-85-8236-027-9. [Google Scholar]
- Marchi, B.Z.; Oliveira, M.S.; Bezerra, W.B.A.; de Sousa, T.G.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ubim fiber (Geonoma baculífera): A less known Brazilian amazon natural fiber for engineering applications. Sustainability 2021, 14, 421. [Google Scholar] [CrossRef]
- Marchi, B.Z.; Silveira, P.H.P.M.d.; Bezerra, W.B.A.; Nascimento, L.F.C.; Lopes, F.P.D.; Candido, V.S.; Silva, A.C.R.d.; Monteiro, S.N. Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (Geonoma baculifera) Reinforced Epoxy Matrix Composites. Polymers 2023, 15, 3220. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.S.; Henrique, D.C.; Meili, L.; SOLETTI, J.I.; Carvalho, S. Utilização da fibra do Ouricuri (Syagrus coronata) na remoção do corante azul de metileno: Variáveis de processo e isoterma de adsorção. In Proceedings of the XXXVII Congresso Brasileiro de Sistemas Particulados, São Carlos, Brazil, 18–21 October 2015; pp. 1–10. [Google Scholar]
- Silvestrim, R.G.; Santana, R.M.C.; Moura, A.d.S. Avaliação comparativa da degradação por intemperismo natural e por compostagem de compósitos de PLA reforçado com fibra vegetal da árvore Embira. In Proceedings of the Congresso Brasileiro de Polímeros, Bento Gonçalves, Brazil, 27–31 January 2019; pp. 1–5. [Google Scholar]
- Holanda, F.S.R.; Castro, J.D.S.d.; Santos, L.D.V.; Andrade, C.E.C.d.; Griza, S.; Rodrigues Junior, J.J.; Pedrotti, A. Degradação de geotêxteis de Typha latifolia Linn utilizados em técnicas de bioengenharia de solos. Ciênc. Florest. 2020, 30, 1147–1160. [Google Scholar] [CrossRef]
- da Cunha, J.d.S.C.; Nascimento, L.F.C.; da Luz, F.S.; Monteiro, S.N.; Lemos, M.F.; da Silva, C.G.; Simonassi, N.T. Physical and Mechanical Characterization of Titica Vine (Heteropsis flexuosa) Incorporated Epoxy Matrix Composites. Polymers 2021, 13, 4079. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.d.S.C.d.; Nascimento, L.F.C.; Luz, F.S.d.; Garcia Filho, F.d.C.; Oliveira, M.S.; Monteiro, S.N. Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites. J. Compos. Sci. 2022, 6, 251. [Google Scholar] [CrossRef]
- Melo, D.Q.; Vidal, C.B.; da Silva, A.L.; Teixeira, R.N.; Raulino, G.S.C.; Medeiros, T.C.; Fechine, P.B.; Mazzeto, S.E.; De Keukeleire, D.; Nascimento, R.F. Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Vidal, C.B.; Melo, D.Q.; Raulino, G.S.; da Luz, A.D.; da Luz, C.; Nascimento, R.F. Multielement adsorption of metal ions using Tururi fibers (Manicaria Saccifera): Experiments, mathematical modeling and numerical simulation. Desalination Water Treat. 2016, 57, 9001–9008. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Baruque-Ramos, J. Amazonian Tururi palm fiber material (Manicaria saccifera Gaertn). In Proceedings of the 2nd International Conference on Natural Fibers, São Miguel, Portugal, 27–29 April 2015; Springer: Berlin/Heidelberg, Germany, 2016; pp. 127–137, ISBN 978-94-017-7515-1. [Google Scholar]
- Viana, Á.L.; Mady, F.T.M.; do Carmo, M.A.; da Silva Guimarães, D.F. Pecíolo de inajá (Maximiliana maripa [aubl.] Drud) como fonte de matéria prima para produção de papel na Amazônia. Rev. Eletrônica Em Gestão Educ. E Tecnol. Ambient. 2014, 1512–1520. [Google Scholar]
- Oliveira, A.; d’Almeida, J. Characterization of ubuçu (Manicaria saccifera) natural fiber mat. Polym. Renew. Resour. 2014, 5, 13–28. [Google Scholar] [CrossRef]
- Baruque-Ramos, J.; Monteiro, A.; Midani, M.; Seyam, A.F.M.; Leonardi, B.; Pennas, L.; Cattani, I. Textile Palm Fibers from Amazon Biome. Mater. Res. Proc. 2019, 11, 262–274. [Google Scholar]
- Chu, Y.; Meyers A, M.A.; Wang, B.; Yang, W.; Jung, J.Y.; Coimbra, C.F. A sustainable substitute for ivory: The Jarina seed from the Amazon. Sci. Rep. 2015, 5, 14387. [Google Scholar] [CrossRef] [PubMed]
- Cruz, O.M.; de Souza, R.L.F.; de Freitas, R.R.; de Souza, L.M.; Mafra, E.R.M.L.; da Silva e Silva, B.M.; Bufalino, L. The properties of the mesocarp fibers of patauá, a multiple-use palm from the Amazonia forest. SN Appl. Sci. 2019, 1, 1317. [Google Scholar] [CrossRef]
- Cruz, O.M.; Dias, M.C.; Oliveira, D.N.P.S.D.; Silva, M.G.D.; Souza, T.M.D.; Mendes, L.M.; Matos, L.C.; Bufalino, L. Characterization of raw and thermochemically-treated mesocarp fibers of Oenocarpus bataua, an Amazon palm. CERNE 2023, 29, e103219. [Google Scholar] [CrossRef]
Period (Year) | Fact |
---|---|
20,000 BC | Humans making ropes and cords during the Paleolithic Age |
12,000 BC | Evidence of the existence of cotton in Egypt |
10,000 BC | First reports of the cultivation of wild plants and the manufacture of fabrics from natural fibers |
9000 BC | The discovery of a net bag in Utah indicated that the American Indians had advanced skills in processing plant fibers in approximately 9000 BC. |
8000 BC | The Swiss Lake Dwellers of the Stone Age cultivated flax and wove it into linen fabric. |
6000 BC | Hemp, believed by some to be the oldest cultivated fiber plant, originated in Southeast Asia and spread to China |
5700 BC | Evidence of cotton fabrics produced in Mexico during this period |
5000 BC | The first evidence of weaving, through the manufacture of baskets using plant fibers, dates from this period. Cotton was cultivated and used in the Tehuacan Valley of Mexico. |
3500 BC | Heavy, strong ropes were used to drag heavy objects in Egypt. The ropes were made by twisting strips cut from hides or fibers from papyrus reeds |
3400 BC | The art of spinning and weaving linen was well developed in Egypt by 3400 BC, suggesting flax had been cultivated prior to that date |
3000 BC | Spinning and weaving of cotton is practiced in Pakistan, evidenced by the discovery of cotton fabrics and string from excavations at Mohenjo-Daro |
2900 BC | The Emperor Shen Nung encouraged the growth of hemp in China |
2500 BC | Cotton and cotton textiles existed in Peru |
2300 BC | Cotton was cultivated in the Indus Valley |
1400 BC | A Hindu hymn describes the manufacture of cotton yarns and the weaving of cotton cloth |
445 BC | Herodotus wrote of trees which grow wild in India, the fruit of which is a wool exceeding in beauty and goodness that of sheep and from which the natives make clothing |
63 BC | Lentullus Spinther introduced cotton awnings in the theater at the Appolinarian games |
Fiber | Global Production (Ton) | |||
---|---|---|---|---|
2020 | 2021 | 2022 | 2023 | |
Abaca | 75,889 | 83,501 | 72,000 | 66,000 |
Agave Fibers | 40,625 | 40,743 | 41,000 | 41,000 |
Coir | 1,101,498 | 1,115,349 | 1,145,000 | 1,175,000 |
Cotton | 23,989,000 | 25,176,000 | 25,314,609 | 24,515,567 |
Other fiber crops | 739,145 | 755,326 | 733,000 | 742,000 |
Flax, processed but not spun | 974,806 | 896,636 | 851,805 | 851,805 |
True hemp, raw or retted | 251,062 | 302,318 | 272,000 | 272,000 |
Jute, Kenaf and Allied fibers | 2,874,000 | 3,175,600 | 3,095,000 | 2,700,000 |
Kapok | 78,674 | 82,150 | 80,000 | 80,000 |
Ramie, raw or retted | 62,228 | 10,138 | 10,000 | 10,000 |
Sisal, Henequen and similar | ||||
hard fibers | 280,800 | 281,400 | 273,000 | 278,000 |
Silk, raw | 91,765 | 86,311 | 91,221 | 90,000 |
Total Natural Fibers | 31,606,868 | 33,069,866 | 33,100,000 | 31,900,000 |
Fiber | Cellulose (wt.%) | Lignin (wt.%) | Hemicellulose (wt.%) | Pectin (wt.%) | Wax (wt.%) | Reference |
---|---|---|---|---|---|---|
Flax | 60–81 | 2 | 14–21 | 2–5 | 1–2 | [78,79] |
Hemp | 57–78 | 3–13 | 11–22 | 1 | 0–3 | [80,81,82] |
Ramie | 68–75 | 0.8–1.5 | 13–16 | 4–5 | 1–2 | [83,84] |
Kenaf | 45–66 | 14–20 | 12–20 | 0.4–2.7 | 0.3–3 | [40,85] |
Guaruman | 39–40 | 10–12 | 40–41 | - | - | [86] |
Jute | 61–72 | 12–13 | 13–20 | 0.2 | - | [87] |
Sisal | 67–78 | 8–12 | 10–14 | 10 | 2 | [88,89] |
Cabuya | 48–84 | 8.3–17 | 0.5–11 | - | 2 | [90,91] |
Abacca | 56–66 | 7–13 | 21–30 | 1–3 | - | [91,92] |
Betelnut | 53 | 7 | 33 | - | 0.6 | [93,94] |
Banana | 64–82 | 5–8.5 | 19 | - | - | [95,96] |
Coir | 32–50 | 30–45 | 0.15–15 | 1.8–4 | - | [97,98] |
Bamboo | 26–75 | 10–31 | 12–16 | 0.37 | - | [99,100] |
Bagasse | 32–55 | 19–25 | 27–32 | - | - | [101,102] |
Sponge gourd | 62 | 11.2 | 20 | - | - | [102,103] |
Rice husk | 35–57 | 21 | 12–33 | - | - | [104] |
Wheat Straw | 47–63 | 5.5–18.5 | 12–32 | - | - | [105] |
Oat | 31–48 | 16–19 | - | - | - | [91] |
Napier Grass | 45–59 | 20–24 | 20–33 | - | - | [106] |
Curaua | 73.6 | 9.9 | 5.5 | - | - | [107,108] |
Henequen | 60 | 8 | 25 | - | 2 | [109] |
Cotton | 77–96 | 2–5 | 3 | 0.8–2.5 | 0.6 | [91,110,111] |
Nettle | 72–84 | 2.2–7.5 | 6–12 | - | - | [112,113] |
Pineapple | 49–82 | 5–31 | 6–13 | - | - | [88,114,115] |
Hard Wood | 70–74 | 2.6–5.2 | 0.5–0.7 | - | - | [116] |
Soft Wood | 40–45 | 25–34 | 20–30 | - | - | [117,118] |
Piassava | 28–32 | 45–48 | 25–26 | - | - | [119,120,121] |
Açai | 45–47 | 31–34 | 10–15 | - | - | [122] |
Phormium tenax | 67 | 11 | 30 | - | - | [123] |
Sansevieria ehrenberg | 80 | 3.8 | 10 | - | 0.1 | [124] |
Sea Grass | 40–77 | 5–11 | 14–38 | 10 | - | [91,125] |
Isora | 71–75 | 21–23 | 3.1 | - | - | [126,127] |
Oil Palm | 60 | 11 | - | - | - | [128] |
Rachis | 43–45 | 26 | 28–31 | - | - | [129] |
Rachilla | 42 | 16 | - | - | - | [91,130] |
Coconut | 26–50 | 49–53 | 6–43 | - | - | [131,132] |
Barley | 31–45 | 14–15 | - | - | - | [91] |
Pigeon Pea | 55 | 18 | - | 2.4 | - | [133] |
Arundo donax L. | 75.3 | 4.3 | - | - | - | [134] |
Rye | 33–50 | 16–31 | 16 | - | - | [91,135] |
Esparto | 42–44.5 | 12–17 | 25.6–27.5 | - | - | [136] |
Sabai | 43–67 | 14–18 | 13–21 | - | - | [137] |
Phragmites communis | 43–48 | 10–11 | 33–36 | - | - | [138] |
Coniferous | 40–45 | 26–34 | - | - | - | [91] |
Deciduous | 38–49 | 23–30 | - | - | - | [91] |
Cytostachys renda | 42–49 | 17–22 | 19–23 | - | - | [139] |
Phychosperma macarthurii | 39 | 18.2 | 19.1 | - | - | [91] |
Petiole bark | 29–48 | 23–42 | - | - | - | [140] |
Kudzu | 43–78 | 18–42 | 1–18 | - | - | [141] |
Chemical Treatment | Improvement in Natural Fibers |
---|---|
Alkaline treatment | Adhesion |
Silane treatment | Control Fiber Swelling |
Acetylation treatment | Moisture absorption |
Benzoylation treatment | Thermal stability |
Peroxide treatment | Adhesion |
Maleated coupling agents | Bonding between fibers and matrix |
Sodium chlorite treatment | Moisture absorption |
Acrylation and acrylonitrile grafting | Coupling |
Isocyanate treatment | Bonding |
Oleoyl chloride treatment | Wettability |
Stearic acid treatment | Water resistance |
Permanganate treatment | Adhesion |
Fungal treatment | Remove lignin |
Triazine treatment | Adhesion |
Fibers | Cost (USD/Ton) | Energy (GJ/Ton) |
---|---|---|
Natural fibers | 200–1000 | 4 |
Glass fiber | 1200–1800 | 30 |
Carbon fiber | 12,500 | 130 |
Set of Samples | Count Number (tex) | Rupture Strength (N) | Toughness (cN/tex) | Elongation (%) | Young Modulus (N/tex) |
---|---|---|---|---|---|
In natura fibers | 223.4 ± 77.7 (34.8%) | 64.1 ± 28.0 (43.6%) | 28.4 ± 5.5 (19.6%) | 8.3 ± 0.5 (6.8%) | 6.1 ± 0.8 (13.1%) |
Fibers boiled by the origin community | 196.9 ± 71.7 (36.4%) | 60.4 ± 25.7 (42.6%) | 31.1 ± 7.6 (24.7%) | 8.3 ± 0.7 (9.2%) | 7.2 ± 0.6 (9.5%) |
Fibers boiled in bleach | 199 ± 81.8 (41.1%) | 55.3 ± 28.6 (51.7%) | 27.6 ± 7.1 (25.9%) | 7.8 ± 0.5 (7.4%) | 5.9 ± 1.1 (19.9%) |
Fibers boiled in softener | 208.7 ± 83.8 (40.1%) | 49.9 ± 31.8 (63.7%) | 22.0 ± 8.7 (39.7%) | 8.6 ± 1.8 (21.5%) | 4.9 ± 0.9 (19.7%) |
Fibers boiled in lemom juice | 194.6 ± 67.2 (34.5%) | 58.4 ± 25.9 (44.3%) | 29.7 ± 6.4 (21.7%) | 8.5 ± 0.5 (6.4%) | 5.8 ± 0.7 (13.4%) |
Fiber | Density (g/cm3) | Tensile Strength (MPa) | Young Modulus (GPa) | MFA (°) |
---|---|---|---|---|
Guaruman | 0.57 | 614 | 21 | 7.8 |
Jute | 1.45 | 597 | 20 | 8.0 |
Ramie | 1.50 | 685 | 44 | 6.2 |
Hemp | 1.45 | 539 | 35 | 7.5 |
Sisal | 1.38 | 478 | 19 | 20.0 |
PALF | 1.44 | 180 | 59 | 11.5 |
Coir | 1.52 | 135 | 5 | 51.0 |
Fiber | Hemicellulose (%) | Lignin (%) | Cellulose (%) | Tensile Strength (MPa) | Young Modulus (GPa) | Elongation (%) |
---|---|---|---|---|---|---|
Periquiteira | - | 12.03 | 60.15 | 83.93–168.19 | 4.04–7.09 | 0.19–0.81 |
Fiber | Diameter (μm) | Density (g/cm3) | Cellulose (%) | Crystallinity (%) | Microfibril Angle (°) |
---|---|---|---|---|---|
Ubim | 510–620 | 0.44–0.97 | 66 | 63–83 | 7.46 |
Samples | vi (m/s) | vr (m/s) | Eabs (J) | vL (m/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Epoxy | 812.58 | ± | 3.84 | 786.28 | ± | 5.93 | 203.82 | ± | 18.92 | 204.82 | ± | 9.36 |
10 vol.% | 833.75 | ± | 12.81 | 810.28 | ± | 15.39 | 187.03 | ± | 25.99 | 195.98 | ± | 13.57 |
20 vol.% | 808.42 | ± | 9.84 | 786.56 | ± | 10.81 | 169.07 | ± | 33.73 | 185.98 | ± | 18.00 |
30 vol.% | 815.28 | ± | 8.70 | 794.85 | ± | 10.54 | 159.42 | ± | 26.32 | 180.79 | ± | 14.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silveira, P.H.P.M.; Cardoso, B.F.d.A.F.; Marchi, B.Z.; Monteiro, S.N. Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review. Eng 2024, 5, 133-179. https://doi.org/10.3390/eng5010009
da Silveira PHPM, Cardoso BFdAF, Marchi BZ, Monteiro SN. Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review. Eng. 2024; 5(1):133-179. https://doi.org/10.3390/eng5010009
Chicago/Turabian Styleda Silveira, Pedro Henrique Poubel Mendonça, Bruno Figueira de Abreu Ferreira Cardoso, Belayne Zanini Marchi, and Sergio Neves Monteiro. 2024. "Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review" Eng 5, no. 1: 133-179. https://doi.org/10.3390/eng5010009